Литература         23.01.2024   

Основные положения теории растворения менделеева. Химическая теория растворов Д. И. Менделеева Тепловой эффект процесса растворения. Кислоты и основания

Раствор - это гомогенная система, содержащая не менее двух веществ. Существуют растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же агрегатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке, - растворенным веществом.

В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы.

Газообразный раствор - это прежде всего воздух, а также другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жидкостей и твердых тел с жидкостями.

Твердые растворы представлены сплавами, а также стеклами.

На практике большое значение имеют жидкие растворы (смеси жидкостей, где растворитель - жидкость). Из неорганических веществ самый распространенный растворитель - вода. Из органических веществ в качестве растворителей применяют метанол, этанол, диэтило- вый эфир, ацетон, бензол, четыреххлористый углерод и другие.

Под действием хаотически движущихся частиц растворителя частицы (ионы или молекулы) растворяемого вещества переходят в раствор, образуя благодаря беспорядочному движению частиц качественно новую однородную (гомогенную ) систему. Растворимость в разных растворителях - характеристическое свойство вещества. Одни вещества могут смешиваться друг с другом в любых соотношениях (вода и спирт), другие имеют ограниченную растворимость (хлорид натрия и вода).

Рассмотрим растворение твердого вещества в жидкости. В рамках молекулярно-кинетической теории при внесении твердой поваренной соли в растворитель (например, в воду) ионы Na + и С1“, находящиеся на поверхности, взаимодействуя с растворителем (с молекулами и другими частицами растворителя), могут отрываться и переходить в раствор. После удаления поверхностного слоя процесс распространяется на следующие слои твердого вещества. Так постепенно частицы переходят из кристалла в раствор. Разрушение ионных кристаллов NaCl в воде, состоящей из полярных молекул, показано на рисунке 6.1.

Рис. 6.1. Разрушение кристаллической решетки NaCl в воде. а - атака молекул растворителя; б - ионы в растворе

Частицы, перешедшие в раствор, распределяются благодаря диффузии по всему объему растворителя. В то же время по мере увеличения концентрации частицы (ионы, молекулы), находящиеся в непрерывном движении, при столкновении с твердой поверхностью еще не растворившегося твердого вещества могут задерживаться на ней, т. е. растворение всегда сопровождается обратным процессом - кристаллизацией. Может наступить такой момент, когда одновременно из раствора выделяется столько же частиц (ионов, молекул), сколько их переходит в раствор, т. е. наступает равновесие.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т. е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно дополнительно растворить некоторое количество данного вещества, - ненасыщенным.

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Концентрация вещества в насыщенном растворе - величина постоянная при данных условиях (температура, растворитель), она характеризует растворимость вещества ; подробнее см. § 6.4.

Раствор, в котором содержание растворенного вещества больше, чем в насыщенном растворе при данных условиях, называют пересыщенным. Это неустойчивые, неравновесные системы, которые самопроизвольно переходят в равновесное состояние, и при выделении в твердом виде избытка растворенного вещества раствор становится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы - растворы с небольшим содержанием растворенного вещества; концентрированные растворы - растворы с высоким содержанием растворенного вещества. Необходимо подчеркнуть, что понятия разбавленный и концентрированный растворы относительные и основаны на качественной оценке соотношения количеств растворенного вещества и растворителя в растворе (иногда раствор называют крепким и слабым в том же смысле). Можно сказать, что эти определения возникли из практической необходимости. Так, говорят, что раствор серной кислоты H 2 S0 4 концентрированный (крепкий) или разбавленный (слабый), но, при какой концентрации раствор серной кислоты нужно считать концентрированным, а при какой разбавленным, точно не определено.

При сравнении растворимости различных веществ видно, что в случае малорастворимых веществ насыщенные растворы разбавленные, в случае хорошо растворимых веществ их ненасыщенные растворы могут быть довольно концентрированными.

Например, при 20 °С в 100 г воды растворяется 0,00013 г карбоната кальция СаС0 3 . Раствор СаС0 3 при этих условиях насыщенный, но весьма разбавленный (его концентрация очень мала). Но вот пример. Раствор 30 г поваренной соли в 100 г воды при 20 °С ненасыщенный, но концентрированный (растворимость NaCl при 20 °С 35,8 г в 100 г воды).

