Эзотерика        15.01.2024   

Какая волна называется плоской. Уравнение плоской и сферической волн. Уравнения плоской и сферической волн

Установим связь между смещением колеблющейся частицы среды (точки) от положения равновесия и временем, отсчитанным от момента начала колебания источника, который находится на расстоянии х от «нашей» частицы в начале координат.

Пусть колебания источника S гармонические, т.е. описываются уравнением ξ (t ) = A sinωt . С течением времени все частицы среды также будут совершать синусоидальные колебания с той же частотой и амплитудой, но с различными фазами. В среде возникнет гармоническая бегущая волна.

Частица среды, находящаяся на оси ОХ на расстоянии х от источника S (рис. 1.2), начнёт колебаться позже, чем источник, на время, необходимое, чтобы волна, распространяющаяся от источника со скоростью V , преодолела расстояние х до частицы. Очевидно, что если источник колеблется уже в течение времени t , то частица среды колеблется еще только в течение времени (t – t), где t - время распространения колебаний от источника до частицы.


Тогда уравнение колебания для этой частицы будет

ξ (x,t ) =A sinω(t- τ),

но t =x /V , где V – модуль cкорости распространения волны. Тогда

ξ (x,t ) =A sinω(t-x/V )

– уравнение волны.

С учётом того, что и , уравнению можно придать вид

ξ (x,t )=A sin2 (t/T-x/λ ) = A sin2 (νt -x/λ ) = A sin (ωt -2πx/λ ) = A sin (ωt -kx ),(1.1)

где k = 2p/l – волновое число.Здесь (1.1) – уравнение плоской гармонической монохроматической волны (рис. 1.3), распространяющейся в направлении оси ОХ . График волны внешне похож на график гармонического колебания, но по существу они различны.


График колебания – зависимость смещения данной частицы от времени. График волны – смещение всех частиц среды в данный момент времени на всем расстоянии от источника колебаний до волнового фронта. График волны является как бы моментальной фотографией волны.

Уравнение бегущей волны, распространяющейся в произвольном направлении, имеет вид:

ξ (x,y,z,t ) = A sin = A sin(ωt – k x x – k y y – k z z ), (1.2)

где ξ – мгновенное смещение колеблющегося элемента среды (точки) с координатами x, y, z ; А – амплитуда смещения; ω – круговая частота колебаний;

– волновой вектор, равный ( – единичный вектор, указывающий направление распространения волны); ; - орты;

λ – длинна волны (рис. 1.3), т.е. расстояние, на которое распространяется волна за время, равное периоду колебаний частиц среды; – радиус-вектор, проведённый в рассматриваемую точку, ;

– фаза волны, где .

Здесь – углы, составленные волновым вектором с соответствующими осями координат.

Если волна распространяется в среде, не поглащающей энергию, то амплитуда волны не изменяется, т.е. А = const.

Скорость распространения волнового движения является скоростью распространения фазы волны (фазовая скорость). В однородной среде скорость волны постоянна. Если фазовая скорость волны в среде зависит от частоты, то такое явление называется дисперсией волн, а среда – дисперсирующей средой.

При переходе из одной среды в другую может меняться скорость распространения волн, так как меняются упругие свойства среды, однако частота колебаний, как показывает опыт, остается неизменной. Это значит, что припереходе из одной среды в другую будет меняться длина волны l.

Если мы возбудили колебания в какой-либо точке среды, то колебания передадутся всем окружающим ее точкам, т.е. колебаться будет совокупность частиц, заключенных в некотором объеме. Распространяясь от источника колебаний волновой процесс охватывает все новые и новые части пространства. Геометрическое место точек, до которых доходят колебания к некоторому моменту времени t, называется фронтом волны.

Таким образом, фронт волны является той поверхностью, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновые поверхности могут быть различной формы. Простейшие из них имеют форму сферы или плоскости. Волны, имеющие такие поверхности, называются соответственно сферическими или плоскими.

Часто при решении задач о распространении волн надо строить волновой фронт для некоторого момента времени по волновому фронту, заданному для начального момента времени. Это можно сделать, используя принцип Гюйгенса , сущность которого в следующем.

Пусть волновой фронт, перемещающийся в однородной среде, занимает в данный момент времени положение 1 (рис. 1.4). Требуется найти его положение через промежуток времени Dt .


В соответствии с принципом Гюйгенса, каждая точка среды, до которой дошла волна, сама становится источником вторичных волн (первое положение принципа Гюйгенса).

Это значит, что от нее, как из центра, начинает распространяться сферическая волна. Чтобы построить вторичные волны, вокруг каждой точки исходного фронта опишем сферы радиусом Dx = V Dt , где V – скорость волны. На рис. 1.4 показаны такие сферы. Здесь кружочки – сечения сферических поверхностей плоскостью чертежа.

Вторичные волны взаимно гасятся во всех направлениях, кроме направлений исходного фронта (второе положение принципа Гюйгенса), то есть, колебания сохраняются только на внешней огибающей вторичных волн. Построив эту огибающую, получим исходное положение 2 волнового фронта (штриховая линия). Положения 1 и 2 волнового фронта

− в нашем случае плоскости.

Принцип Гюйгенса применим и к неоднородной среде. В этом случае значения V, а, следовательно, и Dх неодинаковы в различных направлениях.

Так как прохождение волны сопровождается колебанием частиц среды, то вместе с волной перемещается в пространстве и энергия колебаний.

