Литература        10.01.2024   

К характеристикам рассеяния не относится. Характеристики случайных величин

Характеристики положения дают усредненное представление о характерных значениях, принимаемых случайными величинами. Информации в этих характеристиках тем больше, чем меньшие отклонения от них могут наблюдаться в реальном эксперименте. Показатели, описывающие возможные отклонения значений случайной величины от «средних», называются характеристиками рассеяния. К ним относятся дисперсия, среднеквадратичное отклонение, срединное отклонение, коэффициент вариации и некоторые другие. 2.1. Дисперсия и ее свойства Важнейшей из них является дисперсия. Дисперсией случайной величины £ (обозначение #[£]) называется математическое ожидание квадрата отклонения случайной величины (от своего среднего Отметим некоторые свойства дисперсии. используя свойства математического ожидания, получаем Отметим, что если случайные величины - независимы, то из свойства 3 математического ожидания следует, что и указанное свойство выглядит так: 6. Если д^(х) - обобщенная плотность распределения случайной величины f, то £>[£] может быть вычислена из соотношения Характеристики рассеяния Дисперсия и ее свойства Неравенство Чебышёва в частности, если £ - непрерывная случайная величина с плотностью ж), то если же £ - дискретная случайная величина с рядом распределения Пример t (дисперсия бернуллиевой случайной величины). Пусть (- беонуллиева случайная величина, . В соответствие с соотношением (4), получаем (М= р) Пример 2 (дисперсия биномиальной случайной величины). Если £ - биномиальная с параметрами (п, р), то, как было отмечено выше, (представима в виде где - независимые одинаково распределенные бернуллиевы с параметром р случайные величины. Поэтому (свойство дисперсии 5) Одновременно доказано комбинаторное тождество Пример 3 (дисперсия равномерной на (и, случайной величины). Пусто Имеем Характеристикой рассеяния, тесно связанной с дисперсией, является среднее ква-дратическое отклонение случайной величины". Обладая тем же качественным наполнением (содержа в себе ту же информацию), что и дисперсия, среднее квадратическое отклонение имеет то преимущество, что измеряется в тех же единицах, что и рассматриваемая случайная величина. Отметим, что из свойств дисперсии с очевидностью следует: если только - независимы. В заключение заметим, что если у случайной величины £ существуют то можно построить случайную величину £, обладающую теми же свойствами, что и £, но имеющую стандартные числовые характеристики: М = 0 и D = 1. Достаточно положить Переход от (к £ - т носит название центрирование случайной величины а переход от- нормирование. Таким образом, соотношение (6) описывает процедуру нормирования и центрирования случайной величины Очевидно, что центрирование) не меняет дисперсии, в то время как нормирование, носящее характер масштабного преобразования, изменяет математическое ожидание в о раз. 2.2. Неравенство Чебышёва Из определения дисперсии (1) ясно, что она призвана качественно описывать рассеяние значений случайной величины относительно математического ожидания. Точный вероятностный смысл этого описания дается неравенством Чебышёва, которое мы здесь рассмотрим. Теорема. Пусть случайная величина £ обладает математическим ожиданием А/(£| = т и дисперсией /?(£) = а2. Тогда каково бы ни было е > О Рассмотрим вспомогательную случайную величину г/, заданную соотношением Заметим, что и потому По теореме о математическом ожидании функции от случайной величины получаем откуда или чем и завершается доказательство. Отметим, что неравенство (7) часто используется в эквивалентной форме получающейся из (7) применением очевидного соотношения Неравенство Чебышёва показывает, что чем меньше дисперсия, тем реже значения случайной величины £ «сильно» (больше чем на е) отклоняются от среднего т. При фиксированной дисперсии вероятности отклонений на величину, большую, чем е,тем меньше, чем больше е. Неравенство (7) универсально. Оно не предъявляет никаких требований к характеру распределения случайной величины f - достаточно существования т и а. В силу своей универсальности оно малоинформативно количественно - для разумных значений е оценки вероятностей крайне фубы. Пример. Для нормальной случайной величины с параметрами (0, 1) имеем Характеристики рассеяния Дисперсия и ее свойства Неравенство Чебышёва в то время как неравенство Чебышёва дает что верно, но тривиально. Для этой же случайной величины при е = 3 точное значение вероятности, а соотношение (8) приводит к оценке которая уже значительно лучше предыдущей. Несмотря на достаточно грубый характер оценок (7)-(8), без дополнительных предположений о характере распределения случайной величины неравенство Чебышёва, как показывает следующий пример, улучшить нельзя - оно точное1*. Пример. Пусть (-дискретная случайная величина, принимающая значения вероятностями соответственно. Легко видеть, что. Положим е = I и найдем значение вероятности Имеем Неравенство (7) в этой ситуации дает оценку которая совпадает с точным значением оцениваемой вероятности. 2.3. Другие характеристики рассеяния Из других характеристик рассеяния, часто используемых в приложениях, отметим коэффициент вариации и срединное отклонение (среднее арифметическое отклонение). Пусть у случайной величины £ существует А/[£) = m и = о2. Коэффициентом вариации случайной величины £ называется величина Из (9) легко усмотреть, что описывает рассеяние случайной величины £ в долях по отношению к среднему. Как абсолютный показатель рассеяния коэффициент вариации не очень удобен, однако для совместно центрированных случайных величин (т.е. имеющих одинаковые математические ожидания) он позволяет эффективно сравнивать диапазоны изменения. Пусть у случайной величины £ существует Срединным отклонением Срединное отклонение (/[£] качественно имеет тот же смысл, что и среднеква-дратическос отклонение - чем больше срединное отклонение, тем больше рассеяние, чем меньше срединное отклонение - тем меньше рассеяние. В том смысле, что существует случайная величина для которой в неравенствах (7)-(8) при некотором е достигается знак равенства. Для конкретных классов распределений связь между этими показателями может быть установлена, однако в общем случае удобных для использования на практике соотношений между U и а нет. Пример 1. Пусть (- нормально распределенная случайная величина. Тогда В этом случае Пример 2. Пусть { = Л[-о, о| - равномерно распределенная случайная величина. Тогда U = а/2. Характеристики рассеяния Дисперсия и ее свойства Неравенство Чебышёва Отметим, что и в этом случае Замеченное свойство U неслучайно -оно имеет место для любых случайных величин (конечно, обладающих дисперсией). Теорема. Если у случайной величины £ существует D£ = а2, то М В неравенстве Коши-Буняковского (свойство 6 математического ожидания) положим Ь Тогда откуда