В заключение отметим, что здесь и далее (кроме § 6.8) речь пойдет об истинных растворах. Частицы, из которых состоят такие растворы, настолько малы, что их нельзя увидеть; это атомы, молекулы или ионы, их диаметр обычно не превышает 5 нм (5 10~ 9 м).

И последнее о классификации растворов. В зависимости от того, электронейтральные или заряженные частицы присутствуют в растворе, растворы могут быть молекулярными (это растворы неэлектролитов) и ионными {растворы электролитов). Характерное свойство растворов электролитов - электропроводность (они проводят электрический ток).

Закон электронейтральности

При диссоциации молекул, число положительных и отрицательных ионов определяется стехиометрическими индексами в формуле молекулы. Электролиты, в которых ионы обладают одинаковым зарядом катиона и аниона, например, 1-1-электролит KCl или 2-2-электролит , распадаются на два иона - называются симметричные или симметричными. Электролиты, в которых ионы обладают неодинаковым зарядом катиона и аниона, например, 1-2-электролит или 3-1–электролит , называются несимметричными . Для любого типа электролита в элементарном объеме сумма зарядов анионов и катионов всегда одинакова (закон электронейтральности) :

Где число частиц в растворе.

Степень диссоциации, изотонический коэффициент

Количественно диссоциация характеризуется степенью диссоциации

Величина может изменяться от нуля (диссоциация отсутствует) до единицы (в растворе присутствуют только ионы). У сильных электролитов , у слабых - у неэлектролитов

Изотонический коэффициент Вант-Гоффа i характеризует во сколько раз изменилось общее число частиц в растворе в результате диссоциации:

где числитель - общее число вещества в растворе: распавшихся на ионы и оставшихся непродиссоциированными а знаменатель - число молекул, введенных в раствор.

Для сильных электролитов изотонический коэффициент теоретически должен быть равен числу ионов, на которые распадается молекула при диссоциации: при (например, для и v =2, для и v =3, для v =4 и т.д.). Однако обычно экспериментальные величины i <v . Причиной этого является электростатическое взаимодействие между ионами, величина которого характеризуется осмотическим коэффициентом



g I(g<1): i =v g. Для неэлектролитов i =1.

Закон разбавления Оствальда

Степень диссоциации зависит от концентрации слабого электролита в

растворе.

Рассмотрим в качестве примера реакцию:

Если исходная концентрация уксусной кислоты была равна c, то концентрация образовавшихся в результате диссоциации ионов

,

а концентрация непродиссоциировавшей уксусной кислоты

Тогда, с учетом уравнения (32.2):

(32.3)

а если то и,

Выражение (32.3) носит название закона разбавления Оствальда. Как видно из этого уравнения, при разведении степень диссоциации возрастает, достигая в области бесконечных разбавлений значения, близкого к единице, т. е уменьшается вероятность ассоциации ионов в молекулу из-за уменьшения степени вероятности их столкновения.

Константа гидролиза

Если растворитель диссоциирует на ионы, то их взаимодействие с ионами растворенного вещества приводит к возникновению новых ионных равновесий. Обменные реакции между растворенным веществом и растворителем называется сольволизом (для водных растворов - гидролизом).

Гидролизу подвергаются все вещества, образованные с участием слабых электролитов. Например, при гидролизе соли слабой кислоты и сильного основания устанавливается равновесие:

(щелочная реакция)

(кислая реакция)

Наиболее сильно подвержены гидролизу соли, образованные слабой кислотой и слабым основанием

Равновесие реакции гидролиза может быть количественно охарактеризовано константой гидролиза . Например, константа равновесия реакции гидролиза ацетата натрия имеет вид:

Поскольку то и Это произведение носит название константы гидролиза . Умножая числитель и знаменатель дроби на активность ионов водорода и произведя перестановки, получим



Как следует из приведенного выражения, константа гидролиза обратно пропорциональна константе диссоциации слабого электролита, участвующего в образовании соли (если в образовании соли участвуют два слабых электролита, то обратно пропорциональна произведению их констант диссоциации).

Степень гидролиза является величиной аналогичной степени диссоциации.

Уравнение, связывающую константу гидролиза со степенью гидролиза, по форме аналогично уравнению (32.3):

где h - число частиц введенных в раствор.

При повышении температуры степень диссоциации воды сильно увеличивается, тогда как у большинства других электролитов она изменяется незначительно. Вследствие этого степень гидролиза водных растворов при повышении температуры увеличивается.

Буферные растворы

В природе и практической деятельности многие реакции протекают при определенном значении pH, которое должно быть постоянным и не зависеть от разведения, изменения состава раствора, добавления кислоты или щелочи и т.д. Такими свойствами обладают буферные растворы, содержащие слабую кислоту и соль, образованную этой кислотой и сильным основанием (например, ацетатный буфер ), или слабое основание и соль, образованную сильной кислотой и этим основанием (например, аммиачный буфер ). Эти растворы обладают определенными свойствами, которые проиллюстрируем на примере ацетатного буфера.

Присутствие ацетата натрия (сильного электролита), который полностью диссоциирован, настолько увеличивает концентрацию ионов CH COO , что, в соответствии с принципом Ле-Шателье, диссоциация уксусной кислоты полностью подавляется:

В результате можно считать, что в буферном растворе активность анионов равна активности анионов соли , а активность кислоты равна ее концентрации . Подставляя эти величины в выражение константы диссоциации, логарифмируя и вводя обозначение получимследующие формулы:

Эти формулы показывают, что pH буферного раствора зависит от константы диссоциации кислоты и соотношения аналитических концентраций соли и кислоты. При разбавлении буферного раствора это соотношение не меняется, а незначительное повышение pH обусловлено изменением коэффициента активности соли. Добавление сильной кислоты тоже сравнительно слабо отражается на изменении pH. При добавлении сильной кислоты к буферному раствору идет реакция с образованием недиссоциированной уксусной кислоты:

А при добавлении сильного основания- реакция нейтрализации:

Ионы в первом случае, и ионы во втором, связываются в малодиссоциированные молекулы ( и ), в результате чего в pH раствора практически не изменяется.

Способность буферных растворов противостоять изменению pH количественно выражается величиной, называемой буферной емкостью. Буферная емкость - это количество кислоты или щелочи которое нужно добавить к раство­ру, чтобы изменить его pH на единицу.

Числа переноса

Каждый вид ионов переносит определенное количество электричества, зависящее от заряда и концентрации ионов, а также скорости их движения в электрическом поле. Отношение количества электричества перенесенного ионами вида, к общему количеству электричества перенесенному всеми ионами, находящимися в растворе, называют числом переноса ионов:

В соответствии с этим определением сумма чисел переноса всех видов ионов в растворе равна единице.

Для симметричного электролита KA , диссоциирующего на два вида ионов и , количество электричества, перенесенное катионами и анионами, составит соответственно:

На степень гидратации ионов, величины их абсолютной скорости и числа переноса влияют концентрация раствора и температура. С ростом концентрации примерно до 0,1 моль/л для большинства электролитов числа переноса ионов изменяются незначительно; в области более высоких концентраций это изменение заметнее. При повышении температуры размеры гидратных оболочек слабо гидратированных ионов уменьшаются менее резко, чем сильно гидрати-рованных (а иногда даже увеличиваются). В результате величины абсолютной подвижности катионов и анионов сближаются, и их числа переноса стремятся к 0,5.


Диэлектрическая проницаемость - величина, показывающая, во сколько раз сила взаимодействия двух зарядов в изучаемой среде меньше, чем в вакууме.

Зарядом иона z называют отношение заряда иона, выраженного в кулонах, к заряду электрона Кл; заряд иона, в кулонах, соответственно, равен произведению ez.

Далее во всех случаях, где это особо не оговаривается, с целью упрощения мы будем говорить о коэффициенте активности и активности электролитов, понимая, что речь идет о среднем коэффициенте активности и средней активности. В дальнейшем пренебрегается и различием между тремя способами выражения активности (коэффициента активности), что вполне допустимо для разбавленных растворов.

Используют также определение – радиус (толщина) ионной атмосферы, дебаевский радиус.

Обозначение единицы электрической проводимости сименс, как и всех других единиц, происходящих от имен собственных, пишется с прописной буквы (См). Это обозначение нельзя путать с обозначением единицы измерения длины – сантиметр (см).

Физическая и химическая теории растворов.

Растворы являются сложными системами, в которых имеют место различные виды взаимодействия между частицами (Ван-дер-Ваальсовы, электростатические и т.д.).

Существуют две точки зрения на природу растворения и растворов. Согласно физической точке зрения, растворение является чисто физическим процессом (разрушение кристаллической решетки при растворении твердых тел). Растворы при этом рассматриваются как молекулярные смеси нескольких веществ, не взаимодействующих химически. Противоположные представления были развиты Д. И. Менделеевым, который считал растворение химическим процессом, а растворы рассматривал как непрочные соединения компонентов раствора, находящихся в состоянии частичной диссоциации и отличающихся от обычных соединений переменным составом.

В настоящее время используются представления обеих теорий и доминирующая роль физической или химической компонент, в процессе растворения, определяется свойствами растворителя и растворенного вещества (системы).

1.2 ОСНОВНЫЕ НАПРАВЛЕНИЯ В РАЗВИТИИ ТЕОРИИ РАСТВОРОВ

Физическая теория растворов. Развитие взглядов на природу растворов с древних времен было связано с общим ходом развития науки и производства, а также с философскими представлениями о причинах химического сродства между различными веществами. В 17 и в первой половине 18в. широкое распространение в области естественных наук и философии получила корпускулярная теория растворов. В этой теории процесс растворения рассматривался как механический процесс, когда корпускулы растворителя входят в поры тел и отрывают частицы растворяемого вещества, которые занимают поры растворителя образуя единый раствор. Такие представления первоначально удовлетворительно объяснили тот факт, что данный растворитель может растворять не все вещества, а только некоторые.

В начале 19в. создаются предпосылки для развития физической теории растворов, которая явилась обобщением ряда исследований. Физическая теория растворов, возникшая главным образом на основе работ Я. Вант-Гоффа, С.Аррениуса и В. Оствальда, опиралась на экспериментальное изучение свойств разбавленных растворов (осмотическое давление, повышение температуры кипения, понижение температуры замерзания раствора, понижение давления пара над раствором), зависящие главным образом от концентрации растворенного вещества, а не от его природы. Осмос -это самопроизвольное проникновение растворителя в раствор, отдаленный от него полупроницаемой перегородкой, через которую может поступать растворитель, не может, проходит растворенное вещество.

Раствор и растворитель, разделенные полупроницаемой перегородкой можно рассматривать как две фазы. Равновесие растворителя по обе стороны от перегородки выражается равенством его химического потенциала в растворе (к которому приложено дополнительное давление)и химического потенциала чистого растворителя .

Количественные законы (Вант-Гоффа, Рауля) были интерпретированы в продолжении,что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступление от этих законов,наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации С.Аррениуса.

Аналогия между сильно разбавленными растворами и газами многим ученым показалась столь убедительной,что они стали рассматривать процесс растворения как физический акт. С точки зрения этих ученых растворитель является только средой, в которую могут диффундировать частицы растворенного вещества. Простота представлений физической теории растворов и успешное применение ее для объяснения многих свойств растворов обеспечили быстрый успех этой теории .

Химическая теория растворов. Д.И. Менделеев и его последователи рассматривали процесс образования раствора как разновидность химического процесса, для которого характерно взаимодействие между частицами компонентов. Д.И. Менделеев рассматривал растворы как системы,образованные частицами растворителя,растворенного вещества и неустойчивых химических соединений,которые образуются между ними и находятся в состояние частичной диссоциации. Д.И. Менделеев отмечал, что процессы,протекающие в растворе,имеют динамический характер и на необходимость использования всей суммы физических и химических сведений о свойствах частиц, образующих раствор,подчеркивал, что все компоненты раствора равноправны и без учета свойств и состояний каждого из них нельзя дать полной характеристики системы в целом. Большое значение ученый придавал изучению свойств растворов как функции температуры,давления,концентрации; он впервые высказал мысль о необходимости изучения свойств растворов в смешанных растворителях. Развивая учение Д.И. Менделеева, сторонники химического взгляда на природу растворов указали, что частицы растворенного вещества движутся не в пустоте, а в пространстве, занятом частицами растворителя, с которыми они взаимодействуют, образуя сложные,различные по устойчивости соединения. Развитием теории Д.И.Менделеева является полиэдрическая теория образования растворов, согласно которой в жидкости из однородных и разнородных молекул создаются элементарные пространственные группы-полиэдры. Однако химическая теория не может объяснить механизм образования идеальных растворов, отклонения в свойствах реальных растворов от свойств идеальных растворов.

Развитие химической теории растворов шло в нескольких направлениях объединенных единой идеей о взаимодействии растворителя с растворенным веществом. Эти исследования касались нахождения определенных соединений в растворе на основе изучения диаграмм свойство- состав, изучения давления пара над растворами, распределения веществ между двумя растворителями, изучения термохимии растворов. Работы по определению соединений в растворах были связаны с большими трудностями, так как прямым опытом было невозможно доказать существование сложных соединений (гидратов) в водных растворах, поскольку они находятся в состояние диссоциации, и попытки выделить их из растворов в неразложенном виде заканчивались неудачей. Большое значение для подтверждения химической теории растворов имели термодинамические исследования. На многих системах было показано, что при образовании раствора наблюдается охлаждение или нагревание системы,что объясняли химическими взаимодействием между компонентами. Химическую природу процесса растворения подтверждали и исследования давления пара над раствором, и изучение распределения веществ между двумя растворителями.

К началу 20 в. накопился обширный экспериментальный материал, показывающий, что растворы являются сложными системами, в которых наблюдается явление ассоциации, диссоциации, комплексообразования, и при их изучении необходимо учитывать все виды взаимодействия между частицами, имеющимися и образующимися в растворе.

В связи с большим разнообразием растворов для объяснения их природы и свойств используются представления и физической и химической теории растворов .

Адсорбция в химии

Концепции современного естествознания (химическая составляющая)

Основные законы химии и стехиометрические расчеты

Количественное (по массе или объему) изучение многих реакций и объяснение результатов эксперимента приводит к стехиометрическим законам. Основной физической величиной в химии является количество вещества. С 1 января 1963 г...

Основные физико-химические закономерности получения пленок из растворов полимеров

Полимеры в растворах, особенно концентрированных, образуют структуры, форма и размер которых зависят как от характера взаимодействия полимера с растворителем, так и от условий, в которых находится раствор (температура...

Поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060

Проводимые на кафедре "Химическая технология лаков, красок и лакокрасочных покрытий" исследования, цель которых поиск новых эффективных малотоксичных противокоррозионных пигментов...

Получение биогаза

Достаточно высокое содержание метана в биогазе, а следовательно, и высокая теплота сгорания, предоставляют широкие возможности применения биогаза...

Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах

В химической отрасли водород главным образом используется для синтеза метанола и аммиака. Остальная доля водорода приходящаяся на эту отрасль, используется в прочих химических производствах: например...

Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах

Наиболее крупнотоннажными процессам использования монооксида углерода является гидроформирование олефинов, карбонилирование метанола с получением уксусной кислоты, синтез непредельных и разветвленных карбоновых кислот...

Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах

Диметиловый эфир в настоящее время используется главным образом как безвредный для окружающей среды наполнитель аэрозольных баллончиков...

Роль Менеделеева в развитии мировой науки

Д.И. Менделеев писал, что есть четыре предмета, составивших его имя: три научных открытия (периодический закон, химическая теория растворов и изучение упругости газов), а также «Основы химии» - учебник-монография, равного которому, пожалуй...

Теории и термодинамика образования растворов полимеров

При рассмотрении теорий не будет делаться акцент на математических выкладках, а лишь остановлюсь на основных моментах: основные допущения и параметры, вид ключевых уравнений, достоинства и недостатки теорий. Из всего массива...

Физико-химические основы хроматографического процесса

В задачу теории хроматографии входит установление законов движения и размытия хроматографических зон. Основными факторами, положенными в основу классификации теорий хроматографии...

Характеристика процесса адсорбции

Единой теории, которая достаточно корректно описывала бы все виды адсорбции на разных поверхностях раздела фаз, не имеется; рассмотрим поэтому некоторые наиболее распространенные теории адсорбции...

Химия комплексных соединений элементов подгруппы хрома

Подобно тому как развитие химии было задержано флогистонной теорией, а развитие органической химии - представлениями о «жизненной силе»...

РАСТВОРЫ

Общие сведения

Растворы - компонентами.

«растворитель» и «растворенное вещество» полярные неполярные



гидрофильные (притягивающие воду) и гидрофобные дифильными

Теории растворов

Физическая теория растворов.

идеальными

Химическая теория растворов.

Химическая, или сольватная, теория растворов была предложена в 1887 г. Д.И. Менделеевым, который установил, что в реальном растворе присутствуют не только индивидуальные компоненты, но и продукты их взаимодействия. Исследования водных растворов серной кислоты и этилового спирта, проведенные Д.И. Менделеевым, легли в основу теории, суть которой заключается в том, что между частицами растворенного вещества и молекулами растворителя происходят взаимодействия, в результате которых образуются нестойкие соединения переменного состава, называемые сольватами или гидратами , если растворителем является вода. Главную роль в образовании сольватов играют непрочные межмолекулярные силы, в частности, водородная связь.

В этой связи следует принять следующую трактовку понятия «раствор»:

Раствором называется гомогенная система переменного состава, состоящая из двух и более компонентов и продуктов их взаимодействия.

Из данного определения следует, что растворы занимают промежуточное положение между химическими соединениями и смесями. С одной стороны, растворы однородны, что позволяет рассматривать их как химические соединения. С другой стороны, в растворах нет строгого стехиометрического соотношения между компонентами. Кроме того, растворы можно разделить на составные части (например, при упаривании раствора NaCl можно выделить соль в индивидуальном виде).

Связь между различными способами

Кислоты и основания

Несмотря на то, что понятия «кислота» и «основание» широко используются для описания химических процессов, единого подхода к классификации веществ с точки зрения отнесения их к кислотам или основаниям нет. Существующие в настоящее время теории (ионная теория С. Аррениуса , протолитическая теория И. Бренстеда и Т. Лоури и электронная теория Г. Льюиса ) имеют определенные ограничения и, таким образом, применимы лишь в частных случаях. Остановимся подробнее на каждой из этих теорий.

Теория Аррениуса.

В ионной теории Аррениуса понятия «кислота» и «основание» тесно связаны с процессом электролитической диссоциации:

Кислотой является электролит, диссоциирующий в растворах с образованием ионов Н + ;

Основаниемявляется электролит, диссоциирующий в растворах с образованием ионовОН - ;

Амфолитом (амфотерным электролитом) является электролит, диссоциирующий в растворах с образованием как ионовН + , так и ионов ОН - .

Например:

НА ⇄ Н + + А - nH + +MeO n n - ⇄Ме(ОН) n ⇄Ме n + +nОН -

В соответствии с ионной теорией кислотами могут быть как нейтральные молекулы, так и ионы, например:

HF ⇄ H + + F -

H 2 PO 4 - ⇄ H + + HPO 4 2 -

NH 4 + ⇄H + +NH 3

Аналогичные примеры можно привести и для оснований:

КОН К + + ОН -

- ⇄Al(OH) 3 + ОН -

+ ⇄Fe 2+ + ОН -

К амфолитам относят гидроксиды цинка, алюминия, хрома и некоторые другие, а также аминокислоты, белки, нуклеиновые кислоты.

В целом, кислотно-основное взаимодействие в растворе сводится к реакции нейтрализации:

H + + ОН - H 2 O

Однако, ряд экспериментальных данных показывает ограниченность ионной теории. Так, аммиак, органические амины, оксиды металлов типа Na 2 O, СаО, анионы слабых кислот и т.д. в отсутствии воды проявляют свойства типичных оснований, хотя не имеют в своем составе гидроксид-ионов.

С другой стороны, многие оксиды (SO 2 , SO 3 , Р 2 О 5 и т.д.), галогениды, галогенангидриды кислот, не имея в своем составе ионов водорода, даже в отсутствии воды проявляют кислотные свойства, т.е. нейтрализуют основания.

Кроме того, поведение электролита в водном растворе и в неводной среде может быть противоположным.

Так, CH 3 COOH в воде является слабой кислотой:

CH 3 COOH⇄CH 3 COO - +H + ,

а в жидком фтороводороде проявляет свойства основания:

HF + CH 3 COOH⇄CH 3 COOH 2 + +F -

Исследования подобных типов реакций и в особенности реакций, протекающих в неводных растворителях, привели к созданию более общих теорий кислот и оснований.

Теория Бренстеда и Лоури.

Дальнейшим развитием теории кислот и оснований явилась предложенная И. Бренстедом и Т. Лоурипротолитическая (протонная) теория. В соответствии с этой теорией:

Кислотой называют любое вещество, молекулы (или ионы) которого способны отдавать протон, т.е. быть донором протона;

Основанием называют любое вещество, молекулы (или ионы) которого способны присоединять протон, т.е. быть акцептором протона;

Таким образом, понятие основания значительно расширяется, что подтверждается следующими реакциями:

ОН - + Н + Н 2 О

NH 3 +H + NH 4 +

H 2 N-NH 3 + +H + H 3 N + -NH 3 +

По теории И. Бренстеда и Т. Лоури кислота и основание составляют сопряженную пару и связаны равновесием:

КИСЛОТА ⇄ ПРОТОН + ОСНОВАНИЕ

Поскольку реакция переноса протона (протолитическая реакция) обратима, причем в обратном процессе тоже передается протон, то продукты реакции являются друг по отношению к другу кислотой и основанием. Это можно записать в виде равновесного процесса:

НА + В ⇄ ВН + + А - ,

где НА – кислота, В – основание, ВН + – кислота, сопряженная с основанием В, А - – основание, сопряженное с кислотой НА.

Примеры.

1) в реакции:

HCl+OH - ⇄Cl - +H 2 O,

HCl и H 2 O – кислоты, Cl - и OH - – соответствующие сопряженные с ними основания;

2) в реакции:

HSO 4 - +H 2 O⇄SO 4 2 - +H 3 O + ,

HSO 4 - и H 3 O + – кислоты, SO 4 2 - и H 2 O – основания;

3) в реакции:

NH 4 + +NH 2 - ⇄ 2NH 3 ,

NH 4 + – кислота, NH 2 - – основание, а NH 3 выступает в роли как кислоты (одна молекула), так и основания (другая молекула), т.е. демонстрирует признаки амфотерности – способности проявлять свойства кислоты и основания.

Такой способностью обладает и вода:

2Н 2 О ⇄ Н 3 О + + ОН -

Здесь одна молекула Н 2 О присоединяет протон (основание), образуя сопряженную кислоту – ион гидроксония Н 3 О + , другая отдает протон (кислота), образуя сопряженное основание ОН - . Этот процесс называется автопротолизом .

Из приведенных примеров видно, что в отличие от представлений Аррениуса, в теории Бренстеда и Лоури реакции кислот с основаниями не приводят к взаимной нейтрализации, а сопровождаются образованием новых кислот и оснований.

Необходимо также отметить, что протолитическая теория рассматривает понятия «кислота» и «основание» не как свойство, но как функцию, которую выполняет рассматриваемое соединение в протолитической реакции. Одно и то же соединение может в одних условиях реагировать как кислота, в других – как основание. Так, в водном растворе СН 3 СООН проявляет свойства кислоты, а в 100%-й H 2 SO 4 – основания.

Однако, несмотря на свои достоинства, протолитическая теория, как и теория Аррениуса, не применима к веществам, не содержащим атомов водорода, но, в тоже время, проявляющим функцию кислоты: галогенидам бора, алюминия, кремния, олова.

Теория Льюиса.

Иным подходом к классификации веществ с точки зрения отнесения их к кислотам и основаниям явилась электронная теория Льюиса. В рамках электронной теории:

кислотой называют частицу (молекулу или ион), способную присоединять электронную пару (акцептор электронов);

основанием называют частицу (молекулу или ион), способную отдавать электронную пару (донор электронов).

Согласно представлениям Льюиса, кислота и основание взаимодействуют друг с другом с образованием донорно-акцепторной связи. В результате присоединения пары электронов у атома с электронным дефицитом возникает завершенная электронная конфигурация - октет электронов. Например:

Аналогичным образом можно представить и реакцию между нейтральными молекулами:

Реакция нейтрализации в терминах теории Льюиса рассматривается как присоединение электронной пары гидроксид-иона к иону водорода, предоставляющему для размещения этой пары свободную орбиталь:

Таким образом, сам протон, легко присоединяющий электронную пару, с точки зрения теории Льюиса, выполняет функцию кислоты. В этой связи, кислоты по Бренстеду могут рассматриваться как продукты реакции между льюисовскими кислотами и основаниями. Так, HCl является продуктом нейтрализации кислоты H + основанием Cl - , а ион H 3 O + образуется в результате нейтрализации кислоты H + основанием H 2 O.