Бегущими волнами называются волны, которые переносят в пространстве энергию и импульс. Перенос энергии волнами характеризуется вектором плотности потока энергии. Направление этого вектора совпадает с направлением переноса энергии, а его модуль называется интенсивностью волны (или плотностью потока энергии) и представляет собой отношение энергии W , переносимой волною сквозь площадь S ┴ , перпендикулярную лучу, к продолжительности времени переноса ∆t и размеру площади:

I = W/ (∆t∙S ┴),

откуда численно I=W , если ∆t =1 и S ┴ =1. Единица интенсивности: ватт на метр в квадрате (Вт /м 2 ).

Получим выражение для интенсивности волны. При концентрации n 0 частиц среды, каждая из которых имеет массу m , объемная плотность w 0 энергии складывается из кинетической энергии движения частиц среды и потенциальной энергии, являющейся энергией деформированного объема. Объемная плотность энергии определяется выражением:

w 0 = n 0 mw 2 A 2 / 2 = rw 2 A 2 / 2,

где r =n 0 m . Подробный вывод выражения для объемной плотности энергии упругих волн приведен в учебном пособии . Очевидно, за 1с сквозь площадку в 1 м 2 переносится энергия, содержащаяся в объеме прямоугольного параллелепипеда с основанием 1 м 2 и высотой, численно равной скорости V (рис. 1.5), следовательно интенсивность волны

I = w 0 V = rVw 2 A 2 / 2. (1.3)

Таким образом, интенсивность волны пропорциональна плотности среды, скорости, квадрату круговой частоты и квадратуамплитуды волны .

Вектор , модуль которого равен интенсивности волны, а направление совпадает с направлением распространения волны (и переноса энергии), определяется выражением.

ПЛОСКАЯ ВОЛНА

ПЛОСКАЯ ВОЛНА

Волна, у к-рой направление распространения одинаково во всех точках пространства. Простейший пример - однородная монохроматич. незатухающая П. в.:

и(z, t)=Aeiwt±ikz, (1)

где А - амплитуда, j= wt±kz - , w=2p/Т - круговая частота, Т -период колебаний, k - . Поверхности постоянной фазы (фазовые фронты) j=const П. в. являются плоскостями.

При отсутствии дисперсии, когда vф и vгр одинаковы и постоянны (vгр=vф= v), существуют стационарные (т. е. перемещающиеся как целое) бегущие П. в., к-рые допускают общее представление вида:

u(z, t)=f(z±vt), (2)

где f - произвольная функция. В нелинейных средах с дисперсией также возможны стационарные бегущие П. в. типа (2), но их форма уже не произвольна, а зависит как от параметров системы, так и от характера движения . В поглощающих (диссипативных) средах П. в. уменьшают свою амплитуду по мере распространения; при линейном затухании это может быть учтено путём замены в (1) k на комплексное волновое число kд ± ikм, где kм - коэфф. затухания П. в.

Однородная П. в., занимающая всё бесконечное , является идеализацией, однако любое волновое , сосредоточенное в конечной области (напр., направляемое линиями передачи или волноводами), можно представить как суперпозицию П. в. с тем или иным пространств. спектром k. При этом волна может по-прежнему иметь плоский фазовый фронт, но неоднородное амплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отдельные участки сферич. и цилиндрич. волн, малые по сравнению с радиусом кривизны фазового фронта, приближённо ведут себя как П. в.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПЛОСКАЯ ВОЛНА

- волна, ук-рой направление распространения одинаково во всех точках пространства.

где А - амплитуда,- фаза,- круговая частота, Т - период колебаний, k - волновое число. = const П. в. являются плоскостями.
При отсутствии дисперсии, когда фазоваяскорость v ф и групповая v гр одинаковы и постоянны (v гр = v ф = v ) существуют стационарные (т. е. перемещающиеся как целое) бегущиеП. в., к-рые можно представить в общем виде

где f - произвольная ф-ция. В нелинейныхсредах с дисперсией также возможны стационарные бегущие П. в. типа (2),но их форма уже не произвольна, а зависит как от параметров системы, таки от характера движения волны. В поглощающих (диссипативных) средах П. k на комплексное волновоечисло k д ik м,где k м - коэф. затухания П. в. Однородная П. в., занимающаявсё бесконечное , является идеализацией, однако любое волновоеполе, сосредоточенное в конечной области (напр., направляемое линиямипередачи или волноводами), можно представить как суперпозициюП. в. с тем или иным пространственным спектром k. При этом волнаможет no-прежнему иметь плоский фазовый фронт, во неоднородное распределениеамплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отд. участкисферич. или цилиндрич. волн, малые по сравнению с радиусом кривизны фазовогофронта, приближённо ведут себя как П. в.

Лит. см. при ст. Волны.

М. А. Миллер, Л. А. Островский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t:

(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической как относительно времени t, так и относительно координат х, у, z. Периодичность по времени вытекает из того, что описывает колебания частицы с координатами х, у, z. Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстояние К, колеблются одинаковым образом.

Найдем вид функции в случае плоской волны, предполагая, что колебания иосят гармонический характер. Для упрощения направим оси координат так, чтобы ось совпала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси и, поскольку все точки волновой поверхности колеблются одинаково, смещение будет зависеть только от Пусть колебания точек, лежащих в плоскости (рис. 94.1), имеют вид

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того чтобы пройти путь от плоскости х= 0 до этой плоскости, волне требуется время - скорость распространения волны).

Следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на от колебаний частиц в плоскости т. е. будут иметь вид

Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси х, выглядит следующим образом:

Величина а представляет собой амплитуду волны. Начальная фаза волны а определяется выбором начал отсчета При рассмотрении одной волны начала отсчета времени и координаты обычно выбираются так, чтобы а была равной нулю. При совместном рассмотрении нескольких волн сделать так, чтобы для всех них начальные фазы равнялись нулю, как правило, не удается.

Зафиксируем какое-либо значение фазы, стоящей в уравнении (94.2), положив

(94.3)

Это выражение определяет связь между временем t и тем местом х, в котором фаза имеет зафиксированное значение. Вытекающеё из него значение дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (94.3), получим

Таким образом, скорость распространения волны v в уравнении (94.2) есть скорость перемещения фазы, в связи с чем ее называют фазовой скоростью.

Согласно (94.4) . Следовательно, уравнение (94.2) описывает волну, распространяющуюся в сторону возрастания х. Волна, распространяющаяся в противоположном направлении, описывается уравнением

Действительно, приравняв константе фазу волны (94.5) и продифференцировав получившееся равенство, придем к соотношению

из которого следует, что волна (94.5) распространяется в сторону убывания х.

Уравнению плоской волны можно придать симметричный относительно х и t вид. Для этого введем величину

которая называется волновым числом. Умиожив числитель и знаменатель выражения (94.6) на частоту v, можно представить волновое число в виде

(см. формулу (93.2)). Раскрыв в (94.2) круглые скобки и приняв во внимание (94.7), придем к следующему уравнению плоской волны, распространяющейся вдоль оси х:

Уравнение волны, распространяющейся в сторону убывания х, отличается от (94.8) только знаком при члене

При выводе формулы (94.8) мы предполагали, что амплитуда колебаний не зависит от х. Для плоской волны это наблюдается в том случае, когда энергия волиы не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны С удалением от источника колебаний постепенно уменьшается - наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону: с убыванием во времени амплитуды затухающих колебаний; см. формулу (58.7) 1-го тома). Соответственно уравнение плоской волны имеет следующий вид:

Амплитуда в точках плоскости

Теперь найдем уравнение сферической волны. Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, значительно превышающих его размеры, то источник можно считать точечным. В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника равна Тогда точки, лежащие на волновой поверхности радиуса , будут колебаться с фазой

Уравнение волны – это уравнение, выражающее зависимость смещения колеблющейся частицы, участвующей в волновом процессе, от координаты ее равновесного положения и времени:

Эта функция должна быть периодической как относительно времени , так и относительно координат . Кроме того, точки, отстоящие на расстоянии l друг от друга, колеблются одинаковым образом.

Найдём вид функции x в случае плоской волны.

Рассмотрим плоскую гармоническую волну, распространяющуюся вдоль положительного направления оси в среде, не поглощающей энергию. В этом случае волновые поверхности будут перпендикулярны оси . Все величины, характеризующие колебательное движение частиц среды, зависят только от времени и координаты . Смещение будет зависеть только от и : . Пусть колебание точки с координатой (источник колебаний) задается функцией . Задача : найти вид колебания точек в плоскости, соответствующей произвольному значению . Для того, чтобы пройти путь от плоскости до этой плоскости, волне требуется время . Следовательно, колебания частиц, лежащих в плоскости , будут отставать по фазе на время от колебаний частиц в плоскости . Тогда уравнение колебаний частиц в плоскости будет иметь вид:

В итоге получили уравнение плоской волны распространяющейся в направлении возрастания :

. (3)

В этом уравнении – амплитуда волны; – циклическая частота; – начальная фаза, которая определяется выбором начала отсчета и ; – фаза плоской волны.

Пусть фаза волны будет величиной постоянной (зафиксируем значение фазы в уравнении волны):

Сократим это выражение на и продифференцируем. В итоге получим:

или .

Таким образом, скорость распространения волны в уравнении плоской волны есть не что иное, как скорость распространения фиксированной фазы волны. Такую скорость называют фазовой скоростью .

Для синусоидальной волны скорость переноса энергии равна фазовой скорости. Но синусоидальная волна не несёт никакой информации, а любой сигнал это модулированная волна, т.е. не синусоидальная (не гармоническая). При решении некоторых задач получается, что фазовая скорость больше скорости света. Здесь нет парадокса, т.к. скорость перемещения фазы не есть скорость передачи (распространения) энергии. Энергия, масса не могут двигаться со скоростью больше чем скорость света c .

Обычно уравнению плоской волны придают симметричный относительно и вид. Для этого вводится величина , которая называется волновым числом . Преобразуем выражение для волнового числа. Запишем его в виде (). Подставим это выражение в уравнение плоской волны:

Окончательно получим

Это уравнение плоской волны, распространяющейся в сторону возрастания . Противоположное направление распространения волны будет характеризоваться уравнением, в котором поменяется знак перед членом .

Удобна запись уравнения плоской волны в следующем виде.

Обычно знак Re опускают, подразумевая, что берётся только вещественная часть соответствующего выражения. Кроме этого вводится комплексное число.

Это число называется комплексной амплитудой. Модуль этого числа даёт амплитуду, а аргумент – начальную фазу волны.