Главная характеристика рассеивания вариационного ряда называется дисперсией

Главная характеристика рассеивания вариационного ряда называется дисперсией . Выборочная дисперсия D в рассчитывается по следующей формуле:

где x i – i -ая величина из выборки, встречающаяся m i раз; n – объём выборки; – выборочная средняя; k – количество различных значений в выборке. В рассматриваемом примере: x 1 =72, m 1 =50; x 2 =85, m 2 =44; x 3 =69, m 3 =61; n =155; k =3; . Тогда:

Заметим, что чем больше значение дисперсии, тем сильнее отличие значений измеряемой величины друг от друга. Если в выборке все значения измеряемой величины равны между собой, то дисперсия такой выборки равна нулю.

Дисперсия обладает особыми свойствами.

Свойство 1. Значение дисперсии любой выборки неотрицательно, т.е. .

Свойство 2. Если измеряемая величина постоянна X=c, то дисперсия для такой величины равна нулю: D [ c ]= 0.

Свойство 3. Если все значения измеряемой величины x в выборке увеличить в c раз, то дисперсия данной выборки увеличится в c 2 раз: D [ cx ]= c 2 D [ x ], где c = const .

Иногда вместо дисперсии используют выборочное среднее квадратическое отклонение , которое равно арифметическому квадратному корню из выборочной дисперсии: .

Для рассмотренного примера выборочное среднее квадратическое отклонение равно .

