Сказки        28.12.2023   

Основные положения мкт газов. Школьная энциклопедия. Диффузия в металлах

МКТ - это просто!

«Ничто не существует, кроме атомов и пустого пространства …» - Демокрит
«Любое тело может делиться до бесконечности» - Аристотель

Основные положения молекулярно-кинетической теории (МКТ)

Цель МКТ - это объяснение строения и свойств различных макроскопических тел и тепловых явлений, в них протекающих, движением и взаимодействием частиц, из которых состоят тела.
Макроскопические тела - это большие тела, состоящие из огромного числа молекул.
Тепловые явления - явления, связанные с нагреванием и охлаждением тел.

Основные утверждения МКТ

1. Вещество состоит из частиц (молекул и атомов).
2. Между частицами есть промежутки.
3. Частицы беспорядочно и непрерывно движутся.
4. Частицы взаимодействуют друг с другом (притягиваются и отталкиваются).

Подтверждение МКТ:

1. экспериментальное
- механическое дробление вещества; растворение вещества в воде; сжатие и расширение газов; испарение; деформация тел; диффузия; опыт Бригмана: в сосуд заливается масло, сверху на масло давит поршень, при давлении 10 000 атм масло начинает просачиваться сквозь стенки стального сосуда;

Диффузия; броуновское движение частиц в жидкости под ударами молекул;

Плохая сжимаемость твердых и жидких тел; значительные усилия для разрыва твердых тел; слияние капель жидкости;

2. прямое
- фотографирование, определение размеров частиц.

Броуновское движение

Броуновское движение - это тепловое движение взвешенных частиц в жидкости (или газе).

Броуновское движение стало доказательством непрерывного и хаотичного (теплового) движения молекул вещества.
- открыто английским ботаником Р. Броуном в 1827 г.
- дано теоретическое объяснение на основе МКТ А. Эйнштейном в 1905 г.
- экспериментально подтверждено французским физиком Ж. Перреном.

Масса и размеры молекул

Размеры частиц

Диаметр любого атома составляет около см.


Число молекул в веществе

где V - объем вещества, Vo - объем одной молекулы

Масса одной молекулы

где m - масса вещества,
N - число молекул в веществе

Единица измерения массы в СИ: [m]= 1 кг

В атомной физике массу обычно измеряют в атомных единицах массы (а.е.м.).
Условно принято считать за 1 а.е.м. :

Относительная молекулярная масса вещества

Для удобства расчетов вводится величина - относительная молекулярная масса вещества.
Массу молекулы любого вещества можно сравнить с 1/12 массы молекулы углерода.

где числитель - это масса молекулы, а знаменатель - 1/12 массы атома углерода

Это величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса химического элемента

где числитель - это масса атома, а знаменатель - 1/12 массы атома углерода

Величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса каждого химического элемента дана в таблице Менделеева.

Другой способ определения относительной молекулярной массы вещества

Относительная молекулярная масса вещества равна сумме относительных атомных масс химических элементов, входящих в состав молекулы вещества.
Относительную атомную массу любого химического элемента берем из таблицы Менделеева!)

Количество вещества

Количество вещества (ν) определяет относительное число молекул в теле.

где N - число молекул в теле, а Na - постоянная Авогадро

Единица измерения количества вещества в системе СИ: [ν]= 1 моль

1 моль - это количество вещества, в котором содержится столько молекул (или атомов), сколько атомов содержится в углероде массой 0,012 кг.

Запомни!
В 1 моле любого вещества содержится одинаковое число атомов или молекул!

Но!
Одинаковые количества вещества для разных веществ имеют разную массу!


Постоянная Авогадро

Число атомов в 1 моле любого вещества называют числом Авогадро или постоянной Авогадро:

Молярная масса

Молярная масса (M) - это масса вещества, взятого в одном моле, или иначе - это масса одного моля вещества.

Масса молекулы
- постоянная Авогадро

Единица измерения молярной массы: [M]=1 кг/моль.

Формулы для решения задач

Эти формулы получаются в результате подстановки вышерассмотренных формул.

Масса любого количества вещества

Любое вещество рассматривается физикой как совокупность мельчайших частиц: атомов, молекул и ионов. Все эти частицы находятся в непрерывном хаотическом движении и взаимодействуют друг с другом с помощью упругих столкновений.

Атомическая теория - основа молекулярно-кинетической теории

Демокрит

Молекулярно-кинетическая теория зародилась в Древней Греции примерно 2500 лет назад. Её фундаментом считается атомическая гипотеза , авторами которой были древнегреческий философ Левкипп и его ученик, древнегреческий учёный Демокрит из города Абдеры.