Таким образом, уравнение плоской незатухающей волны можно представить в следующем виде.

Всё рассмотренное выше относилось к среде, где отсутствовало затухание волны. В случае затухания волны, в соответствии с законом Бугера (Пьер Бугер, французский учёный (1698 – 1758)), амплитуда волны будет уменьшаться при её распространении. Тогда уравнение плоской волны будет иметь следующий вид.

a – коэффициент затухания волна. A 0 – амплитуда колебаний в точке с координатами . Это величина обратная расстоянию, при котором амплитуда волны уменьшается в e раз.

Найдем уравнение сферической волны . Будем считать источник колебаний точечным. Это возможно, если ограничиться рассмотрением волны на расстоянии, много большем размеров источника. Волна от такого источника в изотропной и однородной среде будет сферической . Точки лежащие на волновой поверхности радиуса , будут колебаться с фазой

Амплитуда колебаний в этом случае, даже если энергия волны не поглощается средой, не будет оставаться постоянной. Она убывает с расстоянием от источника по закону . Следовательно, уравнение сферической волны имеет вид:

или

В силу сделанных предположений уравнение справедливо только при , значительно превышающих размеры источника волн. Уравнение (6) неприменимо для малых значений , т.к. амплитуда устремилась бы к бесконечности, а это абсурд.

При наличии затухания в среде уравнение сферической волны запишется следующим образом.

Групповая скорость

Строго монохроматическая волна представляет собой бесконечную во времени и пространстве последовательность "горбов" и "впадин".

Фазовая скорость этой волны или (2)

С помощью такой волны нельзя передать сигнал, т.к. в любой точке волны все "горбы" одинаковы. Сигнал должен отличаться. Быть знаком (меткой) на волне. Но тогда волна уже не будет гармонической, и не будет описываться уравнением (1). Сигнал (импульс) можно представить согласно теореме Фурье в виде суперпозиции гармонических волн с частотами, заключёнными в некотором интервале Dw . Суперпозиция волн, мало отличающихся друг от друга по частоте,


называется волновым пакетом или группой волн .

Выражение для группы волн может быть записано следующим образом.

(3)

Значок w подчеркивает, что эти величины зависят от частоты.

Этот волновой пакет может быть суммой волн с мало отличающимися частотами. Там, где фазы волн совпадают, наблюдается усиление амплитуды, а там, где фазы противоположны, наблюдается гашение амплитуды (результат интерференции). Такая картина представлена на рисунке. Чтобы суперпозицию волн можно было считать группой волн необходимо выполнение следующего условия Dw << w 0 .

В недиспергирующей среде все плоские волны, образующие волновой пакет, распространяются с одинаковой фазовой скоростью v . Дисперсия это зависимость фазовой скорости синусоидальной волны в среде от частоты. Явление дисперсии мы рассмотрим позже в разделе "Волновая оптика". В отсутствии дисперсии скорость перемещения волнового пакета совпадает с фазовой скорость v . В диспергирующей среде каждая волна диспергирует со своей скоростью. Поэтому волновой пакет с течением времени расплывается, его ширина увеличивается.

Если дисперсия невелика, то расплывание волнового пакета происходит не слишком быстро. Поэтому движению всего пакета можно приписать некоторую скорость U .

Скорость, с которой перемещается центр волнового пакета (точка с максимальным значением амплитуды) называется групповой скоростью .

В диспергирующей среде v¹ U . Вместе с движением самого волнового пакета происходит движение "горбов" внутри самого пакета. "Горбы" перемещаются в пространстве со скоростью v , а пакет в целом со скоростью U .

Рассмотрим подробнее движение волнового пакета на примере суперпозиции двух волн с одинаковой амплитудой и разными частотами w (разными длинами волн l ).

Запишем уравнения двух волн. Примем для простоты начальные фазы j 0 = 0.

Здесь

Пусть Dw << w , соответственно Dk << k .

Сложим колебания и проведём преобразования с помощью тригонометрической формулой для суммы косинусов:

В первом косинусе пренебрежём Dwt и Dkx , которые много меньше других величин. Учтём, что cos(–a) = cosa . Окончательно запишем.

(4)

Множитель в квадратных скобках изменяется от времени и координаты значительно медленнее, чем второй множитель. Следовательно, выражение (4) можно рассматривать как уравнение плоской волны с амплитудой, описываемой первым сомножителем. Графически волна, описываемая выражением (4) представлена на рисунке, изображённом выше.

Результирующая амплитуда получается в результате сложения волн, следовательно, будут наблюдаться максимумы и минимумы амплитуды.

Максимум амплитуды будет определяться следующим условием.

(5)

m = 0, 1, 2…

x max – координата максимальной амплитуды.

Косинус принимает максимальное значение по модулю через p .

Каждый из этих максимумов можно рассматривать как центр соответствующей группы волн.

Разрешив (5) относительно x max получим.

Так как фазовая скорость , то называется групповой скоростью. С такой скоростью перемещается максимум амплитуды волнового пакета. В пределе, выражение для групповой скорости будет иметь следующий вид.

(6)

Это выражение справедливо для центра группы произвольного числа волн.

Следует отметить, что при точном учёте всех членов разложения (для произвольного числа волн), выражение для амплитуды получается таким, что из него следует, что волновой пакет со временем расплывается.
Выражению для групповой скорости можно придать другой вид.

В отсутствии дисперсии

Максимум интенсивности приходится на центр группы волн. Поэтому скорость переноса энергии равна групповой скорости.

Понятие групповой скорости применимо только при условии, что поглощение волны в среде невелико. При значительном затухании волн понятие групповой скорости утрачивает смысл. Этот случай наблюдается в области аномальной дисперсии. Это мы будем рассматривать в разделе "Волновая оптика".

На правах рукописи

Физика

Конспект лекций

(Часть 5. Волны, волновая оптика)

Для студентов направления 230400

«Информационные системы и технологии»

Электронный образовательный ресурс

Составитель: к.ф.-м.н., доцент В.В. Коноваленко

Протокол № 1 от 04. 09. 2013 г.


Волновые процессы

Основные понятия и определения

Рассмотрим некоторую упругую среду - твёрдую, жидкую или га­зообразную. Если в каком-либо месте этой среды возбудить колебания её частиц, то вследствие взаимодействия между частицами, колебания будут, передаваясь от одной частицы среды к другой распространяться в среде с некоторой скоростью . Процесс распространения колеба­ний в пространстве называется волной .

Если частицы в среде колеблются в направлении распростране­ния волны, то она называется продольной. Если колебания частиц происходят в плоскости, перпендикулярной направлению распространения волны, то волна называется попереч­ной . Поперечные механические волны могут возникнуть только в сре­де, обладающей ненулевым модулем сдвига. Поэтому в жидкой и газо­образной средах могут распространяться только продольные волны . Различие между продольными и поперечными волнами наиболее хорошо видно на примере распространения колебаний в пружине - см. рисунок.

Для характеристики поперечных колебаний необходимо задать положение в пространстве плоскости, проходящей через направление колебаний и направление распространения волны - плоскости поляризации .

Область пространства, в которой колеблются все частицы среды, называется волновым полем . Граница между волновым полем и остальным пространством среды называется фронтом волны . Иначе говоря, фронт волны - геометрическое место точек, до которых колебания дошли к данному моменту времени . В однородной и изотропной среде направление распространения волны перпендикулярно к фронту волны.



Пока в среде существует волна, частицы среды совершают колебания около своих положений равновесия. Пусть эти колебания являются гармоническими, и период этих колеба­ний равен Т . Частицы, отстоящие друг от друга на расстояние

вдоль направления распространения волны, совершают колебания одинаковым образом, т.е. в каждый дан­ный момент времени их смещения одинаковы. Расстояние называется длиной волны . Другими словами, длина волны есть расстояние, на которое распространяется волна за один период колебаний .

Геометрическое место точек, совершающих колебания в одной фазе называется волновой поверхностью . Фронт волны – частный случай волновой поверхности. Длина волны – минимальное расстояние между двумя волновыми поверхностями, в которых точки колеблются одинаковым образом, или можно сказать, что фазы их колебаний отличаются на .

Если волновые поверхности являются плоскостями, то волна называется плоской , а если сферами – то сферической. Плоская волна возбуждается в сплошной однородной и изотропной среде при колебаниях бесконечной плоскости. Возбуждение сферической можно представить в виде результата радиальных пульсаций сферической поверхности, а также как результат действия точечного источника, размерами которого по сравнению с расстоянием до точки наблюдения можно пренебречь. Поскольку любой реальный источник имеет конечные размеры, на достаточно большом расстоянии от него волна будет близка к сферической. В то же время участок волновой поверхности сферической волны по мере уменьшения его размеров становится сколь угодно близким к участку волновой поверхности плоской волны.

Уравнение плоской волны, распространяющейся

В произвольном направлении

Получим. Пусть колебания в плоскости, параллельной волновым поверхностям и проходящей через начало коорди­нат, имеют вид:

В плоскости, отстоящей от начала координат на расстояние l , колебания будут отставать по времени на . Поэтому уравнение колебаний в этой плоскости имеет вид:

Из аналитической геометрии известно, что расстояние от начала ко­ординат до некоторой плоскости равно скалярному произведению ради­ус-вектора некоторой точки плоскости на единичный вектор нормали к плоскости: . Рисунок иллюстрирует данное положение для двумерного случая. Подставим значение l в урав­нение (22.13):

(22.14)

Вектор , равный по модулю волновому числу и направленный по нормали к волновой поверхности, называется волновым вектором . Уравнение плоской волны можно теперь записать в виде:

Функция (22.15) даёт отклонение от положения равновесия точки с радиус-вектором в момент времени t . Для того, чтобы представить зависимость от координат и времени в явном виде необходимо учесть, что

. (22.16)

Теперь уравнение плоской волны принимает вид:

Часто оказывается полезным представить уравнение волны в экспоненциальной форме . Для этого воспользуемся формулой Эйлера:

где , запишем уравнение (22.15) в виде:

. (22.19)

Волновое уравнение

Уравнение любой волны является решением дифференциального уравнения второго порядка, называемого волновым . Для того чтобы установить вид этого уравнения, найдем вторые производные по каждому из аргументов уравнения плоской волны (22.17):

, (22.20)

, (22.21)

, (22.22)

Сложим первые три уравнения с производными по координатам:

. (22.24)

Выразим из уравнения (22.23) : , и учтем, что :

(22.25)

Сумму вторых производных в левой части (22.25) представим как результат действия оператора Лапласа на , и в окончательном виде представим волновое уравнение в виде:

(22.26)

Примечательно, что в волновом уравнении квадратный корень из величины, обратной коэффициенту при производной по времени дает скорость распространения волны .