Дисперсия позволяет оценить не только степень различия измеряемых показателей внутри одной группы, но может быть использована и для определения отклонения данных между разными группами. Для этого используется несколько видов дисперсии.

Если в качестве выборки берётся какая-либо группа, то дисперсия данной группы называется групповой дисперсией . Чтобы выразить численно различия между дисперсиями нескольких групп, существует понятие межгрупповой дисперсии . Межгрупповой дисперсией называется дисперсия групповых средних относительно общей средней:

где k – число групп в общей выборке, - выборочная средняя для i -ой группы, n i – объём выборки i -ой группы, - выборочная средняя для всех групп.

Рассмотрим пример.

Средняя оценка за контрольную работу по математике в 10 «А» классе составила 3.64, а в 10 «Б» классе 3.52. В 10 «А» учится 22 человека, а в 10 «Б» - 21. Найдём межгрупповую дисперсию.

В данной задаче выборка разбивается на две группы (два класса). Выборочная средняя для всех групп равна:

.

В таком случае межгрупповая дисперсия равна:

Поскольку межгрупповая дисперсия близка к нулю, то мы можем сделать вывод, что оценки одной группы (10 «А» класса) в малой степени отличаются от оценок второй группы (10 «Б» класса). Иными словами, с точки зрения межгрупповой дисперсии рассмотренные группы в незначительной степени отличаются по заданному признаку.

Если общая выборка (например, класс учеников) разбита на несколько групп, то помимо межгрупповой дисперсии можно рассчитать ещё внутригрупповую дисперсию . Такая дисперсия является средней величиной для всех групповых дисперсий.

Внутригрупповая дисперсия D внгр рассчитывается по формуле:

где k – количество групп в общей выборке, D i – дисперсия i -ой группы объёма n i .

Существует взаимосвязь между общей (D в ), внутригрупповой ( D внгр ) и межгрупповой ( D межгр ) дисперсиями:

D в = D внгр + D межгр .

    ЭФФЕКТИВНАЯ ПОВЕРХНОСТЬ (ПЛОЩАДЬ) РАССЕЯНИЯ - характеристика отражающей способности цели, выражаемая отношением мощности эл. магн. энергии, отражаемой целью в направлении приёмника, к поверхностной плотности потока энергии, падающей на цель. Зависит от… … Энциклопедия РВСН

    Квантовая механика … Википедия

    - (ЭПР) характеристика отражающей способности цели, облучаемой электромагнитными волнами. Значение ЭПР определяется как отношение потока (мощности) электромагнитной энергии, отражаемой целью в направлении радиоэлектронного средства (РЭС), к… … Морской словарь

    полоса рассеяния - Статистическая характеристика экспериментальных данных, отражающая их отклонение от средних значения. Тематики металлургия в целом EN desperal band … Справочник технического переводчика

    - (функция передачи модуляции), ф ция, с помощью к рой оценивают «резкостные» св ва изображающих оптич. систем и отд. элементов таких систем. Ч. к. х. есть преобразование Фурье т. н. функции рассеяния линии, описывающей характер «расплывания»… … Физическая энциклопедия

    Функция передачи модуляции, функция, с помощью которой оценивают «резкостные» свойства изображающих оптических систем и отдельных элементов таких систем (см., например, Резкость фотографического изображения). Ч. к. х. есть Фурье… …

    полоса рассеяния - статистическая характеристика экспериментальных данных, отражающая их отклонение от среднего значения. Смотри также: Полоса полоса скольжения полоса сброса полоса прокаливаемости … Энциклопедический словарь по металлургии

    ПОЛОСА РАССЕЯНИЯ - статистическая характеристика экспериментальных данных, отражающая их отклонение от средних значения … Металлургический словарь

    Характеристика рассеяния значений случайной величины. М. т. h связана с квадратичным отклонением (См. Квадратичное отклонение) σ формулой Этот способ измерения рассеяния объясняется тем, что в случае нормального… … Большая советская энциклопедия

