Детские книги        08.11.2020   

Если при пересечении двух прямых третьей сумма. Если при пересечении двух прямых третьей. Практические способы построения параллельных прямых

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

Геометрия. Назовте 3 признака паралейности прямых и получил лучший ответ

Ответ от Hoster Garenov[новичек]
Если при пересечении 2 прямых третьей, сумма внутренних односторонних углов равна 180 градусов, то такие прямые параллельный.
Если при пересечниии 2 прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны.
Если 2 прямые перпендикулярны третьей, то они параллельны.

Ответ от Pazitea [гуру]
1. Первый признак параллельности.
Если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то эти прямые параллельны.
2. Второй признак параллельности.
Если при пересечении двух прямых третьей соответственные углы равны, то эти две прямые параллельны.
3. Третий признак параллельности.
Пусть нам известно, что при пересечении двух прямых АВ и СD третьей прямой сумма каких-нибудь внутренних односторонних углов равна 2d (или 180°). Будут ли в этом случае прямые АВ и СD параллельны (черт. 192).
Пусть / 1 и / 2-внутренние односторонние углы и в сумме составляют 2d.
Но / 3 + / 2 = 2d, как углы смежные. Следовательно, / 1 + / 2 = / 3+ / 2.
Отсюда / 1 = / 3, а эти углы внутренние накрест лежащие. Следовательно, АВ || СD.
Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 2d, то эти две прямые параллельны.


Ответ от 3 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Геометрия. Назовте 3 признака паралейности прямых

Ответ от 3 ответа [гуру]

Два угла называются вертикальными, если стороны одного угла являются продолжением сторон другого.

На рисунке углы 1 и 3 , а также углы 2 и 4 - вертикальные. Угол2 является смежным как с углом 1 , так и с углом 3. По свойству смежных углов 1 +2 =180 0 и 3 +2 =180 0 . Отсюда получаем: 1=180 0 -2 , 3=180 0 -2. Таким образом, градусные меры углов 1 и 3 равны. Отсюда следует, что и сами углы равны. Итак, вертикальные углы равны.

2.Признаки равенства треугольников.

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

3.Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.

1 признак равенства треугольников:

Рассмотрим треугольники АВС и А 1 В 1 С 1 , у которых АВ=А 1 В 1 , АС=А 1 С 1 , углы А и А 1 равны. Докажем, что АВС=А 1 В 1 С 1 .
Так как (у)А=(у)А 1 , то треугольник АВС можно наложить на треугольник А 1 В 1 С 1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А 1 В 1 и А 1 С 1 . Поскольку АВ=А 1 В 1 , АС=А 1 С 1 , то сторона АВ совместится со стороной А 1 В 1 , а сторона АС - со стороной А 1 С 1 ; в частности, совместятся точки В и В 1 , С и С 1 . Следовательно, совместятся стороны ВС и В 1 С 1 . Итак, треугольники АВС и А 1 В 1 С 1 полностью совместятся, значит они равны. ЧТД

3.Теорема о биссектрисе равнобедренного треугольника.

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Обратимся к рисунку, на котором АВС - равнобедренный треугольник с основанием ВС, АD - его биссектриса.

Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD – общая; углы 1 и 2 равны т.к. AD-биссектриса; AB=AC, т.к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D - середина стороны ВС и поэтому АD - медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. ЧТД.

4. Если прямые параллельны -> угол…. (на выбор)

5. Если угол…..-> прямые параллельны (на выбор)

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Пусть при пересечении прямых а и б секущей с соответственные углы равны, например 1=2.

Так как углы 2 и 3 – вертикальные, то 2=3. Из этих двух равенств следует, что 1=3. Но углы 1 и 3 – накрест лежащие, поэтому прямые а и б параллельные. ЧТД.

6. Теорема о сумме углов треугольника.

Сумма углов треугольника равна 180 0 .

Рассмотрим произвольные треугольник АВС и докажем, что А+В+С=180 0 .

Проведем через вершину В прямую а, параллельную стороне АС. Углы 1 и 4 являются накрест лежащими углами про пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 – накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому (1)4=1; 5=3.

Очевидно, сумма углов 4, 2 и 5 равна развёрнутому углу с вершиной В, т.е. 4+2+5=180 0 . Отсюда, учитывая равенства (1), получаем: 1+2+3=180 0 или А+В+С=180 0 .ЧТД.

7.Признак равенства прямоугольных треугольников.

AB и С D пересечены третьей прямой MN , то образовавшиеся при этом углы получают попарно такие названия:

соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7;

внутренние накрест лежащие углы : 3 и 5, 4 и 6;

внешние накрест лежащие углы : 1 и 7, 2 и 8;

внутренние односторонние углы : 3 и 6, 4 и 5;

внешние односторонние углы : 1 и 8, 2 и 7.

Так, ∠ 2 = ∠ 4 и ∠ 8 = ∠ 6, но по доказанному ∠ 4 = ∠ 6.

Следовательно, ∠ 2 =∠ 8.

3. Соответственные углы 2 и 6 одинаковы, поскольку ∠ 2 = ∠ 4, а ∠ 4 = ∠ 6. Также убедимся в равенстве других соответственных углов.

4. Сумма внутренних односторонних углов 3 и 6 будет 2d, потому что сумма смежных углов 3 и 4 равна 2d = 180 0 , а ∠ 4 можно заменить идентичным ему ∠ 6. Также убедимся, что сумма углов 4 и 5 равна 2d.

5. Сумма внешних односторонних углов будет 2d, потому что эти углы равны соответственно внутренним односторонним углам , как углы вертикальные .

Из выше доказанного обоснования получаем обратные теоремы.

Когда при пересечении двух прямых произвольной третьей прямой получим, что:

1. Внутренние накрест лежащие углы одинаковы;

или 2. Внешние накрест лежащие углы одинаковые;

или 3. Соответственные углы одинаковые;

или 4. Сумма внутренних односторонних углов равна 2d = 180 0 ;

или 5. Сумма внешних односторонних равна 2d = 180 0 ,

то первые две прямые параллельны.