Можно показать, что волновому уравнению (22.26) удовлетворяет любая функция вида:

и каждая из них является уравнением волны и описывает некоторую волну.

Энергия упругой волны

Рассмотрим в среде, в которой распространяется упругая вол­на (22.10), элементарный объём достаточно малый, чтобы деформацию и скорость движения частиц в нём можно было считать постоянными и равными:

Вследствие распространения в среде волны объём обладает энергией упругой деформации

(22.38)

В соответствии с (22.35) модуль Юнга можно представить в виде . Поэтому:

. (22.39)

Рассматриваемый объём обладает также кинетической энергией:

. (22.40)

Полная энергия объёма:

А плотность энергии:

, а (22.43)

Подставим эти выражения в (22.42) и учтем, что :

Таким образом, плотность энергии различна в разных точках про­странства и меняется во времени по закону квадрата синуса .

Сред­нее значение квадрата синуса равно 1/2, а значит среднее по времени значение плотности энергии в каждой точке среды , в которой распространяется волна:

. (22.45)

Выражение (22.45) справедливо для всех видов волн.

Итак, среда, в которой распространяется волна, обладает дополнительным запасом энергии . Следовательно, волна переносит с собой энергию .

Х.6 Излучение диполя

Колеблющийся электрический диполь , т.е. диполь, электрический момент которого периодически изменяется, например, по гармоническому закону, является простейшей системой, излучающей электромагнитные волны. Одним из важных примеров колеблющегося диполя является система состоящая из отрицательного заряда , который колеблется вблизи положительного заряда . Именно такая ситуация реализуется при воздействии электромагнитной волны на атом вещества, когда под действием поля волны электроны совершают колебания в окрестности ядра атома.

Предположим, что дипольный момент изменяется по гармоническому закону:

где - радиус-вектор отрицательного заряда, l - амплитуда колебания, - единичный вектор, направленный вдоль оси диполя.

Ограничимся рассмотрением элементарного диполя , размеры которого малы по сравнению с излучаемой длиной волны и рассмотрим волновую зону диполя, т.е. область пространства для которой модуль радиус-вектора точки . В волновой зоне однородной и изотропной среды фронт волны будет сферическим - рисунок 22.4.

Электродинамический расчет показывает, что вектор волны лежит в плоскости, проходящей через ось диполя и радиус-вектор рассматриваемой точки. Амплитуды и зависят от расстояния r и угла между и осью диполя. В вакууме

Поскольку вектор Пойнтинга , то

, (22.33)

и можно утверждать, что сильнее всего диполь излучает в направлениях, соответст­вующих , и диаграмма направленности излу­чения диполя имеет вид, показанный на рисунке 22.5. Диаграммой направленности называется графическое изображение распределения интенсивности излучения по различным направлениям в виде кривой построен­ной так, чтобы длина отрезка луча, проведенного из диполя в некотором направлении до точки кривой, была пропорциональна интенсивности излучения.

Расчеты показывают также, что мощность Р излучения диполя пропорциональнаквадрату второй производной по времени от дипольного момента :

Поскольку

, (22.35)

то средняя мощность

оказывается пропорциональной квадрату амплитуды дипольного момента и четвертой степени частоты .

С другой стороны, учитывая, что и , получаем, что мощность излучения пропорциональна квадрату ускорения :

Это утверждение справедливо не только при колебаниях заряда, но и для произвольного движения заряда.


Волновая оптика

В этом разделе мы будем рассматривать такие световые явления, в которых проявляется волновая природа света. Напомним, что для света характерен корпускулярно-волновой дуализм и существуют явления, объяснимые только на основе представления о свете, как о потоке частиц. Но эти явления мы рассмотрим в квантовой оптике.

Общие сведения о свете

Итак, считаем свет электромагнитной волной. В электромагнитной волне колеблется и . Экспериментально установлено, что физиологическое, фотохимическое, фотоэлектрическое и другие действия света определяются вектором световой волны, поэтому его называют световым. Соответственно, будем считать, что световая волна описывается уравнением:

где - амплитуда,

- волновое число (волновой вектор),

Расстояние вдоль направления распространения.

Плоскость, в которой колеблется , называется плоскостью колебаний . Световая волна распространяется со скоростью

, (2)

называется показателем преломления и характеризует отличие скорости света в данной среде от скорости света в вакууме (пустоте).

В большинстве случаев у прозрачных веществ магнитная проницаемость , и почти всегда можно считать, что показатель преломления определяется диэлектрической проницаемостью среды:

Значение n используют для характеристики оптической плотности среды: чем больше n, тем более оптически плотной называется среда .

Видимый свет имеет в вакууме длины волн в интервале и частоты

Гц

Реальные приемники света не в состоянии уследить за столь быстротечными процессами и регистрируют усредненный во времени поток энергии . По определению, интенсивностью света называется модуль среднего по времени значения плотности потока энергии, переносимой световой волной :

(4)

Поскольку в электромагнитной волне

, (6)

Ι ~ ~ ~ (7)

I ~ A 2 (8)

Лучами будем называть линии, вдоль которых распространяется световая энергия.

Вектор среднего потока энергии всегда направлен по касательной к лучу . В изотропных средах совпадает по направлению с нормалью к волновым поверхностям.

В естественном свете имеются волны с самыми различными ориентациями плоскости колебаний. Поэтому, не смотря на поперечность световых волн, излучение обычных источников света не обнаруживает асимметрии относительно направления распространения. Эта особенность света (естественного) объясняется следующим: результирующая световая волна источника складывается из волн, испущенных различными атомами. Каждый атом излучает волну в течение секунд. За это время в пространстве образуется цуг волн (последовательность «горбов и впадин») длиной приблизительно 3 метра.

Плоскость колебаний каждого цуга вполне определённа. Но одновременно свои цуги излучают огромное число атомов, а плоскость колебаний каждого цуга ориентирована независимо от других, случайным образом. Поэтому в результирующей волне от тела колебания различных направлений представлены с равной вероятностью. Это означает, что, если некоторым прибором исследовать интенсивность света с различной ориентацией вектора , то в естественном свете интенсивность не зависит от ориентации .

Измерение интенсивности процесс длительный по сравнению с периодом волны, и рассмотренные представления о природе естественного света удобны при описании достаточно длительных процессов.

Однако в данный момент времени в конкретной точке пространства в результате сложения векторов отдельных цугов образуется некоторый конкретный . Вследствие случайных «включений» и «выключений» отдельных атомов световая волна возбуждает в данной точке колебание, близкое к гармоническому, но амплитуда, частота и фаза колебаний зависят от времени, причем изменяются хаотически. Так же хаотически изменяется и ориентация плоскости колебан ий. Таким образом, колебания светового вектора в данной точке среды можно описать уравнением:

(9)

Причем , и есть хаотически изменяющиеся во времени функц ии. Такое представление о естественном свете удобно, если рассматриваются промежутки времени, сравнимые с периодом световой волны.

Свет, в котором направления колебаний вектора упорядочены каким – либо образом называют поляризованным.

Если колебания светового вектора происходят только в одной плоскости , проходящей через луч, то свет называется плоско - или линейно поляризованным . Другими словами в плоско поляризованном свете плоскость колебаний имеет строго фиксированное положение. Возможны и другие виды упорядочения, то есть виды поляризации света.

Принцип Гюйгенса

В приближении геометрической оптики свет не должен проникать в область геометрической тени. В действительности свет проникает в эту область, и это явление становится тем существенней, чем меньше размеры преград. Если размеры отверстий или щелей сравнимы с длинной волны, то геометрическая оптика неприменима.

Качественно поведение света за преградой объясняется принципом Гюйгенса, который позволяет построить фронт волны в момент по известному положению в момент .

Согласно принципу Гюйгенса каждая точка, до которой доходит волновое движение, становится точечным источником вторичных волн. Огибающая по фронтам вторичных волн дает положение фронта волны.

Интерференция света

Пусть в некоторой точке среды две волны (плоско поляризованные) возбуждают два колебания одинаковой частоты и одинакового направления :

и . (24.14)

Амплитуда результирующего колебания определяется выражением:

У некогерентных волн изменяется случайно и все значения равновероятны. Поэтому и из (24.15) вытекает:

6 Если же волны когерентные и , то

Но зависит от , – длинны пути от источников волн до данной точки и различно для различных точек среды . Следовательно, при наложении когерентных волн происходит перераспределение светового потока в пространстве, в результате чего в одних точках среды интенсивность света увеличивается, , а в других – уменьшается - . Это явление называется интерференцией.

Отсутствие интерференции в быту при использовании нескольких источников света объясняется их некогерентностью . Отдельные атомы излучают импульсами в течение c и длина цуга ≈ 3метра. У нового цуга не только ориентация плоскости поляризации случайна, но и фаза также непредсказуема.

Реально когерентные волны получают путем разделения излучения одного источника на две части. При наложении частей можно наблюдать интерференцию. Но при этом разносить оптических длин не должна быть порядка длины цуга. Иначе интерференции не будет, т.к. накладываются различные цуги.

Пусть разделение происходит в точке O, а наложение – в точке Р. В P возбуждаются колебания.

и (24.17)

Скорости распространения волн в соответствующих средах.

Разносить фаз в точке Р :

где - длина волны света в вакууме.

Величина , т.е. равная разнице оптических длин путей между рассматриваемыми точками называется оптической разностью хода.

то , в (24.16) равен единице, и интенсивность света в будет максимальной.

(24.20)

то , колебания в точке происходят в противофазе, а значит интенсивность света минимальна.

КОГЕРЕНТНОСТЬ

Когерентность – согласованное протекание двух или нескольких волновых процессов. Абсолютной согласованности никогда не бывает, поэтому можно говорить о различной степени когерентности.

Различают временную и пространственную когерентность.

Временная когерентность

Уравнение реальных волн

Мы рассмотрели интерференцию волн, описываемых уравнениями вида:

(1)

Однако такие волны являются математической абстракцией, поскольку волна, описываемая (1), должна быть бесконечной во времени и пространстве. Только в этом случае величины могут быть определенными константами.

Реальная волна, образующаяся в результате наложения цугов от различных атомов, содержит в себе составляющие, частоты которых лежат в конечном диапазоне частот (соответственно волновые векторы в ), а А и a испытывают непрерывные хаотические изменения. Колебания, возбуждаемые в некоторой точке накладывающимися реальными волнами, можно описать выражением:

и (2)

Причем хаотические изменения функций от времени в (2) являются независимыми.