    ВАРИАЦИОННАЯ СТАТИСТИКА - ВАРИАЦИОННАЯ СТАТИСТИКА, термин, объединяющий группу приемов статистического анализа, применяющихся преимущественно в естественных науках. Во второй половине XIX в. Кетле (Quetelet, «Anthro pometrie ou mesure des differentes facultes de 1… … Большая медицинская энциклопедия

    Математическое ожидание - (Population mean) Математическое ожидание – это распределение вероятностей случайной величины Математическое ожидание, определение, математическое ожидание дискретной и непрерывной случайных величин, выборочное, условное матожидание, расчет,… … Энциклопедия инвестора

Одна из причин проведения статистического анализа заключается в необходимости учитывать влияние на исследуемый показатель случайных факторов (возмущений), которые приводят к разбросу (рассеянию) данных. Решение задач, в которых присутствует разброс данных, связано с риском, поскольку даже при использовании всей доступной информации нельзя точно предугадать, что же произойдет в будущем. Для адекватной работы в таких ситуациях целесообразно понимать природу риска и уметь определять степень рассеяния набора данных. Существуют три числовые характеристики, описывающие меру рассеяния: стандартное отклонение, размах и коэффициент вариации (изменчивости). В отличие от типических показателей (среднее, медиана, мода), характеризующих центр, характеристики рассеяния показывают, насколько близко к этому центру располагаются отдельные значения набора данных
Определение стандартного отклонения Стандартное отклонение (среднее квадратическое отклонение) является мерой случайных отклонений значений данных от среднего. В реальной жизни большинство данных характеризуется рассеянием, т.е. отдельные значения располагаются на некотором расстоянии от среднего.
Использовать стандартное отклонение как обобщающую характеристику рассеяния, просто усреднив отклонения данных нельзя, потому что часть отклонений окажется положительной, а другая часть – отрицательной, и, вследствие этого, результат усреднения может оказаться равным нулю. Чтобы избавиться от отрицательного знака, применяют стандартный прием: сначала вычисляют дисперсию как сумму квадратов отклонений, поделенную на (n –1), а затем из полученного значения извлекают квадратный корень. Формула для вычисления стандартного отклонения выглядит следующим образом: Замечание 1. Дисперсия не несет никакой дополнительной информации по сравнению со стандартным отклонением, однако ее сложнее интерпретировать, т. к. она выражается в «единицах в квадрате», в то время как стандартное отклонение выражено в привычных для нас единицах (например, в долларах). Замечание 2. Приведенная выше формула предназначена для расчета стандартного отклонения по выборке и более точно называется выборочное стандартное отклонение . При расчете стандартного отклонения генеральной совокупности (обозначается символом s) производят деление на n . Величина выборочного стандартного отклонения получается несколько больше (т. к. делят на n –1), что обеспечивает поправку на случайность самой выборки. В случае, когда набор данных имеет нормальное распределение, стандартное отклонение приобретает особый смысл. На рисунке, представленном ниже, по обе стороны от среднего сделаны отметки на расстоянии одного, двух и трех стандартных отклонений соответственно. Из рисунка видно, что примерно 66,7% (две трети) всех значений находятся в пределах одного стандартного отклонения по обе стороны от среднего значения, 95% значений окажутся в пределах двух стандартных отклонений от среднего и почти все данные (99,7%) будут находиться в пределах трех стандартных отклонений от среднего значения.
66,7%


Это свойство стандартного отклонения для нормально распределенных данных называется «правилом двух третей».

В некоторых ситуациях, например при анализе контроля качества продукции, часто устанавливают такие пределы, чтобы в качестве заслуживающей внимание проблемы рассматривались те результаты наблюдений (0,3%), которые отстоят от среднего на расстоянии большем, чем три стандартных отклонения.

К сожалению, если данные не подчиняются нормальному распределению, то описанное выше правило применять нельзя.

В настоящее время существует ограничение, называемое правилом Чебышева, которое можно применять к ассиметричным (скошенным) распределениям.

Сформировать исходные данные Совокупность СВ

В таблице 1 представлена динамика изменений дневной прибыли на бирже, зафиксированной в рабочие дни за период от 31 июля по 9 октября 1987 года.

Таблица 1. Динамика изменения дневной прибыли на бирже

Дата Дневная прибыль Дата Дневная прибыль Дата Дневная прибыль
-0,006 0,009 0,012
-0,004 -0,015 -0,004
0,008 -0,006 0,002
0,011 0,002 -0,008
-0,001 0,011 -0,010
0,017 0,013 -0,013
0,017 0,002 0,009
-0,004 -0,018 -0,020
0,008 -0,014 -0,003
-0,002 -0,001 -0,001
0,006 -0,001 0,017
-0,017 -0,013 0,001
0,004 0,030 -0,000
0,015 0,007 -0,035
0,001 -0,007 0,001
-0,005 0,001 -0,014
Запустить Excel
Создать файл Щелкните на кнопке Сохранить на панели инструментов Стандартная. откройте В появившемся диалоговом окне папку Статистика и задайте имя файлу Характеристики рассеяния.xls.
Задать метку 6. На Листе1 в ячейке A1 задайте метку Дневная прибыль, 7. а в диапазон A2:A49 введите данные из Таблицы 1.
Задать функцию СРЕДНЕЕ ЗНАЧЕНИЕ 8. В ячейку D1 введите метку Среднее. В ячейке D2 вычислите среднее, используя статистическую функцию СРЗНАЧ.
Задать функцию СТАНДОТКЛОН В ячейку D4 введите метку Стандартное отклонение. В ячейке D5 вычислите стандартное отклонение, используя статистическую функцию СТАНДОТКЛОН
Уменьшите разрядность полученного результата до четвертого знака после запятой.
Интерпретация результатов Снижение дневной прибыли в среднем составило 0,04% (значение средней дневной прибыли получилось равным –0,0004). Это означает, что средняя дневная прибыль за рассматриваемый период времени была приблизительно равна нулю, т.е. на рынке держался средний курс. Стандартное отклонение получилось равным 0,0118. Это означает, что вложенный в фондовый рынок один доллар ($1) за сутки изменялся в среднем на $0,0118, т.е. его вложение могло привести к прибыли или потере в размере $0,0118.
Проверим, соответствуют ли приведенные в Таблице 1 значения дневной прибыли правилам нормального распределения 1. Рассчитайте интервал, соответствующий одному стандартному отклонению по обе стороны от среднего. 2. В ячейках D7, D8 и F8 задайте соответственно метки: Одно стандартное отклонение, Нижняя граница, Верхняя граница. 3. В ячейку D9 введите формулу = -0,0004 – 0,0118, а в ячейку F9 введите формулу = -0,0004 + 0,0118. 4. Получите результат с точностью до четвертого знака после запятой.

5. Определите число значений дневной прибыли, находящихся в пределах одного стандартного отклонения. Сначала отфильтруйте данные, оставив значения дневной прибыли в интервале [-0,0121, 0,0114]. Для этого выделите любую ячейку в столбце A со значениями дневной прибыли и выполните команду:

Данные®Фильтр®Автофильтр

Откройте меню, щелкнув на стрелке в заголовке Дневная прибыль , и выберите (Условие…). В диалоговом окне Пользовательский автофильтр установите параметры как показано ниже. Щелкните на кнопке ОК.

Чтобы подсчитать число отфильтрованных данных, выделите диапазон значений дневной прибыли, щелкните правой кнопкой на свободном месте в строке состояния и в контекстном меню выберите команду Количество значений. Прочтите результат. Теперь отобразите все исходные данные, выполнив команду: Данные®Фильтр®Отобразить все и выключите автофильтр с помощью команды: Данные®Фильтр®Автофильтр.

6. Вычислите процент значений дневной прибыли, удаленных от среднего на расстоянии одного стандартного отклонения. Для этого в ячейку H8 занесите метку Процент , а в ячейке H9 запрограммируйте формулу вычисления процента и получите результат с точностью до одного знака после запятой.

