А. Гладкий        26.09.2020   

Как найти нод 65 104 с объяснением. Нахождение нод трех и большего количества чисел. Что такое НОД

Числа, которые делятся на 10, мы называем кратными 10. Например, 30 или 50 кратны 10. 28 кратно 14. Числа, которые делятся одновременно и на 10, и на 14, естественно называть общими кратными 10 и 14.

Общих кратных мы можем найти сколько угодно. Например, 140, 280 и т. д.

Естественный вопрос: как найти самое меньшее из общих кратных, наименьшее общее кратное?

Из найденных кратных для 10 и 14 пока наименьшее - это 140. Но является ли оно наименьшим общим кратным?

Разложим наши числа на множители:

Сконструируем такое число, которое делится на 10 и на 14. Чтобы делиться на 10, нужно иметь множители 2 и 5. Чтобы делиться на 14, нужно иметь множители 2 и 7. Но 2 уже есть, осталось добавить 7. Полученное число 70 - это общее кратное для 10 и 14. При этом не получится построить число меньше этого, чтобы оно тоже было общим кратным.

Значит, это и есть наименьшее общее кратное . Для него мы используем обозначение НОК.

Найдем НОД и НОК для чисел 182 и 70.

Самостоятельно вычислите:

3.

Проверяем:

Чтобы понять, что такое НОД и НОК, не обойтись без разложения на множители. Но, когда мы уже поняли, что это такое, уже не обязательно каждый раз раскладывать на множители.

Например:

Вы можете легко убедиться, что для двух чисел, где одно делится на другое, меньшее является их НОДом, а большее - НОКом. Попробуйте сами объяснить, почему это так.

Длина шага папы - 70 см, а у маленькой дочери - 15 см. Они начинают идти, поставив ноги на одну отметку. Какое расстояние они пройдут, чтобы их ноги опять встали вровень?

Папа и дочь начинают движение. Сначала ноги находятся на одной отметке. Пройдя несколько шагов у них ноги снова встали на одну отметку. Значит, и у папы, и дочери получилось целое количество шагов до этой отметки. Значит, расстояние до нее должно делиться на длину шага и папы, и дочери.

То есть мы должны найти :

То есть это случится через 210 см = 2 м 10 см.

Нетрудно понять, что папа сделает 3 шага, а дочь - 14 (рис. 1).

Рис. 1. Иллюстрация к задаче

Задача 1

У Пети в сети «ВКонтакте» 100 друзей, а у Вани - 200. Сколько всего друзей у Пети и Вани вместе, если общих друзей 30?

Ответ 300 - неверный, ведь у них могут быть общие друзья.

Решим эту задачу так. Изобразим множество всех друзей Пети кругом. Изобразим множество друзей Вани другим кругом, побольше.

Эти круги имеют общую часть. Там находятся общие друзья. Эта общая часть называется «пересечение» двух множеств. То есть множество общих друзей - это пересечение множеств друзей каждого.

Рис. 2. Круги множеств друзей

Если общих друзей 30, то слева 70 - это друзья только Петины, а 170 - только Ванины (см. Рис. 2).

Сколько всего?

Всё большое множество, состоящее из двух кругов, называется объединением двух множеств.

На самом деле ВК сам решает за нас задачу пересечения двух множеств, он сразу указывает множество общих друзей, когда вы заходите на страничку другого человека.

Ситуация с НОДом и НОКом двух чисел очень похожа.

Задача 2

Рассмотрим два числа: 126 и 132.

Их простые множители изобразим в кругах (см. Рис. 3).

Рис. 3. Круги с простыми множителями

Пересечение множеств - это общие делители. Из них состоит НОД.

Объединение двух множеств дает нам НОК.

Список литературы

1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.

2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия. 2006.

3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - М.: Просвещение, 1989.

4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - М.: ЗШ МИФИ, 2011.

5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.

6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. - М.: Просвещение, Библиотека учителя математики, 1989.

3. Интернет-сайт «Школьный помощник» ()

Домашнее задание

1. В портовом городе начинаются три туристских теплоходных рейса, первый из которых длится 15 суток, второй - 20 и третий - 12 суток. Вернувшись в порт, теплоходы в этот же день снова отправляются в рейс. Сегодня из порта вышли теплоходы по всем трем маршрутам. Через сколько суток они впервые снова вместе уйдут в плавание? Какое количество рейсов сделает каждый теплоход?

2. Найдите НОК чисел:

3. Найдите простые множители наименьшего общего кратного чисел:

И , если: , , .