Левкипп

Левкипп и Демокрит предполагали, что все материальные вещи состоят из неделимых мельчайших частиц, которые называются атомами (от греческого ἄτομος - неделимый ). А пространство между атомами заполнено пустотой. Все атомы имеют размер и форму, а также способны двигаться. Сторонниками этой теории в средние века были Джордано Бруно , Галилей , Исаак Бекман и другие учёные. Основы молекулярно-кинетической теории были заложены в труде «Гидродинамика», опубликованном в 1738 г. Его автором был швейцарский физик, механик и математик Даниил Бернулли .

Основные положения молекулярно-кинетической теории

Михаил Васильевич Ломоносов

Ближе всего к современной физике оказалась теория атомного строения вещества, которую в XVIII веке развил великий русский учёный Михаил Васильевич Ломоносов . Он утверждал, что все вещества состоят из молекул , которые он называл корпускулами . А корпускулы, в свою очередь, состоят из атомов . Теория Ломоносова получила название корпускулярной .

Но как оказалось, атом делится. Он состоит из положительно заряженного ядра и отрицательных электронов. А в целом он электрически нейтрален.

Современная наука называет атомом наименьшую часть химического элемента, являющуюся носителем его основных свойств. Связанные межатомными связями, атомы образуют молекулы. В молекуле могут быть один или нескольких атомов одинаковых или различных химических элементов.

Все тела состоят из огромного количества частиц: атомов, молекул и ионов. Эти частицы непрерывно и хаотично движутся. Их движение не имеет какого-либо определённого направления и называется тепловым движением . Во время своего движения частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

Наблюдать молекулы и атомы невооружённым глазом мы не можем. Но мы можем видеть результат их действий.

Подтверждением основных положений молекулярно-кинетической теории являются: диффузия , броуновское движение и изменение агрегатных состояний веществ .

Диффузия

Диффузия в жидкости

Одно из доказательств постоянного движения молекул - явление диффузии .

В процессе движения молекулы и атомы одного вещества проникают между молекулами и атомами другого вещества, соприкасающегося с ним. Точно так же ведут себя молекулы и атомы второго вещества по отношению к первому. И через некоторое время молекулы обоих веществ равномерно распределяются по всему объёму.

Процесс проникновения молекул одного вещества между молекул другого называется диффузией . С явлением диффузии мы сталкиваемся дома каждый день, когда опускаем пакетик чая в стакан с кипятком. Мы наблюдаем, как бесцветный кипяток меняет свой цвет. Бросив в пробирку с водой несколько кристалликов марганца, можно увидеть, что вода окрасится в розовый цвет. Это также диффузия.

Число частиц в единице объёма называют концентрацией вещества. При диффузии молекулы перемещаются из тех частей вещества, где концентрация выше, в те части, где она меньше. Перемещение молекул называют диффузионным потоком . В результате диффузии концентрации в различных частях веществ выравниваются.

Диффузию можно наблюдать в газах, жидкостях и твёрдых телах. В газах она происходит с большей скоростью, чем в жидкостях. Мы знаем, как быстро распространяются запахи в воздухе. Гораздо медленнее окрашивается жидкость в пробирке, если в неё капнуть чернил. А если мы положим на дно ёмкости с водой кристаллы поваренной соли и не перемешаем, то пройдёт не один день, прежде чем раствор станет однородным.

Диффузия происходит и на границе соприкасающихся металлов. Но её скорость в этом случае очень мала. Если покрыть медь золотом, то при комнатной температуре и атмосферном давлении золото приникнет в медь всего лишь на несколько микронов через несколько тысяч лет.

Свинец из слитка, положенного под грузом на золотой слиток, проникнет в него всего лишь на глубину в 1 см за 5 лет.

Диффузия в металлах

Скорость диффузии

Скорость диффузии зависит от площади поперечного сечения потока, разности концентраций веществ, разности их температур или зарядов. Через стержень диаметром в 2 см тепло распространяется в 4 раза быстрее, чем через стержень диаметром в 1 см. Чем выше разность температур веществ, тем выше скорость диффузии. При тепловой диффузии её скорость зависит от теплопроводности материала, а в случае потока электрических зарядов - от электропроводности .

Закон Фика

Адольф Фик

В 1855 г. немецкий физиолог Адольф Евгений Фик сделал первое количественное описание процессов диффузии:

где J - плотность диффузионного потока вещества,

D - коэффициент диффузии,

C - концентрация вещества.

Плотность диффузионного потока вещества J [см -2 · s -1 ] пропорциональна коэффициенту диффузии D [см -2 · s -1 ] и градиенту концентрации, взятому с противоположным знаком.

Это уравнение называют первым уравнением Фика .

Диффузия, в результате которой концентрации веществ выравниваются, называется нестационарной диффузией . При такой диффузии градиент концентрации изменяется со временем. А в случае стационарной диффузии этот градиент остаётся постоянным.