7. Рассчитайте интервал значений дневной прибыли в пределах двух стандартных отклонений от среднего. В ячейках D11, D12 и F12 задайте соответственно метки: Два стандартных отклонения , Нижняя граница , Верхняя граница . В ячейки D13 и F13 введите расчетные формулы и получите результат с точностью до четвертого знака после запятой.

8. Определите число значений дневной прибыли, находящихся в пределах двух стандартных отклонений, предварительно отфильтровав данные.

9. Вычислите процент значений дневной прибыли, удаленных от среднего на расстоянии двух стандартных отклонений. Для этого в ячейку H12 занесите метку Процент , а в ячейке H13 запрограммируйте формулу вычисления процента и получите результат с точностью до одного знака после запятой.

10. Рассчитайте интервал значений дневной прибыли в пределах трех стандартных отклонений от среднего. В ячейках D15, D16 и F16 задайте соответственно метки: Три стандартных отклонения , Нижняя граница , Верхняя граница . В ячейки D17 и F17 введите расчетные формулы и получите результат с точностью до четвертого знака после запятой.

11. Определите число значений дневной прибыли, находящихся в пределах трех стандартных отклонений, предварительно отфильтровав данные. Вычислите процент значений дневной прибыли. Для этого в ячейку H16 занесите метку Процент , а в ячейке H17 запрограммируйте формулу вычисления процента и получите результат с точностью до одного знака после запятой.

13. Постройте гистограмму дневной прибыли акций на бирже и поместите ее вместе с таблицей распределения частот в области J1:S20. Покажите на гистограмме приблизительно среднее значение и интервалы, соответствующие одному, двум и трем стандартным отклонениям от среднего соответственно.

Как ни важны средние характеристики, но не менее важной характеристикой массива числовых данных является поведение остальных членов массива по отношению к среднему показателю, на сколько они отличаются от средних показателей, как много членов массива значительно отличаются от среднего. На тренировках по стрельбе говорят о кучности результатов, в статистике исследуют характеристики рассеяния (разброса).

Отличие какого-либо значения х, от среднего значения х называют отклонением и вычисляют как разность х, - х. При этом отклонение может принимать как положительные значения, если число больше среднего, так и отрицательные значения, если число меньше среднего. Однако в статистике часто важно иметь возможность оперировать одним числом, характеризующим «кучность» всех числовых элементов массива данных. Любое суммирование всех отклонений членов массива приведет к нулю, так как положительные и отрицательные отклонения взаимно уничтожатся. Чтобы избежать обнуления, используют для характеристики рассеяния квадраты разностей, точнее, среднее арифметическое квадратов отклонений. Такую характеристику рассеяния называют выборочная дисперсия.

Чем больше дисперсия, тем больше рассеяние значений случайной величины. Для вычисления дисперсии используют приближенное значение выборочного среднего х с запасом на один разряд по отношению ко всем членам массива данных. В противном случае при суммировании большого количества приближенных значений будет накапливаться существенная ошибка. В связи с размерностью числовых значений следует отметить один недостаток такого показателя рассеяния, как выборочная дисперсия: единица измерения дисперсии D является квадратом единицы измерения значений х, характеристикой которых дисперсия является. Чтобы избавиться от этого недостатка, в статистике введена такая характеристика рассеяния, как выборочное среднее квадратичное отклонение , которое обозначается символом а (читается «сигма») и вычисляется по формуле

В норме более половины членов массива данных отличаются от среднего показателя меньше, чем на величину среднего квадратичного отклонения, т.е. принадлежат отрезку - а; х + а]. Иначе говорят: средний показатель с учетом разброса данных равен х ± а.

Введение еще одной характеристики рассеяния связано с размерностью членов массива данных. Все числовые характеристики в статистике вводятся с целью сравнения результатов исследования разных числовых массивов, характеризующих разные случайные величины. Однако сравнивать средние квадратичные отклонения от разных средних величин разных массивов данных не показательно, особенно если еще и размерность этих величин отличается. Например, если сравнивается длина и вес каких- либо объектов или рассеяния при изготовлении микро- и макроизделий. В связи с вышеизложенными соображениями вводится характеристика относительного рассеяния, которая называется коэффициентом вариации и вычисляется по формуле

Для подсчета числовых характеристик рассеяния значений случайной величины удобно использовать таблицу (табл. 6.9).