Наибольший общий делитель

Определение 2

Если натуральное число a делится на натуральное число $b$, то $b$ называют делителем числа $a$, а число $a$ называют кратным числа $b$.

Пусть $a$ и $b$-натуральные числа. Число $c$ называют общим делителем и для $a$ и для $b$.

Множество общих делителей чисел $a$ и $b$ конечно, так как ни один из этих делителей не может быть больше, чем $a$. Значит,среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел $a$ и $b$ и для его обозначения используют записи:

$НОД \ (a;b) \ или \ D \ (a;b)$

Чтобы найти наибольший общий делитель двух, чисел необходимо:

  1. Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наибольшим общим делителем.

Пример 1

Найти НОД чисел $121$ и $132.$

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Выбрать числа, которые входят в разложение этих чисел

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=2\cdot 11=22$

Пример 2

Найти НОД одночленов $63$ и $81$.

Будем находить согласно представленному алгоритму. Для этого:

    Разложим числа на простые множители

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Выбираем числа, которые входят в разложение этих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Найдем произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=3\cdot 3=9$

Найти НОД двух чисел можно и по-другому, используя множество делителей чисел.

Пример 3

Найти НОД чисел $48$ и $60$.

Решение:

Найдем множество делителей числа $48$: $\left\{{\rm 1,2,3.4.6,8,12,16,24,48}\right\}$

Теперь найдем множество делителей числа $60$:$\ \left\{{\rm 1,2,3,4,5,6,10,12,15,20,30,60}\right\}$

Найдем пересечение этих множеств: $\left\{{\rm 1,2,3,4,6,12}\right\}$- данное множество будет определять множество общих делителей чисел $48$ и $60$. Наибольший элемент в данном множестве будет число $12$. Значит наибольший общий делитель чисел $48$ и $60$ будет $12$.

Определение НОК

Определение 3

Общим кратным натуральных чисел $a$ и $b$ называется натуральное число, которое кратно и $a$ и $b$.

Общими кратными чисел называются числа которые делятся на исходные без остатка.Например для чисел $25$ и $50$ общими кратными будут числа $50,100,150,200$ и т.д

Наименьшее из общих кратных будет называться наименьшим общим кратным и обозначается НОК$(a;b)$ или K$(a;b).$

Чтобы найти НОК двух чисел, необходимо:

  1. Разложить числа на простые множители
  2. Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого

Пример 4

Найти НОК чисел $99$ и $77$.

Будем находить согласно представленному алгоритму. Для этого

    Разложить числа на простые множители

    $99=3\cdot 3\cdot 11$

    Выписать множители, входящие в состав первого

    добавить к ним множители, которые входят в состав второго и не ходят в состав первого

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наименьшим общим кратным

    $НОК=3\cdot 3\cdot 11\cdot 7=693$

    Составление списков делителей чисел часто очень трудоемкое занятие. Существует способ нахождение НОД, называемый алгоритмом Евклида.

    Утверждения, на которых основан алгоритм Евклида:

    Если $a$ и $b$ --натуральные числа, причем $a\vdots b$, то $D(a;b)=b$

    Если $a$ и $b$ --натуральные числа, такие что $b

Пользуясь $D(a;b)= D(a-b;b)$, можно последовательно уменьшать рассматриваемые числа до тех пор, пока не дойдем до такой пары чисел, что одно из них делится на другое. Тогда меньшее из этих чисел и будет искомым наибольшим общим делителем для чисел $a$ и $b$.

Свойства НОД и НОК

  1. Любое общее кратное чисел $a$ и $b$ делится на K$(a;b)$
  2. Если $a\vdots b$ , то К$(a;b)=a$
  3. Если К$(a;b)=k$ и $m$-натуральное число, то К$(am;bm)=km$

    Если $d$-общий делитель для $a$ и $b$,то К($\frac{a}{d};\frac{b}{d}$)=$\ \frac{k}{d}$

    Если $a\vdots c$ и $b\vdots c$ ,то $\frac{ab}{c}$ - общее кратное чисел $a$ и $b$

    Для любых натуральных чисел $a$ и $b$ выполняется равенство

    $D(a;b)\cdot К(a;b)=ab$

    Любой общийй делитель чисел $a$ и $b$ является делителем числа $D(a;b)$

Запомните!

Если натуральное число делится только на 1 и на само себя, то оно называется простым.

Любое натуральное число всегда делится на 1 и на само себя.

Число 2 — наименьшее простое число. Это единственное чётное простое число, остальные простые числа — нечётные.