Броуновское движение

Роберт Броун

Открыл это явление шотландский ботаник Роберт Броун в 1827 г. Изучая под микроскопом взвешенные в воде цитоплазматические зёрна, выделенные из клеток пыльцы североамериканского растения Clarkia pulchella , он обратил внимание на мельчайшие твёрдые крупинки. Они дрожали и медленно передвигались без всякой видимой причины. Если температура жидкости повышалась, скорость частиц возрастала. Так же происходило, когда уменьшался размер частиц. А если их размер увеличивался, понижалась температура жидкости или увеличивалась её вязкость, движение частиц замедлялось. И эти удивительные «танцы» частиц можно было наблюдать бесконечно долго. Решив, что причина этого движения в том, что частицы живые, Броун заменил зёрна мелкими частицами угля. Результат оказался таким же.

Броуновское движение

Чтобы повторить опыты Броуна достаточно иметь самый обычный микроскоп. Размер молекул слишком мал. И рассмотреть их таким прибором невозможно. Но если мы подкрасим акварельной краской воду в пробирке, а затем посмотрим на неё в микроскоп, то увидим крошечные окрашенные частицы, которые беспорядочно двигаются. Это не молекулы, а частицы краски, взвешенные в воде. И двигаться их заставляют молекулы воды, которые ударяют их со всех сторон.

Так ведут себя все видимые в микроскоп частицы, находящиеся во взвешенном состоянии в жидкостях или газах. Их беспорядочное движение, вызванное тепловым движением молекул или атомов, называется броуновским движением . Броуновская частица непрерывно подвергается ударам со стороны молекул и атомов, из которых состоят жидкости и газы. И это движение не прекращается.

Но в броуновском движении могут участвовать частицы размером до 5 мкм (микрометров). Если их размер больше, они неподвижны. Чем меньше размер броуновской частицы, тем быстрее она движется. Частицы менее 3 мкм двигаются поступательно по всем сложным траекториям или вращаются.

Сам Броун не смог объяснить открытое им явление. И лишь в XIX веке учёные нашли ответ на этот вопрос: движение броуновских частиц вызвано воздействием на них теплового движения молекул и атомов.

Три состояния вещества

Молекулы и атомы, из которых состоит вещество, не только находятся в движении, но и взаимодействуют друг с другом, взаимно притягиваясь или отталкиваясь.

Если расстояние между молекулами сравнимо с их размерами, то они испытывают притяжение. Если же оно становится меньше, то начинает преобладать сила отталкивания. Этим объясняется сопротивляемость физических тел деформации (сжатию или растяжению).

Если тело сжимать, то расстояние между молекулами уменьшается, и силы отталкивания будут стараться вернуть молекулы в первоначальное состояние. При растяжении деформации тела буду мешать силы притяжения между молекулами.

Молекулы взаимодействуют не только внутри одного тела. Опустим в жидкость кусочек ткани. Мы увидим, что он намокнет. Это объясняется тем, что молекулы жидкости притягиваются к молекулам твёрдых тел сильнее, чем друг другу.

Каждое физическое вещество в зависимости от температур и давлений может быть в трёх состояниях: твёрдом, жидком или газообразном . Они называются агрегатными .

В газах расстояние между молекулами велико. Поэтому силы притяжения между ними настолько слабы, что они совершают хаотическое и практически свободное движение в пространстве. Направление своего движения они меняют, ударяясь друг о друга или о стенки сосудов.

В жидкостях молекулы расположены ближе одна к другой, чем в газе. Силы притяжения между ними больше. Молекулы в них движутся уже не свободно, а хаотично колеблются возле положения равновесия. Но они способны перескакивать в направлении действия внешней силы, меняясь местами друг с другом. Результатом этого является течение жидкости.

В твёрдых телах силы взаимодействия между молекулами очень велики из-за близкого расстояния между ними. Притяжение соседних молекул они преодолеть не могут, поэтому способны совершать только колебательные движения около положения равновесия.

Твёрдые тела сохраняют объём и форму. Жидкость формы не имеет, она всегда принимает форму сосуда, в котором находится в данный момент. Но её объём при этом сохраняется. По-другому ведут себя газообразные тела. Они легко меняют и форму, и объём, принимая форму того сосуда, в который их поместили, и занимая весь предоставленный им объём.

Однако существуют и такие тела, которые имеют структуру жидкости, обладают небольшой текучестью, но при этом способны сохранять форму. Такие тела называют аморфными .

Современная физика выделяет и четвёртое агрегатное состояние вещества - плазму .

Определение 1

Молекулярно-кинетическая теория – это учение о строении и свойствах вещества, основанное на представлении о существовании атомов и молекул, как наименьших частиц химических веществ.

