Личностный рост        21.11.2023   

Многообразие строения и форм молекул органических соединений. Молекулярные графы и типы молекулярных структур Графическое представление молекул и их свойств - теория графов в химии

1. Графическое представление молекул и их свойств - теория графов в химии

Изучение связи свойств веществ с их строением - одна из основных задач химии. Большой вклад в ее решение внесла структурная теория органических соединений, в число создателей которой входит великий российский химик Александр Михайлович Бутлеров (1828-1886). Именно он первым установил, что свойства вещества зависят не только от его состава (молекулярной формулы), но и от того, в каком порядке связаны между собой атомы в молекуле. Такой порядок назвали «химическим строением». Бутлеров предсказал, что составу C 4 H 10 могут соответствовать два вещества, имеющие разное строение - бутан и изобутан, и подтвердил это, синтезировав последнее вещество.

Идея о том, что порядок соединения атомов имеет ключевое значение для свойств вещества, оказалась очень плодотворной. На ней основано представление молекул с помощью графов, в которых атомы играют роль вершин, а химические связи между ними - ребер, соединяющих вершины. В графическом представлении длины связей и углы между ними игнорируются. Описанные выше молекулы C 4 H 10 изображаются следующими графами:

Атомы водорода в таких графах не указываются, так как их расположение можно однозначно установить по структуре углеродного скелета. Напомним, что углерод в органических соединениях четырехвалентен, поэтому в соответствующих графах от каждой вершины может отходить не более четырех ребер.

Графы - это математические объекты, поэтому их можно характеризовать с помощью чисел. Отсюда появилась идея выражать строение молекул числами, которые связаны со структурой молекулярных графов. Эти числа в химии называют «топологическими индексами». Рассчитав какой-либо топологический индекс для большого числа молекул, можно установить связь между его значениями и свойствами веществ, и затем использовать эту связь для предсказания свойств новых, еще не синтезированных веществ . К настоящему моменту химиками и математиками предложены сотни разнообразных индексов, характеризующих те или иные свойства молекул.

Инфракрасные спектры молекул

В отличие от видимого и ультрафиолетового диапазонов, которые обусловлены главным образом переходами электронов из одного стационарного состояния в другое...

Исследование строения органических соединений с помощью физических методов

Всевозможные положения молекул в трехмерном пространстве сводятся к поступательному, вращательному и колебательному движению. Молекула, состоящая из N атомов, имеет всего 3N степеней свободы движения...

Квантовохимическое изучение фотофизических свойств полианилина

Квантовохимические расчеты геометрии и распределения электронной плотности для возбужденных состояний, выполненные любым методом, представляют интерес, так как здесь даже полуколичественные результаты оказываются весьма полезными ...

Макромолекули лінійних аморфних полімерів

Молекула - найдрібніша частинка речовини, що володіє її основними хімічними властивостями і складається з атомів, зєднаних між собою хімічними звязками. Молекули можуть відрізнятися між собою природою або кількістю атомів...

2.1 Описание измерения, составление его модели и выявление источников неопределенности Любой процесс измерения можно представить в виде последовательности выполняемых операций...

Методика расчета неопределенностей измерений содержания свинца в конфетах, крупе, зерне и продуктах его переработки (хлебе и хлебобулочных изделиях) методом инверсионной вольтамперометрии на анализаторах типа ТА

Если мерой неопределенности является суммарная стандартная неопределенность, то результат может быть записан так: у(единиц) при стандартной неопределенности uc(y) (единиц). Если мерой неопределенности является расширенная неопределенность U...

Развитие периодического закона. Зависимость свойства элементов от ядра его атома

Определение порядковых номеров элементов по зарядам ядер их атомов позволило установить общее число мест в периодической системе между водородом (имеющим порядковый номер в таблице - 1), и ураном (порядковый номер, которого - 92)...

Для создания комплексов программ автоматизир. синтеза оптим. высоконадежных произ-в (в т. ч. ресурсосберегающих) наряду с принципами искусств. интеллекта применяют ориентированные семантические, или смысловые, графы вариантов решений ХТС. Эти графы, к-рые в частном случае являются деревьями, изображают процедуры генерации множества рациональных альтернативных схем ХТС (напр., 14 возможных при разделении ректификацией пятиком"понентной смеси целевых продуктов) и процедуры упорядоченного выбора среди них схемы, оптимальной по нек-рому критерию эффективности системы (см. Оптимизация).

Графов теорию используют также для разработки алгоритмов оптимизации временных графиков функционирования оборудования многоассортиментных гибких произ-в, алгоритмов оптим. размещения аппаратуры и трассировки трубопроводных систем, алгоритмов оптим. управления химико-технол. процессами и произ-вами, при сетевом планировании их работы и т.д.

Лит.. Зыков А. А., Теория конечных графов, [в. 1], Новосиб., 1969; Яцимирский К. Б., Применение теории графов в химии , Киев, 1973; Кафаров В. В., Перов В. Л., Мешалкин В. П., Принципы математического моделирования химико-технологических систем, М., 1974; Кристофидес Н., Теория графов. Алгоритмический подход, пер. с англ., М., 1978; Кафаров В. В., Перов В. Л., Мешал кин В. П., Математические основы автоматизированного проектирования химических производств , М., 1979; Химические приложения топологии и теории графов, под ред. Р. Кинга, пер. с англ., М., 1987; Chemical Applications of Graph Theory, Balaban A.T. (Ed.), N.Y.-L., 1976. В. В. Кафаров, В. П. Мешалкин.
===
Исп. литература для статьи «ГРАФОВ ТЕОРИЯ» : нет данных

Страница «ГРАФОВ ТЕОРИЯ» подготовлена по материалам

Молекулярные графы и типы молекулярных структур

из "Применение теории графов в химии"

Химия относится к тем областям науки, которые плохо поддаются формализации. Поэтому неформальное применение математических методов в химических исследованиях связано в основном с теми направлениями, в которых удается построить содержательные математические модели химических явлений.
Другой путь ироникновення графов в теоретическую химию связан с квантово-химическими методами расчета электронного строения молекул.
В нервом разделе обсуждаются способы анализа молекулярных структур в терминах графов, которые используются затем для по-строепня топологических индексов и иа пх основе корреляции типа структура - свойство, излагаются также элементы молекулярного дизайна.
Как известно, вещество может находиться в твердом, жидком или газообразном состоянии. Стабильность каждой из этих фаз определяется условием минимума свободной энергии и зависит от температуры и давления. Всякое вещество состоит из атомов или ионов, которые нри определенных условиях могут образовывать устойчивые подсистемы. Элементный состав и относительное расположение атомов (ближний порядок) в такой подсистеме сохраняются достаточно до.лго, хотя ее форма и размеры могут меняться. С уменьшением температуры или с увелпчегшем давления происходит уменьшение подвижности этих подсистем, однако движение ядер (нулевые колебания) не прекращаются п при абсолютном нуле температуры. Такие стабильные связные образования, состоящие пз) онечпого числа атолюв, могут существовать в жидкости, в нарах или в твердом веществе и называются молекулярными системами.
МГ в перспективной проекции отражает основные особенно-стп геометрии молекулы и дает наглядное представление об ее структуре. Обсудим в терминах МГ некоторые типы молекулярных структур. Рассмотрим молекулы, для описания структуры которых удобно использовать плоские реализации графов. Простейшим системам такого типа соответствуют древообразные МГ.
В случае молекул этиленового ряда МГ содержат только вершины степени три (углерод) и степени единица (водород). Обгцая формула таких соединений С Н,г+2. Молекулы С Н +2 в основном состоянии обычно являются плоскими. Каждый атом углерода характеризуется тригональным окружением. В данном случае возможно существование изомеров типа цис- и транс-. В случае тг 1 структура изомеров может быть достаточно сложной.
Рассмотрим теперь некоторые молекулярные системы, содержащие циклические фрагменты. Как и в случае углеводородов парафинового ряда, существуют молекулы, структуры которых можно описать в терминах графов, имеющих только вершипы степени четыре и единица. Простейшим примером такой системы является циклогексан (см. рис. 1.3,6), Обычно структуру циклогексапа описывают в виде МГ в перспективном изображении, опуская при этом вершины степени единица. Для циклогексапа возможно существование трех поворотных изомеров (рис, 1.7).

Зачет по медицинской химии. Вопросы билетов по компьютерному молекулярному моделированию и методам QSAR.

Общие сведения

Аббревиатура QSAR является сокращением от английского Quantitative Structure Activity Relationships, что в переводе на русский язык обозначает Количественное Cоотношение Cтруктура Активность (поэтому иногда в русскоязычной литературе используют сокращение КССА).

Одной из важнейших задач современной химической науки является установление зависимостей между структурой и свойствами веществ. Число вновь синтезируемых новых органических соединений постоянно увеличивается поэтому самой актуальной задачей является количественное предсказание конкретных свойств для новых еще не синтезированных веществ на основании определенных физико-химических параметров отдельных соединений.

Исторически всё началось с попыток учёных найти количественную связь между структурами веществ и их свойствами и выразить эту связь в количественном виде, например в виде математического уравнения. Это уравнение должно отражать зависимость одного числового набора (представляющих свойства) от другого числового набора (представляющего структуры). Выразить в числовом виде свойство достаточно просто – физиологическую активность серии веществ можно измерить количественно. Гораздо сложнее численно выразить структуры химических соединений. Для такого выражения в настоящее время в QSAR используются так называемые дескрипторы химической структуры.

Дескриптор – параметр, характеризующий структуру органического соединения, причём так, что подмечаются какие-то определенные особенности этой структуры. В принципе дескриптором может являться любое число, которое можно рассчитать из структурной формулы химического соединения – молекулярный вес, число атомов определенного типа (гибридизации), связей или групп, молекулярный объём, частичные заряды на атомах и т.д.

Для предсказания физиологической активности в QSAR обычно используют дескрипторы, рассчитанные на основе стерических, топологических особенностей структуры, электронных эффектов, липофильности. Значительную роль в QSAR имеют так называемые топологические дескрипторы. Структурные дескрипторы играют важную роль при оценке прочности связывания исследуемого соединения с молекулой-биомишенью, дескрипторы электронных эффектов описывают ионизацию или полярность соединений. Дескрипторы липофильности позволяют произвести оценку способности растворяться в жирах, то есть характеризует способность лекарства преодолевать клеточные мембраны и разного рода биологические барьеры.

В методе QSAR структурная формула представляется в виде математического представления - графа и оперируется с помощью специализированного математического аппарата - теории графов. Граф - математический объект, заданный множеством вершин и набором упорядоченных или неупорядоченных пар вершин (ребер). Теория графов позволяет посчитать так называемые инварианты графов, которые и рассматриваются как дескрипторы. Применяются также и сложные фрагментные дескрипторы, которые оценивают вклад различных частей молекулы в общее свойство. Они значительно облегчают исследователям обратное структурное конструирование неизвестных соединений с потенциально высокой активностью. Таким образом модель QSAR - это математическое уравнение (модель), с помощью которого можно описать как физиологическую активность (частный случай), так и вообще любое свойство, и этом случае правильнее говорить о QSPR - количественном соотношении между структурой и свойством.


Методология QSAR работает следующим образом. Сначала группу соединений с известной структурой и известными значениями физиологической активности (полученными из эксперимента) делят на две части: тренировочный и тестовый набор. В этих наборах цифры, характеризующие активность, уже соотнесены с конкретной структурой. Далее выбираются дескрипторы (в настоящее время придуманы многие сотни дескрипторов, однако реально полезных достаточно ограниченное число; существуют разные подходы к выбору наиболее оптимальных дескрипторов). На следующем этапе строят математическую зависимость (подбирают математическое уравнение) активности от выбранных дескрипторов для соединений из тренировочного (обучающего) набора и в итоге получают так называемое QSAR-уравнение,

Правильность построенного уравнения QSAR проверяют на тестовом наборе структур. Сначала вычисляют дескрипторы для каждой структуры из набора тестовой выборки, затем подставляют их в QSAR-уравнение, рассчитывают значения активности и сравнивают их с уже известными экспериментальными значениями. Если для тестового набора наблюдается хорошее совпадение расчётных и экспериментальных значений, то данное QSAR-уравнение можно применить для предсказания свойств новых, ещё не синтезированных структур. Метод QSAR позволяет, имея в распоряжении совсем небольшое количество химических соединений с известной активностью, предсказать необходимую структуру (или указать направления для модификация) и тем самым резко ограничить круг поисков.

В развитых странах работы в области QSAR ведутся постоянно возрастающими темпами - применение методов QSAR при создании новых соединений с заданными свойствами позволяет значительно сократить время и ресурсы и осуществлять более целенаправленный синтез соединений, обладающие необходимым заданных комплексом свойств.

Вопрос №3. Понятие о молекулярных графах и их инвариантах. Типы дескриптором молекулярной структуры. Понятие о топологических индексах. Индексы Винера, Рандича, Кира-Холла и другие топологические индексы. QSAR с использованием топологических индексов.

Молекулярный граф - связный неориентированный граф, находящийся во взаимно-однозначном соответствии со структурной формулой химического соединения таким образом, что вершинам графа соответствуют атомы молекулы, а рёбрам графа - химические связи между этими атомами. Понятие «молекулярный граф» является базовым для компьютерной химии и хемоинформатики. Как и структурная формула, молекулярный граф является моделью молекулы, и как всякая модель, он отражает далеко не все свойства прототипа. В отличие от структурной формулы, где всегда указывается, к какому химическому элементу относится данный атом, вершины молекулярного графа могут быть непомеченными - в этом случае молекулярный граф будет отражать только структуру, но не состав молекулы. Точно так же рёбра молекулярного графа могут быть непомеченными - в таком случае не будет делаться различие между ординарными и кратными химическими связями. В некоторых случаях может использоваться молекулярный граф, отражающий только углеродный скелет молекулы органического соединения. Такой уровень абстрагирования удобен для вычислительного решения широкого круга химических задач.

Естественным расширением молекулярного графа является реакционный граф, рёбра которого соответствуют образованию, разрыву и изменению порядка связей между атомами.

«Подчеркнём, что именно в теории Р. Бейдера впервые нашла обоснование эмпирическая идея аддитивности, именно эта теория позволила придать строгий физический смысл целому ряду понятий классической теории химического строения, в частности, „валентному штриху“ (связевый путь) и структурной химической формуле (молекулярный граф).»

Топологический индекс - инвариант (инвариант - термин, обозначающий нечто неизменяемое) молекулярного графа в задачах компьютерной химии. ЭЭто некоторое (обычно числовое) значение (или набор значений), характеризующее структуру молекулы. Обычно топологические индексы не отражают кратность химических связей и типы атомов (C,N,O и.т.д.), атомы водорода не учитываются. К наиболее известным топологическим индексам относятся индекс Хосои, индекс Винера, индекс Рандича, индекс Балабана и другие.

Глобальные и локальные индексы

Индекс Хосои и индекс Винера - примеры глобальных (или интегральных) топологических индексов, отражающих структуру данной молекулы. Бончев и Полянский предложили локальный (дифференциальный) индекс для каждого атома в молекуле. В качестве другого примера локальных индексов можно привести модификации индекса Хосои.

Дискриминирующая способность и супериндексы

Значения одного и того же топологического индекса для нескольких разных молекулярных графов могут совпадать. Чем меньше таких совпадений - тем выше так называемая дискриминирующая способность индекса. Эта способность является важнейшей характеристикой индекса. Для ее повышения несколько топологических индексов могут быть объединены в один супериндекс.

Вычислительная сложность

Вычислительная сложность является другой важной характеристикой топологического индекса. Многие индексы, такие как индекс Винера, индекс Рандича и индекс Балабана вычисляются с помощью быстрых алгоритмов, в отличие, например, от индекса Хосои и его модификаций, для которых известны только экспоненциальные по времени алгоритмы.

Применение

Топологические индексы используются в компьютерной химии для решения широкого круга общих и специальных задач. К этим задачам относятся: поиск веществ с заранее заданными свойствами (поиск зависимостей типа «структура-свойство», «структура-фармакологическая активность»), первичная фильтрация структурной информации для бесповторной генерации молекулярных графов заданного типа, предварительное сравнение молекулярных графов при их тестировании на изоморфизм и ряд других. Топологический индекс зависит только от структуры молекулы, но не от ее состава, поэтому молекулы одинаковой структуры (на уровне структурных формул), но разного состава, например, фуран и тиофен будут иметь равные индексы. Для преодоления этого затруднения был предложен ряд индексов, например, индексы электроотрицательности.

При векторном описании химической структуре ставится в соответствие вектор молекулярных дескрипторов, каждый из которых представляет собой инвариант молекулярного графа.

Молекулярные дескрипторы. Типы молекулярных дескрипторов.

Существующие наборы молекулярных дескрипторов могут быть условно разделены на следующие категории:

1. Фрагментные дескрипторы существуют в двух основных вариантах - бинарном и целочисленном . Бинарные фрагментные дескрипторы показывают, содержится ли данный фрагмент (подструктура) в структурной формуле, то есть содержится ли данный подграф в молекулярном графе, описывающем данное химическое соединение, тогда как целочисленные фрагментные дескрипторы показывают, сколько раз данный фрагмент (подструктура) содержится в структурной формуле. То есть сколько раз содержится данный подграф в молекулярном графе, описывающем данное химическое соединение. Уникальная роль фрагментных дескрипторов заключается в том, что, они образуют базис дескрипторного пространства, то есть любой молекулярный дескриптор (и любое молекулярное свойство), являющийся инвариантом молекулярного графа, может быть однозначно разложен по этому базису. Кроме моделирования свойств органических соединений, бинарные фрагментные дескрипторы в форме молекулярных ключей (скринов) и молекулярных отпечатков пальцев применяются при работе с базами данных для ускорения подструктурного поиска и организации поиска по подобию.

2. Топологические индексы .(информацию по ним см. выше)

3. Физико-химические дескрипторы - это числовые характеристики, получаемые в результате моделирования физико-химических свойств химеческих соединений, либо величины, имеющие четкую физико-химическую интерпретацию. Наиболее часто используются в качестве дескрипторов: липофильность (LogP), молярная рефракция (MR), молекулярный вес (MW), дескрипторы водородной связи , молекулярные объемы и площади поверхностей.

4. Квантово-химические дескрипторы - это числовые величины, получаемые в результате квантово-химических расчетов. Наиболее часто в качестве дескрипторов используются: энергии граничных молекулярных орбиталей (ВЗМО и НСМО), частичные заряды на атомах и частичные порядки связей, индексы реакционной способности Фукуи (индекс свободной валентности, нуклеофильная и электрофильная суперделокализуемость), энергии катионной, анионной и радикальной локализации, дипольный и высшие мультипольные моменты распределения электростатического потенциала.

5. Дескрипторы молекулярных полей - это числовые величины, аппроксимирующие значения молекулярных полей путем вычисления энергии взаимодействия пробного атома, помещенного в узел решетки, с текущей молекулой. На построении корреляций между значениями дескрипторов молекулярных полей и числовым значением биологической активности при помощи метода частичных наименьших квадратов (Partial Least Squares - PLS) основаны методы 3D-QSAR, наиболее известным из которых является CoMFA .

6. Константы заместителей впервые были введены Л. П. Гамметом в рамках уравнения, получившего его имя, которое связывает константы скорости реакции сконстантами равновесия для некоторых классов органических реакций. Константы заместителей вошли в практику QSAR после появления уравнения Ганча-Фуджиты, связывающего биологическую активность с константами заместителей и значением липофильности. В настоящее время известно несколько десятков констант заместителей.

7. Фармакофорные дескрипторы показывают, могут ли простейшие фармакофоры, состоящие из пар или троек фармакофорных центров со специфицированным расстоянием между ними, содержатся внутри анализируемой молекулы.

8. Дескрипторы молекулярного подобия указывают на меру сходства (молекулярного подобия) с соединениями из обучающей выборки.

Индекс Винера (англ. Wiener index), известный также как число Винера (англ. Wiener number), - топологический индекс неориентированного графа , определяемый как сумма кратчайших путей (англ.) d(vi,vj) между вершинами графа:

Индекс Рандича (англ. Randić index ), известный также как индекс связности неориентированного графа , является суммой вкладов по ребрам , где v i и v j - вершины, образующие ребро, d (v k ) - степень вершины v k :

Индекс Рандича характеризуется неплохой дифференцирующей способностью, однако не является полным инвариантом. Для приведенных ниже пар графов он совпадает, хотя графы не являются изоморфными.

химического соединения таким образом, что вершинам графа соответствуют атомы молекулы , а рёбрам графа - химические связи между этими атомами. Понятие «молекулярный граф» является базовым для компьютерной химии и хемоинформатики . Как и структурная формула, молекулярный граф является моделью молекулы, и как всякая модель , он отражает далеко не все свойства прототипа. В отличие от структурной формулы, где всегда указывается, к какому химическому элементу относится данный атом, вершины молекулярного графа могут быть непомеченными - в этом случае молекулярный граф будет отражать только структуру, но не состав молекулы. Точно так же рёбра молекулярного графа могут быть непомеченными - в таком случае не будет делаться различие между ординарными и кратными химическими связями. В некоторых случаях может использоваться молекулярный граф, отражающий только углеродный скелет молекулы органического соединения. Такой уровень абстрагирования удобен для вычислительного решения широкого круга химических задач.

Естественным расширением молекулярного графа является реакционный граф , рёбра которого соответствуют образованию, разрыву и изменению порядка связей между атомами.

«Подчеркнём, что именно в теории Р. Бейдера впервые нашла обоснование эмпирическая идея аддитивности, именно эта теория позволила придать строгий физический смысл целому ряду понятий классической теории химического строения , в частности, „валентному штриху“ (связевый путь) и структурной химической формуле (молекулярный граф).»

Напишите отзыв о статье "Молекулярный граф"

Примечания

См. также

Литература

  • = Chemical Applications of Topology and Graph Theory, ed. by R. B. King. - М .: Мир, 1987. - 560 с.

Отрывок, характеризующий Молекулярный граф

На другой день князь Андрей вспомнил вчерашний бал, но не на долго остановился на нем мыслями. «Да, очень блестящий был бал. И еще… да, Ростова очень мила. Что то в ней есть свежее, особенное, не петербургское, отличающее ее». Вот всё, что он думал о вчерашнем бале, и напившись чаю, сел за работу.
Но от усталости или бессонницы (день был нехороший для занятий, и князь Андрей ничего не мог делать) он всё критиковал сам свою работу, как это часто с ним бывало, и рад был, когда услыхал, что кто то приехал.
Приехавший был Бицкий, служивший в различных комиссиях, бывавший во всех обществах Петербурга, страстный поклонник новых идей и Сперанского и озабоченный вестовщик Петербурга, один из тех людей, которые выбирают направление как платье – по моде, но которые по этому то кажутся самыми горячими партизанами направлений. Он озабоченно, едва успев снять шляпу, вбежал к князю Андрею и тотчас же начал говорить. Он только что узнал подробности заседания государственного совета нынешнего утра, открытого государем, и с восторгом рассказывал о том. Речь государя была необычайна. Это была одна из тех речей, которые произносятся только конституционными монархами. «Государь прямо сказал, что совет и сенат суть государственные сословия; он сказал, что правление должно иметь основанием не произвол, а твердые начала. Государь сказал, что финансы должны быть преобразованы и отчеты быть публичны», рассказывал Бицкий, ударяя на известные слова и значительно раскрывая глаза.
– Да, нынешнее событие есть эра, величайшая эра в нашей истории, – заключил он.
Князь Андрей слушал рассказ об открытии государственного совета, которого он ожидал с таким нетерпением и которому приписывал такую важность, и удивлялся, что событие это теперь, когда оно совершилось, не только не трогало его, но представлялось ему более чем ничтожным. Он с тихой насмешкой слушал восторженный рассказ Бицкого. Самая простая мысль приходила ему в голову: «Какое дело мне и Бицкому, какое дело нам до того, что государю угодно было сказать в совете! Разве всё это может сделать меня счастливее и лучше?»
И это простое рассуждение вдруг уничтожило для князя Андрея весь прежний интерес совершаемых преобразований. В этот же день князь Андрей должен был обедать у Сперанского «en petit comite«, [в маленьком собрании,] как ему сказал хозяин, приглашая его. Обед этот в семейном и дружеском кругу человека, которым он так восхищался, прежде очень интересовал князя Андрея, тем более что до сих пор он не видал Сперанского в его домашнем быту; но теперь ему не хотелось ехать.