Таблица 6.9

Подсчет числовых характеристик рассеяния значений случайной величины

Xj - X

(Xj-X) 2 /

В процессе заполнения этой таблицы находится выборочное среднее х, которое в дальнейшем будет использоваться в двух видах. Как итоговая средняя характеристика (например, в третьем столбце таблицы) выборочное среднее х должно быть округлено до разряда, соответствующего наименьшему разряду какого-либо члена массива числовых данных х г Однако этот показатель используется в таблице при дальнейших вычислениях, и в этой ситуации, а именно при вычислениях в четвертом столбце таблицы, выборочное среднее х должно быть округлено с запасом на один разряд по отношению к наименьшему разряду какого-либо члена массива числовых данных х { .

Итогом вычислений при помощи таблицы типа табл. 6.9 будет получение значения выборочной дисперсии, а для записи ответа надо на основе значения выборочной дисперсии посчитать значение среднего квадратичного отклонения а.

В ответе указывается: а) средний результат с учетом разброса данных в виде х±о ; б) характеристика стабильности данных V. В ответе следует оценить качество коэффициента вариации: плохой или хороший.

Допустимым коэффициентом вариации как показателем однородности или стабильности результатов в спортивных исследованиях считается 10-15%. Коэффициент вариации V = 20% в любых исследованиях считается весьма большим показателем. Если объем выборки п > 25, то V > 32% - очень плохой показатель.

Например, для дискретного вариационного ряда 1; 5; 4; 4; 5; 3; 3; 1; 1; 1; 1; 1; 1; 3; 3; 5; 3; 5; 4; 4; 3; 3; 3; 3; 3 табл. 6.9 будет заполнена следующим образом (табл. 6.10).

Таблица 6.10

Пример подсчета числовых характеристик рассеяния значений

*1

fi

1

Л п 25 = 2,92 = 2,9

D _S_47,6_ п 25

Ответ : а) средняя характеристика с учетом разброса данных равна х ± а = = 3 ± 1,4; б) стабильность полученных измерений находится на низком уровне, так как коэффициент вариации V = 48% > 32%.

Аналог табл. 6.9 может быть использован и для вычисления характеристик рассеяния интервального вариационного ряда. При этом варианты х г будут заменены представителями промежутков x v ja абсолютные частоты вариант f { - на абсолютные частоты промежутков f v

На основании вышеизложенного можно сделать следующие выводы.

Выводы математической статистики правдоподобны, если обрабатывается информация о массовых явлениях.

Обычно исследуется выборка из генеральной совокупности объектов, которая должна быть репрезентативна.

Опытные данные, полученные в результате исследования какого-либо свойства объектов выборки, представляют собой значение случайной величины, поскольку исследователь заранее не может предсказать, какое именно число будет соответствовать определенному объекту.

Для выбора того или иного алгоритма описания и первичной обработки опытных данных важно уметь определять тип случайной величины: дискретная, непрерывная или смешанная.

Дискретные случайные величины описываются дискретным вариационным рядом и его графической формой - полигоном частот.

Смешанные и непрерывные случайные величины описываются интервальным вариационным рядом и его графической формой - гистограммой.

При сравнении нескольких выборок по уровню сформированное™ некоторого свойства используют средние числовые характеристики и числовые характеристики рассеяния случайной величины по отношению к средним.

При вычислении средней характеристики важно правильно выбрать вид средней характеристики, адекватный области ее применения. Структурные средние значения мода и медиана характеризуют структуру расположения вариант в упорядоченном массиве опытных данных. Количественное среднее значение дает возможность судить о среднем размере вариант (выборочная средняя).

Для вычисления числовых характеристик рассеяния - выборочной дисперсии, среднего квадратичного отклонения и коэффициента вариации - эффективен табличный способ.