Основные положения молекулярно-кинетической теории молекулы:

  1. Все вещества могут быть в жидком, твердом и газообразном состоянии. Они образуются из частиц, которые состоят из атомов. Элементарные молекулы могут иметь сложное строение, то есть иметь в своем составе несколько атомов. Молекулы и атомы – электрически нейтральные частицы, которые в определенных условиях приобретают дополнительный электрический заряд и переходят в положительные или отрицательные ионы.
  2. Атомы и молекулы движутся непрерывно.
  3. Частицы с электрической природой силы взаимодействуют друг с другом.

Основные положения мкт и их примеры были перечислены выше. Между частицами имеется малое гравитационное воздействие.

Рисунок 3 . 1 . 1 . Траектория Броуновской частицы.

Определение 2

Броуновское движение молекул и атомов подтверждает существование основных положений молекулярно кинетической теории и опытно обосновывает его. Данное тепловое движение частиц происходит с взвешенными в жидкости или газе молекулами.

Опытное обоснование основных положений молекулярно кинетической теории

В 1827 году Р. Броун открыл это движение, которое было обусловлено беспорядочными ударами и перемещениями молекул. Так как процесс происходил хаотично, то удары не могли уравновесить друг друга. Отсюда вывод, что скорость броуновской частицы не может быть постоянной, она постоянно меняется, а движение направления изображается в виде зигзага, показанное на рисунке 3 . 1 . 1 .

О броуновском движении говорил еще А. Эйнштейн в 1905 году. Его теория нашла подтверждение в опытах Ж. Перрена 1908 - 1911 гг.

Определение 3

Следствие из теории Эйнштейна : квадрат смещения < r 2 > броуновской частицы относительно начального положения, усредненное по многим броуновским частицам, пропорционален времени наблюдения t .

Выражение < r 2 > = D t объясняет диффузионный закон. По теории имеем, что D монотонно возрастает с увеличением температуры. Беспорядочное движение проглядывается при наличии диффузии.

Определение 4

Диффузия – это определение явления проникновения двух или нескольких соприкасающихся веществ друг в друга.

Данный процесс происходит быстро в неоднородном газе. Благодаря примерам диффузии с разными плотностями можно получить однородную смесь. При нахождении в одном сосуде кислорода O 2 и водорода H 2 с перегородкой то при ее удалении газы начинают смешиваться, образую опасную смесь. Процесс возможен при нахождении вверху водорода, а внизу кислорода.

Процессы взаимопроникновения также протекают в жидкостях, но намного медленней. Если растворить твердое тело, сахар, в воде, то получим однородный раствор, который является наглядным примером диффузионных процессов в жидкостях. При реальных условиях смешивание в жидкостях и в газах замаскировано быстрыми процессами перемешивания, к примеру, при возникновении конвекционных потоков.

Диффузия твердых тел отличается своей замедленной скоростью. Если поверхность взаимодействия металлов очистить, то можно увидеть, что с течением большого периода времени в каждом из них появятся атомы другого металла.

Определение 5

Диффузия и броуновское движение считаются родственными явлениями.

При взаимопроникновении частиц обоих веществ движение беспорядочно, то есть, наблюдается хаотичное тепловое перемещение молекул.

Силы, действующие между двумя молекулами, зависят от расстояния между ними. Молекулы имеют в своем составе положительные и отрицательные заряды. При больших расстояниях преобладают силы межмолекулярного притяжения, при небольших – силы отталкивания.

Рисунок 3 . 1 . 2 показывает зависимость результирующей силы F и потенциальной энергии E р взаимодействия между молекулами от расстояния между их центрами. На расстоянии r = r 0 сила взаимодействияобращается в ноль. Данное расстояние условно принимается в качестве диаметра молекулы. При r = r 0 потенциальная энергиявзаимодействия минимальная.

Определение 6

Чтобы отдалить две молекулы с расстоянием r 0 , следует сообщить E 0 , называемую энергией связи или глубиной потенциальной ямы.

Рисунок 3 . 1 . 2 . Сила взаимодействия F и потенциальная энергия взаимодействия E р двух молекул. F > 0 – сила отталкивания, F < 0 – сила притяжения.

Так как молекулы имеют малые размеры, то простые одноатомные могут быть не более 10 – 10 м. Сложные могут достигать размеров в сотни раз больше.

Определение 7

Беспорядочное хаотичное движение молекул называют тепловым движением.

При возрастании температуры увеличивается кинетическая энергия теплового движения. При пониженных температурах средняя кинетическая энергия, в большинстве случаев, оказывается меньше значения глубины потенциальной ямы E 0 . Данный случай показывает, что молекулы перетекают в жидкое или твердое вещество со средним расстоянием между ними r 0 . Если температура повышается, то средняя кинетическая энергия молекулы превышает E 0 , тогда они разлетаются и образуют газообразное вещество.