Простых чисел много, и первое среди них — число 2 . Однако нет последнего простого числа. В разделе «Для учёбы» вы можете скачать таблицу простых чисел до 997 .

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Например:

  • число 12 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 ;
  • число 36 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 , на 18 , на 36 .

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12 ) называются делителями числа.

Запомните!

Делитель натурального числа a — это такое натуральное число, которое делит данное число «a » без остатка.

Натуральное число, которое имеет более двух делителей называется составным.

Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12 . Наибольший из делителей этих чисел — 12 .

Общий делитель двух данных чисел «a » и «b » — это число, на которое делятся без остатка оба данных числа «a » и «b ».

Запомните!

Наибольший общий делитель (НОД) двух данных чисел «a » и «b » — это наибольшее число, на которое оба числа «a » и «b » делятся без остатка.

Кратко наибольший общий делитель чисел «a » и «b » записывают так :

НОД (a; b) .

Пример: НОД (12; 36) = 12 .

Делители чисел в записи решения обозначают большой буквой «Д».

Д (7) = {1, 7}

Д (9) = {1, 9}

НОД (7; 9) = 1

Числа 7 и 9 имеют только один общий делитель — число 1 . Такие числа называют взаимно простыми числами .

Запомните!

Взаимно простые числа — это натуральные числа, которые имеют только один общий делитель — число 1 . Их НОД равен 1 .

Как найти наибольший общий делитель

Чтобы найти НОД двух или более натуральных чисел нужно:

  1. разложить делители чисел на простые множители;

Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа — делитель. Далее в левом столбце записываем значения частных.

Поясним сразу на примере. Разложим на простые множители числа 28 и 64 .


  1. Подчёркиваем одинаковые простые множители в обоих числах.
    28 = 2 · 2 · 7

    64 = 2 · 2 · 2 · 2 · 2 · 2

  2. Находим произведение одинаковых простых множителей и записать ответ;
    НОД (28; 64) = 2 · 2 = 4

    Ответ: НОД (28; 64) = 4

Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

Нахождение наибольшего общего делителя трех и большего количества чисел может быть сведено к последовательному нахождению НОД двух чисел. Мы об этом упоминали, при изучении свойств НОД. Там мы сформулировали и доказали теорему: наибольший общий делитель нескольких чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …,НОД(d k-1 , a k)=d k .

Давайте разберемся, как выглядит процесс нахождения НОД нескольких чисел, рассмотрев решение примера.

Пример.

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение.

В этом примере a 1 =78 , a 2 =294 , a 3 =570 , a 4 =36 .

Сначала по алгоритму Евклида определим наибольший общий делитель d 2 двух первых чисел 78 и 294 . При делении получаем равенства 294=78·3+60 ; 78=60·1+18 ;60=18·3+6 и 18=6·3 . Таким образом, d 2 =НОД(78, 294)=6 .

Теперь вычислим d 3 =НОД(d 2 , a 3)=НОД(6, 570) . Опять применим алгоритм Евклида:570=6·95 , следовательно, d 3 =НОД(6, 570)=6 .

Осталось вычислить d 4 =НОД(d 3 , a 4)=НОД(6, 36) . Так как 36 делится на 6 , тоd 4 =НОД(6, 36)=6 .

Таким образом, наибольший общий делитель четырех данных чисел равен d 4 =6 , то есть,НОД(78, 294, 570, 36)=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

Разложение чисел на простые множители также позволяет вычислять НОД трех и большего количества чисел. В этом случае наибольший общий делитель находится как произведение всех общих простых множителей данных чисел.

Пример.

Вычислите НОД чисел из предыдущего примера, используя их разложения на простые множители.

Решение.

Разложим числа 78 , 294 , 570 и 36 на простые множители, получаем 78=2·3·13 ,294=2·3·7·7 , 570=2·3·5·19 , 36=2·2·3·3 . Общими простыми множителями всех данных четырех чисел являются числа 2 и 3 . Следовательно, НОД(78, 294, 570, 36)=2·3=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

К началу страницы

Нахождение НОД отрицательных чисел

Если одно, несколько или все числа, наибольший делитель которых нужно найти, являются отрицательными числами, то их НОД равен наибольшему общему делителю модулей этих чисел. Это связано с тем, что противоположные числа a и −a имеют одинаковые делители, о чем мы говорили при изучении свойств делимости.

Пример.

Найдите НОД отрицательных целых чисел −231 и −140 .

Решение.

Модуль числа −231 равен 231 , а модуль числа −140 равен 140 , иНОД(−231, −140)=НОД(231, 140) . Алгоритм Евклида дает нам следующие равенства:231=140·1+91 ; 140=91·1+49 ; 91=49·1+42 ; 49=42·1+7 и 42=7·6 . Следовательно,НОД(231, 140)=7 . Тогда искомый наибольший общий делитель отрицательных чисел−231 и −140 равен 7 .


Ответ:

НОД(−231, −140)=7 .

Пример.

Определите НОД трех чисел −585 , 81 и −189 .

Решение.

При нахождении наибольшего общего делителя отрицательные числа можно заменить их абсолютными величинами, то есть, НОД(−585, 81, −189)=НОД(585, 81, 189) . Разложения чисел 585 , 81 и 189 на простые множители имеют соответственно вид585=3·3·5·13 , 81=3·3·3·3 и 189=3·3·3·7 . Общими простыми множителями этих трех чисел являются 3 и 3 . Тогда НОД(585, 81, 189)=3·3=9 , следовательно,НОД(−585, 81, −189)=9 .

Ответ:

НОД(−585, 81, −189)=9 .

35. Корені многочлена. Теорема Безу. (33 и выше)

36. Кратні корені, критерій кратності кореня.

Найдем наибольший общий делитель НОД (36 ; 24)

Этапы решения

Способ №1

36 - составное число
24 - составное число

Разложим число 36

36: 2 = 18
18: 2 = 9 - делится на простое число 2
9: 3 = 3 - делится на простое число 3.

Разложим число 24 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

24: 2 = 12 - делится на простое число 2
12: 2 = 6 - делится на простое число 2
6: 2 = 3
Завершаем деление, так как 3 простое число

2) Выделим синим цветом и выпишем общие множители

36 = 2 ⋅ 2 ⋅ 3 ⋅ 3
24 = 2 ⋅ 2 ⋅ 2 ⋅ 3
Общие множители (36 ; 24) : 2, 2, 3

3) Теперь, чтобы найти НОД нужно перемножить общие множители

Ответ: НОД (36 ; 24) = 2 ∙ 2 ∙ 3 = 12

Способ №2

1) Найдем все возможные делители чисел (36 ; 24). Для этого поочередно разделим число 36 на делители от 1 до 36, число 24 на делители от 1 до 24. Если число делится без остатка, то делитель запишем в список делителей.

Для числа 36
36: 1 = 36; 36: 2 = 18; 36: 3 = 12; 36: 4 = 9; 36: 6 = 6; 36: 9 = 4; 36: 12 = 3; 36: 18 = 2; 36: 36 = 1;

Для числа 24 выпишем все случаи, когда оно делится без остатка:
24: 1 = 24; 24: 2 = 12; 24: 3 = 8; 24: 4 = 6; 24: 6 = 4; 24: 8 = 3; 24: 12 = 2; 24: 24 = 1;

2) Выпишем все общие делители чисел (36 ; 24) и выделим зеленым цветом самы большой, это и будет наибольший общий делитель НОД чисел (36 ; 24)

Общие делители чисел (36 ; 24): 1, 2, 3, 4, 6, 12

Ответ: НОД (36 ; 24) = 12



Найдем наименьшее общее кратное НОК (52 ; 49)

Этапы решения

Способ №1

1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)

52 - составное число
49 - составное число

Разложим число 52 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

52: 2 = 26 - делится на простое число 2
26: 2 = 13 - делится на простое число 2.
Завершаем деление, так как 13 простое число

Разложим число 49 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом

49: 7 = 7 - делится на простое число 7.
Завершаем деление, так как 7 простое число

2) Прежде всего запишем множители самого большого числа, а затем меньшего числа. Найдем недостающие множители, выделим синим цветом в разложении меньшего числа множители, которые не вошли в разложение большего числа.

52 = 2 ∙ 2 ∙ 13
49 = 7 ∙ 7

3) Теперь, чтобы найти НОК нужно перемножить множители большего числа с недостающими множителями, которые выделены синим цветом

НОК (52 ; 49) = 2 ∙ 2 ∙ 13 ∙ 7 ∙ 7 = 2548

Способ №2

1) Найдем все возможные кратные чисел (52 ; 49). Для этого поочередно умножим число 52 на числа от 1 до 49, число 49 на числа от 1 до 52.