Для простоты анализа положим амплитуды волн постоянными и одинаковыми (экспериментально это условие реализуется достаточно просто):

Изменения частоты и фазы можно свести к изменениям только частоты или только фазы. Действительно, допустим, негармоничность функций (2) обусловлена скачками фазы. Но, по доказываемой в математике теореме Фурье , любую негармоническую функцию можно представить в виде суммы гармонических составляющих, частоты которых заключены в некоторых . В предельном случае сумма переходит в интеграл: любая конечная и интегрируемая функция может быть представлена интегралом Фурье:

, (3)

где есть амплитуда гармонической составляющей частоты , аналитически определяемая соотношением:

(4)

Итак, негармоническая вследствие изменения фазы функция представима в виде суперпозиции гармонических составляющих с частотами в некотором .

С другой стороны, функцию с переменной частотой и фазой можно свести к функции с переменной только фазой:

Поэтому для укрощения дальнейшего анализа будем считать:

т. е. реализуем фазовый подход к понятию «Временная когерентность».

Полосы равного наклона

Пусть тонкая плоскопараллельная пластинка освещается рассеянным монохроматическим светом. Расположим параллельно пластинке собирающую линзу, в ее фокальной плоскости – экран . В рассеянном свете имеются лучи самых разнообразных направлений. Лучи, падающие под углом , дают по 2 отраженных, которые соберутся в точке . Это справедливо для всех лучей, падающих на поверхность пластинки под данным углом, во всех точках пластинки. Линза обеспечивает сведение всех таких лучей в одну точку, поскольку параллельные лучи, падающие на линзу под определенным углом, собираются ею в одной точке фокальной плоскости, т.е. на экране. В точке О птическая ось линзы пересекает экран. В этой точке собираются лучи, идущие параллельно оптической оси.

Лучи, падающие под углом , но не в плоскости рисунка, а в других плоскостях, соберутся в точках, расположенных на таком же расстоянии от точки , как и точка . В результате интерференции этих лучей на некотором расстоянии от точки образуется окружность с определенной интенсивностью падающего света. Лучи, падающие под другим углом, образуют на экране окружность с другой освещенностью, которая зависит от их оптической разности хода. В результате на экране образуются чередующиеся темные и светлые полосы в форме окружностей. Каждая из окружностей образована лучами, падающими под определенным углом, и они называются полосами равного наклона . Локализованы эти полосы в бесконечности.

Роль линзы может исполнять хрусталик, а экрана – сетчатка глаза. При этом глаз должен быть аккомодирован на бесконечность. В белом свете получаются разноцветные полосы.

Полосы равной толщины

Возьмем пластинку в виде клина. Пусть на нее падает параллельный пучок света . Рассмотрим лучи, отразившиеся от верхней и нижней граней пластинки. Если эти лучи свести линзой в точке , то они будут интерферировать. При небольшом угле между гранями пластинки, разность хода лучей можно вычислять по форму
ле для плоскопараллельной пластинки. Лучи образовавшиеся от падения луча в некоторую другую точку пластинки соберутся линзой в точке . Разность их хода определится толщиной пластинки в соответствующем месте. Можно доказать, что все точки типа Р лежат в одной плоскости, проходящей через вершину клина.

Если расположить экран так, чтобы он был сопряжен с поверхностью, в которой лежат точки P, Р 1 Р 2 то на нем возникнет система светлых и темных полос, каждая из которых образована за счет отражений от пластинки в местах определенной толщины. Поэтому в данном случае полосы называются полосами равной толщины .

При наблюдении в белом свете полосы будут окрашенными. Локализованы полосы равной толщины вблизи поверхности пластинки. При нормальном падении света – на поверхности.

В реальных условиях, при наблюдении окрашивания мыльных и масляных пленок наблюдается полосы смешанного типа.

Дифракция света.

27.1. Дифракция света

Дифракцией называют совокупность явлений, наблюдаемых в среде с резкими оптическими неоднородностями и связанных с отклонениями в распространении света от законов геометрической оптики .

Для наблюдения дифракции на пути световой волны от некоторого источника помещают непрозрачную преграду, закрывающую часть волновой поверхности волны, испущенной источником. Возникающую дифракционную картину наблюдают на экране, расположенном на продолжении лучей.

Различают два вида дифракции. Если лучи, идущие от источника и от преграды в точку наблюдения можно считать почти параллельными, то говорят, что наблюдается дифракция Фраунгофера, или дифракция в параллельных пучках . Если условия дифракции Фраунгофера не выполняются, говорят о дифракции Френеля .

Необходимо отчетливо представлять, что между интерференцией и дифракцией нет принципиального физического отличия. Оба явления обусловлены перераспределением энергии накладывающихся когерентных световых волн. Обычно при рассмотрении конечного числа дискретных источников света, то говорят об интерференции. Если рассматривается наложение волн от непрерывно распределенных в пространстве когерентных источников, то говорят о дифракции.

27.2. Принцип Гюйгенса – Френеля

Принцип Гюйгенса позволяет в принципе объяснит проникновение света в область геометрической тени, однако ничего не говорит об интенсивности волн, распространяющихся в различных направлениях. Френель дополнил принцип Гюйгенса указанием на то как следует рассчитывать интенсивность излучения от элемента волновой поверхности в различных направлениях, а также указанием на то, что вторичные волны являются когерентными, и при расчете интенсивности света в некоторой точке необходимо учитывать интерференцию вторичных волн. .