В твердых телах молекулы двигаются беспорядочно около фиксированных центров, то есть, положений равновесий. В пространстве может быть распределены нерегулярным образом (у аморфных тел) или с образованием упорядоченных объемных структур (кристаллических тел).

Агрегатные состояния веществ

Свобода теплового движения молекул просматривается в жидкостях, так как у них нет привязки к центрам, что позволяет производить перемещения по всему объему. Этим объясняется ее текучесть.

Определение 8

Если молекулы располагаются близко, то могут образовывать упорядоченные структуры с несколькими молекулами. Данное явление получило название ближнего порядка. Дальний порядок характерен для кристаллических тел.

Расстояние в газах между молекулами намного больше, поэтому действующие силы малы, а их движения идут вдоль прямой, ожидая очередного соударения. Значение 10 – 8 м является средним расстоянием между молекулами воздуха в нормальных условиях. Так как взаимодействие сил слабое, газы расширяются и могут заполнять любой объем сосуда. Когда их взаимодействие стремится к нулю, то говорят о представлении идеального газа.

Кинетическая модель идеального газа

В мкт количество вещества считается пропорциональным числу частиц.

Определение 9

Моль – это количество вещества, содержащее столько частиц (молекул), сколько содержится атомов в 0 , 012 к г углерода C 12 . Молекула углерода состоит из одного атома. Отсюда следует, что 1 моль вещества имеет одно и то же количество молекул. Данное число называется постоянной Авогадро N А: N А = 6 , 02 ċ 1023 м о л ь – 1 .

Формула определения количества вещества ν записывается отношением N числа частиц на постоянную Авогадро N A: ν = N N A .

Определение 10

Массой одного моля вещества называют молярную массу М. Она фиксируется в виде формулы M = N А ċ m 0 .

Выражение молярной массы производится в килограммах на моль (к г / м о л ь) .

Определение 11

Если вещество имеет в составе один атом, тогда имеет место говорить об атомной массе частицы. Единица атома – это 1 12 массы изотопа углерода C 12 , называется атомной единицей массы и записывается как (а. е. м. ): 1 а. е. м. = 1 , 66 ċ 10 – 27 к г.

Данная величина совпадает с массой протона и нейтрона.

Определение 12

Отношение массы атома или молекулы данного вещества к 1 12 массы атома углерода называют относительной массой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1.1. Термодинамические параметры. @

Мысленно выделенная макроскопическая система, рассматриваемая методами термодинамики, называется термодинамической системой. Все тела, не включенные в состав исследуемой системы, называются внешней средой. Состояние системы задается термодинамическими параметрами (или, по-другому, параметрами состояния) – совокупностью физических величин, характеризующих свойства системы. Обычно в качестве основных параметров выбирают давление р, температуру Т и удельный объем v. Различают два типа термодинамических параметров: экстенсивные и интенсивные. Экстенсивные параметры пропорциональны количеству вещества в системе, а интенсивные не зависят от количества вещества и массы системы. Интенсивными параметрами являются давление, температура, удельный объем и др., а экстенсивными – объем, энергия, энтропия.

Объем пропорционален количеству вещества в системе. При расчетах удобнее оперировать с удельным объемом v – это величина, равная отношению объема к массе системы, то есть объем единицы массы v = V/m = 1/ρ, где ρ – плотность вещества.

Давлением называется физическая величина где dF n - проекция силы на нормаль к поверхности площадью dS.

Температура – это физическая величина, характеризующая энергию макроскопической системы, находящейся в состоянии термодинамического равновесия. Температура системы является мерой интенсивности теплового движения и взаимодействия частиц, образующих систему. В этом состоит молекулярно-кинетический смысл температуры. В настоящее время существует две температурных шкалы – термодинамическая (градуированная в Кельвинах (К)) и Международная практическая (градуированная в градусах Цельсия (˚С)). 1˚С = 1К. Связь между термодинамической температурой Т и температурой по Международной практической шкале имеет вид: Т = t + 273,15˚С.

Всякое изменение состояния термодинамической системы, характеризующееся изменением ее параметров, называется термодинамическим процессом. Термодинамический процесс называется равновесным, если при этом система проходит ряд бесконечно близких равновесных состояний. Равновесное состояние – это такое состояние, в которое система приходит в конце концов при неизменных внешних условиях и дальше остается в этом состоянии сколь угодно долго. Реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается.

1. 2. Уравнение состояния идеального газа. @

В молекулярно-кинетической теории широко используется физическая модель идеального газа. Это вещество, находящееся в газообразном состоянии, для которого выполняются следующие условия:

1. Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда.

2. Между молекулами газа отсутствуют взаимодействия, кроме случайных столкновений.

3. Столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов, т.к. они при условиях, близких к нормальным (давление р 0 = 1,013∙10 5 Па, температура Т 0 =273,15К) ведут себя аналогично идеальному газу. Например, воздух при Т=230К и р= р 0 /50 по всем трем критериям подобен модели идеального газа.

Поведение идеальных газов описывается рядом законов.

Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нормальных условиях этот объем равен V M =22,4∙10 -3 м 3 /моль. В одном моле различных веществ содержится одно и то же число молекул, называемое числом Авогадро N A = 6,022∙10 23 моль -1 .

Закон Бойля – Мариотта: для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная pV = const при Т = const и m = const.

Закон Шарля: давление данной массы газа при постоянном объеме изменяется линейно с температурой р=р 0 (1+αt) при V = const и m = const.

Закон Гей-Люссака: объем данной массы газа при постоянном давлении изменяется линейно с температурой V = V 0 (1+αt) при р = const и m = const. В этих уравнениях t – температура по шкале Цельсия, р 0 и V 0 -давление и объем при 0°С, коэффициент α =1/273,15 К -1 .

Французский физик и инженер Б.Клапейрон и русский ученый Д.И.Менделеев, объединив закон Авогадро и законы идеальных газов Бойля – Мариотта, Шарля и Гей – Люссака, вывели уравнение состояния идеального газа – уравнение, связывающее вместе все три термодинамических параметра системы: для одного моля газа рV М = RT и для произвольной массы газа


Ее можно получить, если учесть, что k =R/N A = 1,38∙10 -23 Дж/К – это постоянная Больцмана, а n =N A /V М – это концентрация молекул газа.

Для расчета давления в смеси разных газов применяется закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов: р =р 1 + р 2 + … + p n . Парциальное давление – это такое давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре. Для расчета парциального давления идеального газа используют уравнение Менделеева– Клапейрона.

1. 3. Основное уравнение молекулярно – кинетической теории идеальных газов и его следствия. @

Рассмотрим одноатомный идеальный газ, занимающий некоторый объем V (рис.1.1.) Пусть число столкновений между молекулами пренебрежимо мало по сравнению с числом столкновений со стенками сосуда. Выделим на стенке сосуда некоторую элементарную площадку ΔS и вычислим давление, оказываемое на эту площадку. При каждом соударении молекула, массой m 0 , движущаяся перпендикулярно площадке со скоростью υ, передает ей импульс, который представляет собой разницу импульсов молекулы до и после соударения:

m 0 υ -(-m 0 υ) = 2m 0 υ.

За время Δt площадки ΔS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием ΔS и длиной υΔt. Это число молекул будет nυΔSΔt, где n – концентрация молекул. Необходимо, однако, учитывать, что реально молекулы движутся к площадке под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных координатных осей, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина – 1/6 – движется в одну сторону, половина – в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку ΔS будет nυΔSΔt /6. При столкновении с площадкой эти молекулы передадут ей импульс

В данном случае, когда сила, действующая на единицу площади, постоянна, для давления газа на стенку сосуда мы можем записать р = F/ΔS = ΔP/ΔSΔt = = nm 0 υ 2 /3. Молекулы в сосуде движутся с самыми различными скоростями υ 1, υ 2…. υ n , общее число их – N. Поэтому необходимо рассматривать среднюю квадратичную скорость, которая характеризует всю совокупность молекул:


Приведенное выше уравнение и есть основное уравнение молекулярно-кинетической теории идеальных газов. Поскольку m 0 ‹υ кв › 2 /2 – это средняя энергия поступательного движения молекулы ‹ ε пост ›, уравнение можно переписать в виде:
где E – суммарная кинетическая энергия поступательного движения всех молекул газа. Таким образом, давление равно двум третям энергии поступательного движения молекул, содержащихся в единице объема газа.
Найдем еще кинетическую энергию поступательного движения одной молекулы ‹ ε пост ›, учитывая

k =R/N A получим:


Отсюда следует, что средняя кинетическая энергия хаотического поступательного движения молекул идеального газа пропорциональна его абсолютной температуре и зависит только от нее, т.е. температура есть количественная мера энергии теплового движения молекул. При одинаковой температуре средние кинетические энергии молекул любого газа одинаковы. При Т=0К ‹ε пост › = 0 и поступательное движение молекул газа прекращается, однако анализ различных процессов показывает, что Т = 0К – недостижимая температура.

4. Учитывая, что ‹ε пост › = 3kT/2, р = 2n‹ ε пост ›/3, получим отсюда: р = nkT.

Мы получили уже знакомый нам вариант уравнения Менделеева-Клапейрона, выведенный в данном случае из понятий молекулярно-кинетической теории статистическим методом. Последнее уравнение означает, что при одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул.