Выделим все кратные числа 52 зеленым цветом:

52 ∙ 1 = 52 ; 52 ∙ 2 = 104 ; 52 ∙ 3 = 156 ; 52 ∙ 4 = 208 ;
52 ∙ 5 = 260 ; 52 ∙ 6 = 312 ; 52 ∙ 7 = 364 ; 52 ∙ 8 = 416 ;
52 ∙ 9 = 468 ; 52 ∙ 10 = 520 ; 52 ∙ 11 = 572 ; 52 ∙ 12 = 624 ;
52 ∙ 13 = 676 ; 52 ∙ 14 = 728 ; 52 ∙ 15 = 780 ; 52 ∙ 16 = 832 ;
52 ∙ 17 = 884 ; 52 ∙ 18 = 936 ; 52 ∙ 19 = 988 ; 52 ∙ 20 = 1040 ;
52 ∙ 21 = 1092 ; 52 ∙ 22 = 1144 ; 52 ∙ 23 = 1196 ; 52 ∙ 24 = 1248 ;
52 ∙ 25 = 1300 ; 52 ∙ 26 = 1352 ; 52 ∙ 27 = 1404 ; 52 ∙ 28 = 1456 ;
52 ∙ 29 = 1508 ; 52 ∙ 30 = 1560 ; 52 ∙ 31 = 1612 ; 52 ∙ 32 = 1664 ;
52 ∙ 33 = 1716 ; 52 ∙ 34 = 1768 ; 52 ∙ 35 = 1820 ; 52 ∙ 36 = 1872 ;
52 ∙ 37 = 1924 ; 52 ∙ 38 = 1976 ; 52 ∙ 39 = 2028 ; 52 ∙ 40 = 2080 ;
52 ∙ 41 = 2132 ; 52 ∙ 42 = 2184 ; 52 ∙ 43 = 2236 ; 52 ∙ 44 = 2288 ;
52 ∙ 45 = 2340 ; 52 ∙ 46 = 2392 ; 52 ∙ 47 = 2444 ; 52 ∙ 48 = 2496 ;
52 ∙ 49 = 2548 ;

Выделим все кратные числа 49 зеленым цветом:

49 ∙ 1 = 49 ; 49 ∙ 2 = 98 ; 49 ∙ 3 = 147 ; 49 ∙ 4 = 196 ;
49 ∙ 5 = 245 ; 49 ∙ 6 = 294 ; 49 ∙ 7 = 343 ; 49 ∙ 8 = 392 ;
49 ∙ 9 = 441 ; 49 ∙ 10 = 490 ; 49 ∙ 11 = 539 ; 49 ∙ 12 = 588 ;
49 ∙ 13 = 637 ; 49 ∙ 14 = 686 ; 49 ∙ 15 = 735 ; 49 ∙ 16 = 784 ;
49 ∙ 17 = 833 ; 49 ∙ 18 = 882 ; 49 ∙ 19 = 931 ; 49 ∙ 20 = 980 ;
49 ∙ 21 = 1029 ; 49 ∙ 22 = 1078 ; 49 ∙ 23 = 1127 ; 49 ∙ 24 = 1176 ;
49 ∙ 25 = 1225 ; 49 ∙ 26 = 1274 ; 49 ∙ 27 = 1323 ; 49 ∙ 28 = 1372 ;
49 ∙ 29 = 1421 ; 49 ∙ 30 = 1470 ; 49 ∙ 31 = 1519 ; 49 ∙ 32 = 1568 ;
49 ∙ 33 = 1617 ; 49 ∙ 34 = 1666 ; 49 ∙ 35 = 1715 ; 49 ∙ 36 = 1764 ;
49 ∙ 37 = 1813 ; 49 ∙ 38 = 1862 ; 49 ∙ 39 = 1911 ; 49 ∙ 40 = 1960 ;
49 ∙ 41 = 2009 ; 49 ∙ 42 = 2058 ; 49 ∙ 43 = 2107 ; 49 ∙ 44 = 2156 ;
49 ∙ 45 = 2205 ; 49 ∙ 46 = 2254 ; 49 ∙ 47 = 2303 ; 49 ∙ 48 = 2352 ;
49 ∙ 49 = 2401 ; 49 ∙ 50 = 2450 ; 49 ∙ 51 = 2499 ; 49 ∙ 52 = 2548 ;

2) Выпишем все общие кратные чисел (52 ; 49) и выделим зеленым цветом самое маленькое, это и будет наименьшим общим кратным чисел (52 ; 49).

Общие кратные чисел (52 ; 49): 2548

Ответ: НОК (52 ; 49) = 2548