Реакции между кислотами и основаниями Льюиса также иллюстрируют следующие примеры:

К основаниям Льюиса также относят галогенид-ионы, аммиак, алифатические и ароматические амины, кислородсодержащие органические соединения типа R 2 CO, (где R- органический радикал).

К кислотам Льюиса относят галогениды бора, алюминия, кремния, олова и других элементов.

Очевидно, что в теории Льюиса понятие «кислота» включает в себя более широкий круг химических соединений. Это объясняется тем, что по Льюису отнесение вещества к классу кислот обусловлено исключительно строением его молекулы, определяющим электронно-акцепторные свойства, и не обязательно связано с наличием атомов водорода. Льюисовские кислоты, не содержащие атомов водорода, называют апротонными .

РАСТВОРЫ

Общие сведения

Растворы - это гомогенные системы переменного состава, состоящие из двух и более веществ, называемых компонентами. По агрегатному состоянию растворы могут быть газообразными (воздух), жидкими (кровь, лимфа) и твердыми (сплавы). В медицине наибольшее значение имеют жидкие растворы, которые играют исключительную роль в жизнедеятельности живых организмов. С образованием растворов связаны процессы усвоения пищи и выведения из организма продуктов жизнедеятельности. В форме растворов вводится большое количество лекарственных препаратов.

Для качественного и количественного описания жидких растворов используются термины «растворитель» и «растворенное вещество» , хотя в некоторых случаях такое разделение является достаточно условным. Так, медицинский спирт (96% раствор этанола в воде) скорее следует рассматривать как раствор воды в спирте. Все растворители делятся на неорганические и органические. Важнейшим неорганическим растворителем (а в случае биологических систем – единственным) является вода. Это обусловлено такими свойствами воды, как полярность, низкая вязкость, склонность молекул к ассоциации, относительно высокие температуры кипения и плавления. Растворители органической природы разделяют на полярные (спирты, альдегиды, кетоны, кислоты) и неполярные (гексан, бензол, четыреххлористый углерод).

Процесс растворения в равной степени зависит как от природы растворителя, так и от свойств растворенного вещества. Очевидно, что способность образовывать растворы выражена у разных веществ по-разному. Одни вещества могут смешиваться друг с другом в любых количествах (вода и этанол), другие – в ограниченных (вода и фенол). Однако, следует помнить: абсолютно нерастворимых веществ не существует!

Склонность вещества растворяться в том или ином растворителе можно определить, используя простое эмпирическое правило: подобное растворяется в подобном. Действительно, вещества с ионным (соли, щелочи) или полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, например, в воде. И наоборот, растворимость кислорода в бензоле на порядок выше чем в воде, так как молекулы O 2 и C 6 H 6 неполярны.

Степень сродства соединения к определенному типу растворителя можно оценить, анализируя природу и количественное соотношение входящих в его состав функциональных групп, среди которых выделяют гидрофильные (притягивающие воду) и гидрофобные (отталкивающие воду). К гидрофильным относят полярные группы, такие как гидроксильная (-OH), карбоксильная (-COOH), тиольная (-SH), амино (-NH 2). Гидрофобными считают неполярные группы: углеводородные радикалы алифатического (-CH 3 , -C 2 H 5) и ароматического (-C 6 H 5) рядов. Соединения, имеющие в своем составе как гидрофильные, так и гидрофобные группы, называют дифильными . К таким соединениям относят аминокислоты, белки, нуклеиновые кислоты.

Теории растворов

В настоящее время известны две основные теории растворов: физическая и химическая.

Физическая теория растворов.

Физическая теория растворов была предложена С. Аррениусом (1883) и Я. Г. Вант-Гоффом (1885). В данной теории растворитель рассматривается как химически инертная среда, в которой равномерно распределены частицы (молекулы, ионы) растворенного вещества. При этом предполагается отсутствие межмолекулярного взаимодействия как между частицами растворенного вещества, так и между молекулами растворителя и частицами растворенного вещества. Однако впоследствии выяснилось, что условиям данной модели удовлетворяет поведение лишь малой группы растворов, которые были названы идеальными . В частности, идеальными растворами можно считать газовые смеси и очень сильно разбавленные растворы неэлектролитов.