1. 4. Барометрическая формула. @

При выводе основного уравнения молекулярно-кинетической теории предполагалось, что если на молекулы газа не действуют внешние силы, то молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение, с одной стороны, и тепловое движение молекул, с другой, приводят к некоторому стационарному состоянию газа, при котором концентрация молекул газа и его давление с высотой убывают. Выведем закон изменения давления газа с высотой, предполагая при этом, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно р, то на высоте h+dh оно равно р + dp (рис.1.2). При dh > 0, dр < 0, т.к. давление с высотой убывает. Разность давлений р и (р + dр) равна гидростатическому давлению столба газа авсd, заключенного в объеме цилиндра высотой dh и площадью с основанием равным единице. Это запишется в следующем виде: p- (p+dp) = gρdh, - dp = gρdh или dp = ‑gρdh, где ρ – плотность газа на высоте h. Воспользуемся уравнением состояния идеального газа рV = mRT/M и выразим плотность ρ=m/V=pM/RT. Подставим это выражение в формулу для dр:

dp = - pMgdh/RT или dp/p = - Mgdh/RT

Интегрирование данного уравнения дает следующий результат: Здесь С – константа и в данном случае удобно обозначить постоянную интегрирования через lnC. Потенцируя полученное выражение, находим, что


Данное выражение называется барометрической формулой. Она позволяет найти атмосферное давление в зависимости от высоты, или высоту, если известно давление.

Зависимость давления от высоты демонстрирует рисунок 1.3. Прибор для определения высоты над уровнем моря называется высотомером или альтиметром. Он представляет собой барометр, проградуированный в значениях высоты.

1. 5. Закон Больцмана о распределении частиц во внешнем потенциальном поле. @


здесь n – концентрация молекул на высоте h, n 0 – то же у поверхности Земли. Так как М = m 0 N A , где m 0 – масса одной молекулы, а R = k N A , то мы получим П = m 0 gh – это потенциальная энергия одной молекулы в поле тяготения. Поскольку kT~‹ε пост ›, то концентрация молекул на определенной высоте зависит от соотношения П и ‹ε пост ›

Полученное выражение называется распределением Больцмана для внешнего потенциального поля. Из него следует, что при постоянной температуре плотность газа (с которой связана концентрация) больше там, где меньше потенциальная энергия его молекул.

1. 6. Распределение Максвелла молекул идеального газа по скоростям. @

При выводе основного уравнения молекулярно-кинетической теории отмечалось, что молекулы имеют различные скорости. В результате многократных соударений скорость каждой молекулы меняется со временем по модулю и по направлению. Из-за хаотичности теплового движения молекул все направления являются равновероятными, а средняя квадратичная скорость остается постоянной. Мы можем записать


Постоянство ‹υ кв › объясняется тем, что в газе устанавливается стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Этот закон теоретически был выведен Д.К.Максвеллом. Он рассчитал функцию f(u), называемую функцией распределения молекул по скоростям. Если разбить диапазон всех возможных скоростей молекул на малые интервалы, равные du, то на каждый интервал скорости будет приходиться некоторое число молекул dN(u), имеющих скорость, заключенную в этом интервале (Рис.1.4.).

Функция f(v) определяет относительное число молекул, скорости которых лежат в интервале от u до u+ du. Это число - dN(u)/N= f(u)du. Применяя методы теории вероятностей, Максвелл нашел вид для функции f(u)

Данное выражение - это закон о распределении молекул идеального газа по скоростям. Конкретный вид функции зависит от рода газа, массы его молекул и температуры (рис.1.5). Функция f(u)=0 при u=0 и достигает максимума при некотором значении u в, а затем асимптотически стремится к нулю. Кривая несимметрична относительно максимума. Относительное число молекул dN(u)/N, скорости которых лежат в интервале du и равное f(u)du, находится как площадь заштрихованной полоски основанием dv и высотой f(u), показанной на рис.1.4. Вся площадь, ограниченная кривой f(u) и осью абсцисс равна единице, потому что, если просуммировать все доли молекул, имеющих всевозможные значения скорости, то получается единица. Как показано на рис.1.5, с ростом температуры кривая распределения смещается вправо, т.е. растет число быстрых молекул, но площадь под кривой остается постоянной, т.к. N = const.

Скорость u в, при которой функция f(u) достигает максимума, называется наиболее вероятной скоростью. Из условия равенства нулю первой производной функции f(v) ′ = 0 следует, что


Опыт, проведенный немецким физиком О.Штерном, экспериментально подтвердил справедливость распределения Максвелла (рисунок 1.5.). Прибор Штерна состоит из двух коаксиальных цилиндров. Вдоль оси внутреннего цилиндра со щелью проходит платиновая проволока, покрытая слоем серебра. Если пропустить по проволоке ток,она нагревается и серебро испаряется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилиндра. Если прибор будет вращаться, то атомы серебра осядут не против щели, а сместятся от точки О на некоторое расстояние. Исследование количество осадка позволяет оценить распределение молекул по скоростям. Оказалось, что распределение соответствует максвелловскому.

ОПРЕДЕЛЕНИЕ

Уравнение, положенное в основу молекулярно-кинетической теории, связывает макроскопические величины, описывающие (например, давление) с параметрами его молекул (их и скоростями). Это уравнение имеет вид:

Здесь – масса газовой молекулы, – концентрация таких частичек в единице объема, – усреднённый квадрат скорости молекул.

Основное уравнение МКТ наглядно объясняет, каким образом идеальный газ создает на окружающие его стенки сосуда. Молекулы все время ударяются о стенку, воздействуя на нее с некоторой силой F. Тут следует вспомнить : когда молекула ударяется о предмет, на нее действует сила -F, вследствие чего молекула «отбивается» от стенки. При этом мы считаем соударения молекул со стенкой абсолютно упругими: механическая энергия молекул и стенки полностью сохраняется, не переходя во . Это значит, что при соударениях изменяются только молекул, а нагревания молекул и стенки не происходит.

Зная, что соударение со стенкой было упругим, мы можем предсказать, как изменится скорость молекулы после столкновения. Модуль скорости останется таким же, как и до соударения, а направление движения изменится на противоположное относительно оси Ох (считаем, что Ох – это та ось, которая перпендикулярна стенке).

Молекул газа очень много, движутся они хаотично и о стенку ударяются часто. Найдя геометрическую сумму сил, с которой каждая молекула воздействует на стенку, мы узнаём силу давления газа. Чтобы усреднить скорости молекул, необходимо использовать статистические методы. Именно поэтому в основном уравнении МКТ используют усредненный квадрат скорости молекул , а не квадрат усредненной скорости : усредненная скорость хаотично движущихся молекул равна нулю, и в этом случае никакого давления мы бы не получили.

Теперь ясен физический смысл уравнения: чем больше молекул содержится в объеме, чем они тяжелее и чем быстрее движутся – тем большее давление они создают на стенки сосуда.

Основное уравнение МКТ для модели идеального газа

Следует заметить, что основное уравнение МКТ выводилось для модели идеального газа с соответствующими допущениями:

  1. Соударения молекул с окружающими объектами абсолютно упругие. Для реальных же газов это не совсем так; часть молекул всё-таки переходит во внутреннюю энергию молекул и стенки.
  2. Силами взаимодействия между молекулами можно пренебречь. Если же реальный газ находится при высоком давлении и сравнительно низкой температуре, эти силы становятся весьма существенными.
  3. Молекулы считаем материальными точками, пренебрегая их размером. Однако размеры молекул реальных газов влияют на расстояние между самими молекулами и стенкой.
  4. И, наконец, основное уравнение МКТ рассматривает однородный газ – а в действительности мы часто имеем дело со смесями газов. Как, например, .

Однако для разреженных газов это уравнение дает очень точные результаты. Кроме того, многие реальные газы в условиях комнатной температуры и при давлении, близком к атмосферному, весьма напоминают по свойствам идеальный газ.

Как известно из законов , кинетическая энергия любого тела или частицы . Заменив произведение массы каждой из частичек и квадрата их скорости в записанном нами уравнении, мы можем представить его в виде:

Также кинетическая энергия газовых молекул выражается формулой , что нередко используется в задачах. Здесь k – это постоянная Больцмана, устанавливающая связь между температурой и энергией. k=1,38 10 -23 Дж/К.

Основное уравнение МКТ лежит в основе термодинамики. Также оно используется на практике в космонавтике, криогенике и нейтронной физике.

Примеры решения задач

ПРИМЕР 1

Задание Определить скорость движения частиц воздуха в нормальных условиях.
Решение Используем основное уравнение МКТ, считая воздух однородным газом. Так как воздух на самом деле – это смесь газов, то и решение задачи не будет абсолютно точным.

Давление газа:

Можем заметить, что произведение – это газа, так как n – концентрация молекул воздуха (величина, обратная объему), а m – масса молекулы.

Тогда предыдущее уравнение примет вид:

В нормальных условиях давление равно 10 5 Па, плотность воздуха 1,29кг/м 3 – эти данные можно взять из справочной литературы.

Из предыдущего выражения получим молекул воздуха:

Ответ м/с

ПРИМЕР 2

Задание Определить концентрацию молекул однородного газа при температуре 300 К и 1 МПа. Газ считать идеальным.
Решение Решение задачи начнём с основного уравнения МКТ: , как и любых материальных частичек: . Тогда наша расчетная формула примет несколько другой вид: