Экономика        30.12.2023   

Правила построения дерева вероятностей. Подготовиться к ОГЭ или ЕГЭ по математике

Рис. 7.2. Платежная матрица с учетом вероятностей исходов событий

p i – вероятность i-ого варианта исхода событий.

M j – мат. ожидание критерия при выборе j -ого варианта альтернатив действий, определяемое по формуле:

Два вышеназванных подхода позволяют реализовать четыре различных алгоритма выбора решения.

1. Решение на основе правила максимальной вероятности - максимизация наиболее вероятных значений критерия (прибыли или дохода).

2. Решение на основе правила максимальной вероятности - минимизации наиболее вероятных значений критерия (возможных потерь или прямых убытков).

3. Решение на основе правила максимизации математического ожидания (среднего значения) критерия (прибыли или дохода).

4. Решение на основе правила минимизации математического ожидания (среднего значения) критерия (потерь или убытков).

Примеры, которые мы рассматривали до сих пор в этой главе, включали в себя единственное решение. Однако на практике результат одного решения заставляет нас принимать следующее и т.д. Эту последовательность нельзя выразить платежной матрицей, поэтому нужно использовать какой-то другой процесс принятия решений.

Схему"дерево" решений используют, когда нужно принять несколько решений в условиях неопределенности, когда каждое решение зависит от исхода предыдущего или исходов событий.

Состав­ляя "дерево" решений, нужно нарисовать "ствол" и "ветви", отображающие структуру проблемы.

· Располагаются "деревья" слева направо. "Ветви" обозначают возможные альтернативные решения, которые могут быть приняты, и возможные исходы, возни­кающие в результате этих решений.

· "Ветви" выходят из узлов. Узлы бывают двух типов.

Квадратный узел обозначает место, где принимается решение.

Круглый узел обозначает место, где появляются различные варианты исходов.

· На схеме используются два вида "ветвей":

Первый - пунктирные линии, выходящие из квадратов возможных решений, движение по ним зависит от принимаемых решений. На соответствующей пунктирной "ветви" проставляются все расходы, вызван­ные решением.

Второй - сплош­ные линии, выходящие из кружков возможных исходов. Движение по ним определяется исходом событий. На сплошной линии указывается вероятность данного исхода.

узел принятия решения.

узел ветвления вариантов исходов событий.

ветви, движение по которым зависит от принимаемого решения.

ветви, движение по которым зависит от исхода событий.

Поиск решения разбивается на три этапа.

Этап 1. Строится "дерево" (пример будет рассмотрен на практических занятиях). Когда все решения и их исходы указаны на "дереве", просчитывается каждый из вариантов, и в конце проставляется его денежный доход.


Этап 2. Вычисляются и проставляются на соответствующих ветвях вероятности каждого исхода.

Этап 3. На этом этапе справа налево рассчитываются и проставляются денежные исходы каждого из "узлов". Любые встречаю­щиеся расходы вычитаются из ожидаемых доходов.

После того, как пройдены квадраты "решений", выбирается "ветвь", ведущая к наибольшему из возможных при данном решении ожидаемому доходу (на этой ветви проставляется стрелка).

Другая "ветвь" зачеркивается, а ожи­даемый доход проставляется над квадратом решения.

Таким образом, в конце третьего этапа оказывается сформированной последовательность решений, ведущая к максимальному доходу.

В принципе, в качестве критерия может выступать как максимизация мат. ожидания дохода, так и минимизация мат. ожидания потерь.

человека содержится некий план, с которым пришла сюда душа, все варианты развития событий, в том числе. Можно туда зайти и просмотреть последствия важных решений, которые мы принимаем. Например, о смене работы и образа жизни. Делать это можно как в самостоятельных медитациях, так и в совместных процессах ведущий-ведомый. Ниже описание того, как это было проделано в сеансе

Вероятностные линии

Проецирую три ветки:

1) остаться в Москве на имеющейся работе;

2) продать или сдать квартиру и уехать в Азию к друзьям, чтобы войти партнером в их туристический бизнес;

3) идеальный вариант: ухожу с работы, участвую в бизнесе друзей на проектной основе, при этом есть свой собственный дом, но не в Москве (то ли тоже Азия, но другая, то ли Восточная Европа, то ли Латинская Америка - большая светлая вилла, в которой можно принимать гостей и проводить ретриты), есть пара - собственные партнерские отношения, и есть свое дело.

Выстраиваем все три ветки как дороги, смотрим, есть ли ответвления.

Московская ветка - прочный толстый серый канат, тусклый и надежный, не оторвешься, не потеряешься. От каната идет несколько более тонких веревок, какие то поярче и поинтересней, но ни одна не привлекает, не зовет и не светится. Ощущение - я по прежнему люблю Москву, но эта тема себя изжила.


Ветка с Азией и друзьями - очень яркая и наглядная, но короткая и жидкая, что ли. В ней не хватает потенциала для того,чтобы уверенно развернуться в перспективе. Недостаточно ресурса.

Идеальная третья картинка разделилась на несколько географических точек на карте, каждая со своим специфическим налетом. Третья ветка, внутри которой есть моя собственная история - наиболее привлекательна, конечно же, для меня. Она не такая осязаемая сейчас как московская и не такая цветная как вторая, Но она зовет к себе. И светится, наполненная изнутри. Как тонкий живой лучик, пульсирует и переливается.

Выбор своего пути

В этой версии развития событий я свободно перемещаюсь по всему миру при желании. Доход у меня ниже, чем в Москве, но его достаточно, чтобы ни в чем не нуждаться и ни в чем себе не отказывать, пусть и в меру. Я приезжаю на проекты к друзьям, они гостят у меня. Я что-то пишу и работаю с людьми, делаю это в удовольствие. Имеется еще какой то светский бизнес проект, который тоже более-менее успешен, и дает стабильный заработок.

При этом есть близкий человек, с которым мы совместно реализуем эту историю, в паре. Для того, чтобы она проявилась, нужно не только мое намерение, и с той и с моей стороны потребуется некая плата, само собой, как за любой выбор. Как только ты что-то выбираешь, ты автоматически от чего то отказываешься.. Это всегда страшно и небезопасно, к тому же. Плата как отказ от имеющегося комфорта или свободы. Плата как позволение войти в свою жизнь чему то совершенно новому и неизвестному, пусть и заманчивому. Чистая свобода воли и чистота намерений и с той, и с другой стороны. А там уж - как сложится.. В ином ключе (не на чистом волеизъявлении) эта тема просто не взлетит.

Весь этот процесс сейчас в развертке пребывает. Эта ветка находится на стадии вызревания, и если все сложится хорошо, то она сможет полностью проявиться в моей реальности. Смотрим, есть ли помехи или камни на этой идеальной для меня линии. Вижу упавшее дерево, прямо на дороге. Это страхи и недоверие к самой себе. Из серии - это слишком хорошо, чтобы так оно все и сложилось, так не бывает, это все иллюзии и сказки, придуманные самой себе. Расчищаю дорогу.

Следующий важный шаг - принять окончательное собственное решение - нужно ли туда вообще забрасывать внимание, в эту ветку-мечту, поскольку "отмотать" так просто не получится потом. Понимаю для себя, что так или иначе уже давно напитываю ее энергией и внутренне активирую. И это происходит даже не из-за упрямства или желания, чтобы было по моему.

Гораздо более тонкие вещи и знаки, которые сигнализируют о том, что это судьба, как бы громко это ни звучало. Эта ветка постепенно становится все более и более ощутимой. Она уплотняется, медленно и верно. Хотя, конечно же, все еще крайне неопределенно и может свернуться в любой момент, но есть ощущение, что она сама ко мне идет, эта ветка.

Поскольку она давно уже была спроектирована и предопределена, заказана, можно сказать. И я понимаю, куда это ведет. И как оно складывается. И что это правильное развитие событий. Хотя иногда тупо боюсь в это поверить..

И еще очень не хочется эту ветку цементировать. Делать жесткой и однозначной.. Не нужно в нее встраивать жесткую привязку к определенному месту или роду занятий, или к чему то еще. Хочется чтобы в ней было много стихии: воздуха, воды, огня, земли, чтобы она дышала, чтобы была гибкой и неразрушимой - мобильной, трансформируемой и перенастраиваемой. И чтобы все, что в ней происходило, было бы результатом сотворчества, не автономными действиями. Это в любом случае парная история, она не может родиться как принуждение, тут важна максимальная корректность - ни в коем случае не навязывать и не давить.. Все на свободе воли. А дальше - куда позовет*

Усиление ветки вниманием

Протягиваю из своей Искры луч в направлении этой ветки, в ту точку, куда она стремится, соединяюсь с ней своим вниманием. Тем самым Искра начинает работать на реализацию этой цели, якорится в ней. Я могу этого не осознавать, но работа будет вестись: формирование событий в пространстве будет происходить таким образом, чтобы эта цель была максимально приближена к моей реальности, к своей реализации.

Луч Искры трансформируется в гравитационный луч и притягивает объекты и события из той ветки вероятностей ко мне, как магнитом. Цель становится совсем близкой, можно сказать, я сейчас в ней. Как телепорт, когда не стараешься перейти в новое место всем своим телом, а материализуешь искомое пространство вокруг себя: настраиваешься на цель и притягиваешь ее к себе. И чем ближе она к тебе находится, тем больше твоя воля распространяется на ее реализацию. А уже Искра ответственна за то, чтобы сформировать те события, которые повлекут за собой воплощение этой ветки в действительность, позволят ей сыграть.

Рисую свое будущее светом своей Искры. Там так классно, в этой линии вероятностей - очень красивая история, куда хочется всех позвать в гости.. Большая светлая комната, наполненная жизнью, солнцем и воздухом.. Даю ей топливо, заряжаю потенциалом, чтобы она получила возможность проявиться в реальности. Когда будет готовность принять финальное решение или понадобится посмотреть какие то ответы по развитию этой ветки, можно просто вспоминать это состояние притяжения, пропитываться эмоционально атмосферой и настроением этой комнаты, почувствовать эмоцию творчества и партнерства. Эмоция созидания - это всегда любовь..

Проявление и закрепление результата

Чтобы запечатлеть ту картинку, которая выглядит такой привлекательной, но зыбкой сейчас, нужно пропустить через него свет, влить эмоцию, зарядить позитивом. Войти в состояние ананды - радостного подъема, любящего и любимого существа, влюбленного и наполненного любовью и перенаправить это свое внутреннее топливо в идеальный вариант развития событий.

Прочистить путь и снять вопросы. Сонастроить с другими ветками реальности, окружающими меня и сопричастных игроков, чтобы все это синхронизировалось по месту и по времени. Совпало с намерениями, волей и свободой выбора. Напитать все это своим собственным светом, теплом и любовью для реализации в будущем своего творческого потенциала в том ключе, который так нравится. Экспонировать нужный результат так, чтобы изображение впечаталось светом в чувствительную пленку - канву грядущих событий, прожгло в ней свой оттиск как световая проекция. И выдержать немного, чтобы эффект был как можно ярче.

Теперь нужно обработать созданный отпечаток мечты, чтобы он перешел в слой материальной реальности. Следующий этап - стабилизация. Нужно добавить в картинку немного энергии темноты и холода, чтобы она выкристаллизовалась и приобрела более твердые очертания, перешла из состояния волшебного миража в более плотные слои, закрепилась и проявилась.

Работа с негативным отпечатком.. Результат буквально фиксируется на листе реальности, примерно также, как когда на аналоговую фотобумагу проецируем изображение с аналоговой фотопленки, а потом льем по очереди проявитель и закрепитель чтобы можно было в деталях рассмотреть, что же такое мы запечатлели с помощью света и намерения и войти туда, когда это будет уместно и своевременно.

Поскольку за общение с миром и творческую реализацию отвечает горловая чакра, отправляю туда, в избранную ветку луч из горловой чакры. За ним попросился луч и из второй чакры, следом - из третьей. Потом и остальные чакры подключились, получился такой лучевой душ, как из цветика-семицветика. Промываю и просушиваю все получившееся, наполняю движением, материальной энергией земли, видением, всеми качествами жизненной силы и магнетизма, притягиваю ветку вероятности в свою реальность еще больше, связываю напрямую с каждым из чакральных центров, прописываю ее там в них..

* человек забывает, что будущее многовариантно и часто приявзывается к шаблонным моделям (таковые обычно определяются нумерологией, астрологией и тп). На самом деле каждый из нас -- это поток, а потоку нужно течь, не зацикливаться на рамках, с легкостью отпускать старое и впускать новое, адаптироваться. Поэтому, если будете делать подобные практики, ни в коем случае не "цементируйте" свое намерение, тк мир всегда предлагает еще более классыне варианты, о которых мы сами можем даже не догадываться, особенно сейчас.


Реальность многомерна, мнения о ней многогранны. Здесь показана лишь одна или несколько граней. Не стоит принимать их за истину в последней инстанции, ибо , а у каждого уровня сознания и . Учимся отделять наше от не нашего, либо добывать информацию автономно)

ТЕМАТИЧЕСКИЕ РАЗДЕЛЫ:
| | | | | | | | |

Ночь. Свет полной луны, висящей на звездном небе, через витражи на окнах освещал мрачные коридоры Змиулана, от стен которых отражался гулкий звук бега. -Ну что за девчонка! - сбивая дыхание, пробурчал Фэш. - Испугалась она, понимаешь ли… Только время зря потерял! Надеюсь, мне всё же удастся сбежать…в этот раз… Несясь к Каменной Зале, он молился, чтобы ему никто не попался на пути. Но всё произошло с точностью да наоборот. Во тьме коридоров (где не удосужились сделать окна) Драгоций столкнулся с кем-то, услышав знакомый голос: ,Кто тут носится, как угорелый?! "". Брюнет вызвал часовую стрелу и зажег на острие её огонек. В свет импровизированного светильника попала… Василиса?! -Ты?! - одновременно воскликнули эти двое. Фэш испытал одновременно с удивлением и облегчение: всё-таки с Огневой они в ладах, и его она не сдаст…ну, он на это надеялся. Парень подумал, что рыжеволосая испытала нечто подобное. -Что ты здесь делаешь? - протянул Василисе руку Драгоций. Та, приняв помощь, поднялась и отряхнулась: -Тот же вопрос хотелось бы задать тебе. -Я первый спросил, - скрестил руки на груди Фэш. -Не важно. Вообще, это не твоё дело, - огрызнулась Василиса. -Ну, значит, и то, что я делаю, не твое дело, - спокойно пожал плечами Драгоций. Рыжеволосая поджала губы и задумчиво взглянула на брюнета: -Я скажу только после тебя. -Ну…я… - начал Фэш, пытаясь подобрать слова, но ничего не выходило. - Ладно, я хочу сбежать, - выпалил Драгоций. Глаза Василисы расширились: -Ты что, умом тронулся? Фэш закатил глаза и раздраженно взглянул на Огневу: -Нет, но я не хочу оставаться здесь. -Если тебя поймают, то накажут. Вспомни, что было в прошлые разы, - скрестила руки на груди рыжеволосая. Драгоций скривился: -Слушай, лучше не мешай мне. Василиса задумчиво взглянула на брюнета: -Хорошо, мешать не буду…тем более, я сегодня такая добрая, что даже сдавать тебя не буду, - хихикнула Огнева и, развернувшись, хотела уходить, но Фэш остановил её окликом: -Василиса, - девушка развернулась и выжидающе взглянула на брюнета, - спасибо, - улыбнулся Драгоций и убежал. Огнева улыбнулась и направилась к себе… *** -Это было огромной ошибкой, племянник, - Астрагор возвышался над лежащим полуголым Фэшем. Ученики стали тихо перешептываться. - Ты не раз пытался сбежать и всегда получал наказание… - Шакл, который пришел специально для исполнения расправы, достал один из прутьев и взмахнул пару раз. Послышался хлесткий звук. -Надеюсь, ты всё-таки поймешь, что бежать бесполезно, - великий дух Осталы повернулся к провинившемуся спиной, лицом - к остальным ученикам: -Думаю, это послужит примером и вам. Прут, рассекая воздух, тут же прошелся по спине Фэша, оставляя красные, даже кровавые полосы. Удар за ударом. Брюнет стоически выносил все удары, лишь иногда издавая полустон - полурык. Ученики смотрели на это с неким ехидством. Только Василиса и Захарра взволнованно смотрели на брюнета… *** Фэш сидел в темнице и раздумывал. Раньше его просто сажали в подземелье, оставляя без еды, но сейчас, видимо, дяде надоело, что его племянник наказан так легко. Брюнет повел плечом, болезненно скривившись. Он не обращал внимания на холод, сырость, погрузившись в свои мысли. Из раздумий его вывел звук шагов, раздавашийся по коридору. Вскоре под свет факела вышла Василиса. Фэш тут же подошел к решетке: -Ты чего здесь делаешь? -Держи, - Огнева между прутьями просунула руку и отдала Драгоцию довольно приличный кусок еще теплого хлеба с семечками. Фэш принял еду. -И что это за приступы щедрости? - усмехнулся он. -Это Захарра попросила передать. Ее не пропускали, - пожала плечами Огнева. -То есть, Захарру не пустили, а тебя, ту, что не является родственницей Астрагора, спокойно пропустили? - усмехнулся брюнет. -Ну, это не я решаю, - Василиса вновь пожала плечами, правда, Фэш в её глазах заметил волнение. -Ну, я спрошу потом у Захарры об этом, - спокойно сказал Драгоций, откусив немного хлеба. -Спроси, а мне пора уже, - Огнева развернулась и спокойно прошла до угла и завернула за него. Вскоре Фэш услышал звуки бега и усмехнулся. ,Всё-таки это её инициатива. Наверное, к сестричке побежала договариваться на всякий случай""…


К интересным выводам в ходе исследования свойств времени и возможности путешествий в прошлое и будущее пришел кандидат технических наук В.Чернобров. Так, в частности, он пишет:

«Настоящее есть переход, превращение многовариантного, легко изменяемого Будущего в одновариантное и неизменное Прошлое. Отсюда следует, что полеты в Прошлое (при «отрицательной» плотности-скорости t/tо) и в Будущее будут происходить по-разному.

В какой-то степени их можно сравнить с перемещениями муравья по дереву: из любой точки дерева (из Настоящего) для муравья открывается всего 1 путь вниз (в Прошлое) и множество путей вверх (в Будущее).

Однако среди всех путей в Будущее несомненно существуют наиболее вероятные варианты, маловероятные и почти невероятные. Движение в Будущее будет тем более нестабильным и энергоемким, чем менее вероятным окажется данный вариант Будущего.

В соответствии с данным «законом кроны дерева», возвращение в Настоящее возможно только в том случае, если при пребывании в Прошлом путешествующий не вмешивается в происходящее вокруг него и не изменяет ход прошедшей Истории; в противном случае хронопутешественник вернется в параллельное Настоящее из Прошлого по другой ветви Истории.

Проникновение в Будущее из Настоящего затруднено выбором ветви перемещения, но возвращение из любого варианта Будущего в Настоящее возможно при любом сценарии поведения. Если перед вами не окажется слияний разных вариантов Истории».

Таким образом, даже современные научные исследования подтверждают многомерность времени и разновариантность будущего, а также возможность перемещений в различные его вероятности.

Существует гипотеза, согласно которой ключевые моменты судьбы каждого человека, так называемые «развилки» вероятностей, порождают различные «ветви» реальности в зависимости от наших поступков.

Все эти «ветви» существуют во Вселенной одновременно. Но человеку доступно существование только на одной такой «ветви», хотя иногда и происходят случаи спонтанного перехода с одной «ветви» реальности на другую.

В пользу существования различных вероятностей будущей («ветвей» Древа Жизни, «бороздок» Колеса Времени и т.п.) свидетельствует история, происшедшая с Густавом и Йоханом Шредерманами. Началась она весной 1973 года, когда семья Шредерманов (муж, жена и сын) переехали из Берлина на ферму под Зальцбургом.

Младший из Шредерманов все лето бегал по окрестностям и однажды обнаружил в лесу покосившийся домик, обходя который чуть не провалился в заросший колодец, но вовремя уцепился за куст. Возвращаясь домой, он испытал странное головокружение и дома сразу же лег в постель. На следующее утро в дверь дома раздался стук, а когда мальчик открыл ее, то увидел самого себя, мокрого и перепачканного грязью.

Оказалось, что все прошлое у обоих мальчиков полностью совпадает, разные вероятности судеб начинаются после инциндента у колодца, в который один из них провалился, а другой удержался.

Возможно, что сильный стресс и испуг провалившегося мальчика благодаря измененному состоянию сознания переместили его в другую ветвь реальности, где уже существовал он же, но не провалившийся в колодец.

Характерно, что в последствии родители присвоили мальчикам новые имена и каждый из них жил собственной судьбой: один занялся экспортом пива, другой стал архитектором.

1. Ω = {11,12,13,14,15,16, 21, 22,..., 66},

2. Ω = {2,3,4,5,6, 7,8,9,10,11,12}

3. ● A = {16,61,34, 43, 25, 52};

● B = {11,12, 21,13,31,14, 41,15, 51,16, 61}

● C = {12, 21,36,63,45, 54,33,15, 51, 24,42,66}.

D = {СУММА ОЧКОВ РАВНА 2 ИЛИ 3 };

E = {СУММА ОЧКОВ РАВНА 10}.

Описать событие: С = {ЦЕПЬ ЗAМКНУТA} для каждого случая.

Решение. Введем обозначения: событие A - контакт 1 за­мкнут; событие В - контакт 2 замкнут; событие С - цепь замкнута, лампочка горит.

1. Для параллельного соединения цепь замкнута, когда хотя бы один из контактов замкнут, поэтому С = A + В ;

2. Для последовательного соединения цепь замкнута, ко­гда замкнуты оба контакта, поэтому С = A · В .

Задача. 1.1.4 Составлены две электрические схемы:

Событие A - цепь замкнута, событие A i - I –й кон­такт замкнут. Для какой из них справедливо соотноше­ние

A1 · (A2 + A3 · A4) · A5 = A?

Решение . Для первой схемы A = A1 · (A2 · A3 + A4 · A5), так как параллельному соединению соответствует сумма собы­тий, а последовательному соединению - произведение событий. Для второй схемы A = A 1 (A2 + A3 A4 A5). Сле­довательно, данное соотношение справедливо для второй схемы.

Задача. 1.1.5 Упростить выражение (A + B)(B + C)(C+ A).

Решение. Воспользуемся свойствами операций сложения и умножения событий.

(A + B)(B + C)(A + C) =

(AB + AC + B B + BC)(A + C) =

= (AB + AC + B + BC)(A + C) =

(AB + AC + B)(A + C) = (B + AC)(A + C) =

= BA + BC + ACA + ACC = B A + BC + AC.

Задача. 1.1.6 Доказать, что события A, AB и A+B Обра­зуют полную группу.

Решение. При решении задачи воспользуемся свойства­ми операций над событиями. В начале покажем, что эти события попарно несовместны.

A теперь покажем, что сумма этих событий дает простран­ство элементарных событий.

Задача. 1.1.7 С помощью схемы Эйлера–Венна проверить правило де-Моргана:

А) Заштриховано событие AB.

Б) Событие A - вертикальная штриховка; событие B - горизонтальная штриховка. Событие

{A+B} - заштрихованная область.

Из сопоставления рисунков а) и в) следует:

Задача. 1.2.1 Сколькими способами можно рассадить 8 человек:

1. В один ряд?

2. За круглым столом?

Решение.

1. Искомое число способов равно числу перестановок из 8, т. е.

P8 = 8! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 = 40320

2. Так как за круглым столом выбор первого человека не влияет на чередование элементов, то первым можно взять любого, а оставшихся упорядочим относительно выбранного. Это действие можно осуществить 8!/8 = 5040 способами.

Задача. 1.2.2 На курсе изучается 5 предметов. Скольки­ми способами можно составить расписание на субботу, ес­ли в этот день должны быть две различные пары?

Решение. Искомое число способов есть число размещений

Из 5 по 2, так как нужно учесть порядок пар:

Задача. 1.2.3 Сколько экзаменационных комиссий, состо­ящих из 7 человек, можно составить из 15 преподавате­лей?

Решение. Искомое число комиссий (без учета порядка) - это число сочетаний из 15 по 7:

Задача. 1.2.4 Из корзины, содержащей двадцать прону­мерованных шаров выбирают на удачу 5 шаров. Опреде­лить число элементов пространства элементарных собы­тий этого опыта, если:

Шары выбираются последовательно один за другим с возвращением после каждого извлечения;

Шары выбирают один за другим, не возвращая;

Выбирают сразу 5 шаров.

Решение.

Число способов извлечь первый шар из корзины равно 20. Так как извлеченный шар вернулся в корзину, то число способов извлечь второй шар также равно 20 и т. д. Тогда число способов извлечь 5 шаров в этом слу­чае равно 20 · 20 · 20 · 20 · 20 = 3200000.

Число способов извлечь первый шар из корзины рав­но 20. Так как извлеченный шар после извлечения не вернулся в корзину, то число способов извлечь второй шар стало равно 19 и т. д. Тогда число способов извлечь 5 шаров без возвращения равно 20 · 19 · 18 · 17 · 16 = A52 0

Число способов извлечь из корзины 5 шаров сразу рав­но числу сочетаний из 20 по 5:

Задача. 1.2.5 Подброшены две игральные кости. Найти вероятность события A того, что выпадет хотя бы одна единица.

Решение. На каждой кости может выпасть любое число очков от 1 до 6. Поэтому пространство элементарных со­бытий содержит 36 равновозможных исходов. Событию A благоприятствуют 11 исходов: (1,1), (1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (1,5), (5,1), (1,6), (6,1), поэтому

Задача. 1.2.6 На красных карточках написаны буквы у, и, я, к, ц, ф, н, на синих - буквы а, а, о, т, т, с, ч. После тща­тельного перемешивания, что вероятнее: с первого раза из букв на красных карточках составить слово «функция» или из букв на синих карточках слово «частота»?

Решение. Пусть событие A - наудачу составленное из 7 букв слово «функция», событие B - наудачу составлен­ное из 7 букв слово «частота». Так как упорядочиваются два множества из 7 букв, то число всех исходов для со­бытий A и B равно n = 7!. Событию A благоприятствует один исход m = 1, так как все буквы на красных карточ­ках различны. Событию B благоприятствуют m = 2! · 2! ис­ходов, так как буквы «а» и «т» встречаются дважды. Тогда P(A) = 1/7! , P(B) = 2! 2! /7! , P(B) > P(A).

Задача. 1.2.7 На экзамене студенту предлагается 30 би­летов; в каждом билете два вопроса. Из 60 вопросов, вошед­ших в билеты, студент знает только 40. Найти вероят­ность того, что взятый студентом билет будет состо­ять

1. из известных ему вопросов;

2. из неизвестных ему вопросов;

3. из одного известного и одного неизвестного вопроса.

Решение. Пусть A - событие, состоящее в том, что на оба вопроса студент знает ответ; B - не знает ответа на оба вопроса; C - на один вопрос знает ответ, на другой - не знает. Выбор двух вопросов из 60 можно осуществить n = C260 = 60 2·59 = 1770 способами.

1. Имеется m = C240 = 40 2·39 = 780 возможностей выбора известных студенту вопросов. Тогда P(A) = M N = 17 78 70 0 = 0,44

2. Выбор двух неизвестных вопросов из 20 можно осуществить m = C220 = 20 2·19 = 190 способами. В таком случае

P(B) = M N = 11 79 70 0 = 0,11

3. Существует m = C14 0 ·C21 0 = 40·20 = 800 способов выбрать билет с одним известным и одним неизвестным вопроcом. Тогда P(C) = 18 70 70 0 = 0,45.

Задача. 1.2.8 По трем каналам послана некоторая ин­формация. Каналы работают независимо друг от друга. Найти вероятность того, что информация достигнет це­ли

1. Только по одному каналу;

2. Хотя бы по одному каналу.

Решение. Пусть A - событие, состоящее в том, что инфор­мация достигает цели только по одному каналу; B - хотя бы по одному каналу. Опыт - передача информации по трем каналам. Исход опыта - информация достигла цели. Обозначим Ai - информация достигает цели по i-му каналу. Пространство элементарных событий имеет вид:

Событию B благоприятствуют 7 исходов: все исходы, кро­меТогда n = 8; mA = 3; mB = 7; P(A) = 3 8 ; P(B) = 7 8.

Задача. 1.2.9 На отрезке единичной длины случайным об­разом появляется точка. Найти вероятность того, что расстояние от точки до концов отрезка больше 1/8.

Решение. По условию задачи искомому событию удовле­творяют все точки, появляющиеся на интервале (a; b).

Так как его длина s = 1 - 1 8 + 1 8 = 3 4, а длина всего отрезка S = 1, то искомая ве­роятность равна P = s/S = 3/14 = 0.75.

Задача. 1.2.10 В партии из N изделий K изделий являются бракованными. Для контроля выбирается m изделий. Най­ти вероятность того, что из M Изделий L Окажутся брако­ванными (событие А).

Решение. Выбор m изделий из n можно осуществить способами, а выбор L бракованных из k бракованных - способами. После выбора L бракованных изделий останется (m - L ) годных, находящихся среди (n - k) изделий. Тогда число исходов, благоприятствующих событию A, равно·

И искомая вероятность

Задача. 1.3.1 B урне 30 шаров: 15 красных, 10 синих и 5 белых. Найти вероятность того, что наугад вынутый шар - цветной.

Решение. Пусть событие A - вынут красный шар, собы­тие B - вынут синий шар. Тогда события (A + B) - вынут цветной шар. Имеем P(A) = 1 3 5 0 = 1 2 , P(B) = 1 3 0 0 = 1 3. Так как

События A и B несовместны, то P(A + B) = P(A) + P(B) = 1 2 + 1 3 = 5 6 = 0.83.

Задача. 1.3.2 Вероятность того, что будет снег (событие A), равна 0.6, А того, что будет дождь (событие B), равна 0.45. Найти вероятность плохой погоды, если вероятность дождя со снегом (событие AB) равна 0.25.

Решение. События A и B совместны, поэтому P(A + B) = P(A) + P(B) - P(AB) = 0.6 + 0.45 - 0.25 = 0.8

Задача. 1.3.3 B первом ящике 2 белых и 10 черных шаров, во втором - 3 белых и 9 черных шаров, в третьем - 6 бе­лых и 6 черных шаров. Из каждого ящика вынули по шару. Найти вероятность того, что все вынутые шары белые.

Решение. Событие A - вынут белый шар из первого ящи­ка, B - из второго ящика, C – из третьего. Тогда P(A) = 12 2 = 1 6; P(B) = 13 2 = 1 4; P(C) = 16 2 = 1 2. Событие ABC - все вынутые

Шары - белые. События A, B,C - независимые, поэтому

P(ABC) = P(A)·P (B)·P (C) = 1 6 · 1 4 · 1 2 = 41 8 = 0.02

Задача. 1.3.4 B электрическую цепь последовательно включены 5 Элементов, работающие независимо друг от друга. Вероятность отказов первого, второго, третье­го, четвертого, пятого элементов соответственно равны 0.1; 0.2; 0.3; 0.2; 0.1. Найти вероятность того, что тока в цепи не будет (событие A).

Решение. Так как элементы включены последовательно, то тока в цепи не будет, если откажет хотя бы один эле­мент. Событие Ai(i =1...5) - откажет I - й элемент. События

Задача. 1.3.5 Цепь состоит из независимых блоков, соеди­ненных в систему с одним входом и одним выходом.

Выход из строя за время Т различных элементов цепи - независимые события, имеющие следующие вероятно­сти P 1 = 0.1; P2 = 0.2; P3 = 0.3; P4 = 0.4. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Найти надежность системы.

Решение. Если событие A - {СИСТЕМА НАДЕЖНА}, Ai - {i - й БЛОК РАБОТАЕТ БЕЗОТКАЗНО}, то A = (A1 + A2)(A3 + A4). События A1+A2, A3+A4 - независимые, события A1 и A2, A3 и A4 - совместные. По формулам умножения и сложения вероятностей

Задача. 1.3.6 Рабочий обслуживает 3 станка. Вероят­ность того, что в течение часа станок не потребует вни­мания рабочего, равна для первого станка 0.9, для второго станка - 0.8, для третьего станка - 0.7.

Найти вероятность того, что в течение некоторого часа

1. Потребует внимания второй станок;

2. Потребуют внимания два станка;

3. Потребуют внимания не менее двух станков.

Решение. Пусть Ai - i-й станок потребует внимания ра­бочего,- i-й станок не потребует внимания рабочего. Тогда

Пространство элементарных событий:

1. Событие A - потребует внимания второй станок: Тогда

Так как события несовместные и независимые. P(A) = 0.9·0.8·0.7 + 0.1·0.8·0.7 + 0.9·0.8·0.3 + 0.1·0.8·0.3 = 0.8

2. Событие B - потребуют внимания два станка:

3. Событие C - потребуют внимания не менее двух стан­
ков:

Задача. 1.3.7 B машину «Экзаменатор» введено 50 Вопро­сов. Студенту предлагается 5 Вопросов и ставится оценка «отлично», если на все вопросы получен верный ответ. Най­ти вероятность получить “отлично”, если студент подго­товил только 40 Вопросов.

Решение. A - {ПОЛУЧЕНА ОЦЕНКА «ОТЛИЧНО»}, Ai - {ОТВЕТИЛ НА i - й ВОПРОС}. Тогда A = A1A2A3A4A5, имеем:

Или, другим способом - c помощью формулы классической вероятности:И

Задача. 1.3.8 Вероятности того, что нужная сборщику деталь находится в I , II , III , IV ящике, соответственно рав­ны 0.6; 0.7; 0.8; 0.9. Найти вероятность того, что сборщику придется проверить все 4 ящика (событие A ).

Решение. Пусть Ai - {Нужная сборщику деталь находит­ся в i-м ящике.} Тогда

Так как события несовместны и независимы, то

Задача. 1.4.1 Обследовалась группа из 10000 человек в возрасте свыше 60 лет. Оказалось, что 4000 человек яв­ляются постоянно курящими. У 1800 курящих обнаружи­лись серьезные изменения в легких. Среди некурящих изме­нения в легких имели 1500 человек. Какова вероятность того, что наугад обследованный человек, имеющий изме­нения в легких, является курящим?

Решение. Введем гипотезы: H1 - обследованный является постоянно курящим, H2 - является некурящим. Тогда по условию задачи

P(H1)= ------- =0,4, P(H2)=--------- =0,6

Обозначим через A событие, состоящее в том, что об­следованный имеет изменения в легких. Тогда по условию задачи

По формуле (1.15) находим

Искомая вероятность того, что обследованный человек является курящим, по формуле Байеса равна

Задача. 1.4.2 В продажу поступают телевизоры трех за­водов: 30% с первого завода, 20% - со второго, 50% - с третьего. Продукция первого завода содержит 20% теле­визоров со скрытым дефектом, второго - 10% , третьего - 5%. Какова вероятность приобрести исправный телеви­зор?

Решение. Рассмотрим события: A - приобретен исправ­ный телевизор; гипотезы H1, H2, H3 - телевизор поступил в продажу соответственно с первого, второго, третьего заво­да. По условию задачи

По формуле (1.15) находим

Задача. 1.4.3 Имеются три одинаковых по виду ящика. В первом 20 белых шаров, во втором - 10 белых и 10 черных шаров, в третьем - 20 черных шаров. Из наугад выбран­ного ящика вынут белый шар. Найти вероятность того, что этот шар из второго ящика.

Решение. Пусть событие A - вынут белый шар, гипотезы H1, H2, H3 - шар вынут соответственно из первого, второго, третьего ящика. Из условия задачи находим

Тогда
По формуле (1.15) находим

По формуле (1.16) находим

Задача. 1.4.4 Телеграфное сообщение состоит из сигна­лов «точка» и «тире». Статистические свойства помех та­ковы, что искажаются в среднем 2/5 Сообщений «точка» и 1/3 Сообщений «тире». Известно, что среди передавае­мых сигналов «точка» и «тире» встречаются в соотноше­нии 5: 3. Определить вероятность того, что принят пе­редаваемый сигнал, если:

А) принят сигнал «точка»;

Б) принят сигнал «тире».

Решение. Пусть событие A - принят сигнал «точка», а со­бытие B - принят сигнал «тире».

Можно сделать две гипотезы: H1 - передан сигнал «точ­ка», H2 - передан сигнал «тире». По условию P(H1) : P(H2) =5: 3. Кроме того, P(H1) + P(H2) = 1. Поэтому P(H1) = 5/8, P(H 2 ) = 3/8. Известно, что

Вероятности событий A И B Находим по формуле пол­ной вероятности:

Искомые вероятности будут:

Задача. 1.4.5 Из 10 каналов радиосвязи 6 каналов защи­щены от воздействия помех. Вероятность того, что за­щищенный канал в течении времени T не выйдет из строя, равна 0.95, для незащищенного канала - 0.8. Найти ве­роятность того, что случайно выбранные два канала не выйдут из строя в течение времени T , причем оба канала не защищены от воздействия помех.

Решение. Пусть событие A - оба канала не выйдут из строя в течение времени t, событие A1 - Выбран защищен­ный канал, A2 - Выбран незащищенный канал.

Запишем пространство элементарных событий для опыта - {выбрано два канала}:

Ω = {A1A1, A1A2, A2A1, A2A2}

Гипотезы:

H1 - оба канала защищены от воздействия помех;

H2 - первый выбранный канал защищен, второй вы­бранный канал не защищен от воздействия помех;

H3 - первый выбранный канал не защищен, второй выбранный канал защищен от воздействия помех;

H4 - оба выбранных канала не защищены от помех. Тогда

И

Задача. 1.5.1 По каналу связи передается 6 Сообщений. Каждое из сообщений может быть искажено помехами с вероятностью 0.2 Независимо от других. Найти вероят­ность того, что

1. 4 сообщения из 6 не искажены;

2. Не менее 3 из 6 переданы искаженными;

3. Хотя бы одно сообщение из 6 искажено;

4. Не более 2 из 6 не искажены;

5. Все сообщения переданы без искажения.

Решение. Так как вероятность искажения 0.2, то вероят­ность передачи сообщения без помех - 0.8.

1. Используя формулу Бернулли (1.17), найдем вероят­
ность передачи 4 сообщений из 6 без помех:

2. не менее 3 из 6 переданы искаженными:

3. хотя бы одно сообщение из 6 искажено:

4. хотя бы одно сообщение из 6 искажено:

5. все сообщения переданы без искажения:

Задача. 1.5.2 Вероятность того, того, что летом день будет ясным, равна 0.42; вероятность пасмурного дня рав­на 0.36 и переменной облачности - 0.22. Сколько дней из 59 можно ожидать ясных и пасмурных?

Решение. Из условия задачи видно, что надо искать наи­более вероятное число ясных и пасмурных дней.

Для ясных дней P = 0.42, N = 59. Составляем неравен­ства (1.20):

59 0.42 + 0.42 - 1 < m0 < 59 0.42 + 0.42.

24.2 ≤ Mo ≤ 25.2 → Mo = 25.

Для пасмурных дней P = 0.36, N = 59 и

0.36 59 + 0.36 - 1 ≤ M 0 ≤ 0.36 59 + 0.36;

Следовательно 20.16 ≤ M 0 ≤ 21.60; → M 0 = 21.

Таким образом, наиболее вероятное число ясных дней Mo =25, пасмурных дней - M0 = 21. Тогда летом можно ожи­дать Mo + M0 =46 ясных и пасмурных дней.

Задача. 1.5.3 На лекции по теории вероятностей при­сутствует 110 студентов курса. Найти вероятность того что

1. k студентов (k = 0,1,2) из присутствующих родились первого сентября;

2. хотя бы один студент курса родился первого сентя­бря.

P =1/365 очень мала, поэтому используем фор­мулу Пуассона (1.22). Найдем параметр Пуассона. Так как

N = 110, то λ = np = 110 1 /365 = 0.3.

Тогда по формуле Пуассона

Задача. 1.5.4 Вероятность того, что деталь не стан­дартная, равна 0.1. Сколько деталей нужно отобрать, чтобы с вероятностью P = 0.964228 Можно было утвер­ждать, что относительная частота появления нестан­дартных деталей отклоняется от постоянной вероятно­сти p = 0.1 По абсолютной величине не более, чем на 0.01 ?

Решение.

Требуемое число N Найдем по формуле (1.25). Имеем:

P = 1.1; q = 0.9; P = 0.96428. Подставим данные в формулу:

Откуда находим

По таблице значений функции Φ(X ) находим, что

Задача. 1.5.5 Вероятность выхода из строя за время Т одного конденсатора равна 0.2. Определить вероятность того, что за время Т из 100 конденсаторов выйдут из строя

1. Ровно 10 конденсаторов;

2. Не менее 20 конденсаторов;

3. Менее 28 конденсаторов;

4. От 14 до 26 конденсаторов.

Решение. Имеем П = 100, P = 0.2, Q = 1 - P = 0.8.

1. Ровно 10 конденсаторов.

Так как П Велико, воспользуемся локальной теоремой Муавра - Лапласа:

Вычислим

Так как функция φ(х) - четная, то φ(-2,5) = φ(2,50) = 0,0175 (находим по таблице значений функции φ(х). Искомая вероятность

2. Не менее 20 конденсаторов;

Требование, чтобы из 100 конденсаторов из строя вы­шли не менее 20, означает, что из строя выйдут либо 20, либо 21, ..., либо 100. Таким образом, Т1 = 20, Т 2 =100. Тогда

По таблице значений функции Φ(x) Найдем Φ(x1) = Φ(0) = 0, Φ(x2) = Φ(20) = 0.5. Искомая вероятность:

3. Менее 28 конденсаторов;

(здесь было учтено, что функция Лапласа Ф(x) - нечет­ная).

4. От 14 до 26 конденсаторов. По условию M1= 14, m2 = 26.
Вычислим x 1,x2:

Задача. 1.5.6 Вероятность появления некоторого собы­тия в одном опыте равна 0.6. Какова вероятность, что это событие появиться в большинстве из 60 опытов?

Решение. Количество M Появлений события в серии ис­пытаний находится в промежутке . «В большинстве опытов» означает, что M Принадлежит промежутку По условию N = 60, P = 0.6, Q = 0.4, M 1 = 30, m2 = 60. Вычислим x1 и x2:

Случайные величины и их распределения

Задача. 2.1.1 Дана таблица, где в верхней строке указа­ны возможные значения случайной величины X, а в нижней - их вероятности.

Может ли эта таблица быть рядом распределения X?

Ответ: Да, так как p1 + p2 + p3 + p4 + p5 = 1

Задача. 2.1.2 Выпущено 500 Лотерейных билетов, причем 40 Билетов принесут их владельцам выигрыш по 10000 Руб., 20 Билетов - по 50000 Руб., 10 Билетов - по 100000 Руб., 5 Билетов - по 200000 Руб., 1 Билет - 500000 Руб., осталь­ные - без выигрыша. Найти закон распределения выигры­ша для владельца одного билета.

Решение.

Возможные значения X: x5 = 10000, x4 = 50000, x3 = 100000, x2 = 200000, x1 = 500000, x6 = 0. Вероятности этих возможных значений:

Искомый закон распределения:

Задача. 2.1.3 Стрелок, имея 5 Патронов, стреляет до первого попадания в цель. Вероятность попадания при каждом выстреле равна 0.7. Построить закон распределе­ния числа использованных патронов, найти функцию рас­пределения F (X ) и построить ее график, найти P(2 < x < 5).

Решение.

Пространство элементарных событий опыта

Ω = {1, 01, 001, 0001, 00001, 11111},

Где событие {1} - попал в цель, событие {0} - не попал в цель. Элементарным исходам соответствуют следующие значения случайной величины числа использованных па­тронов: 1, 2, 3, 4, 5. Так как результат каждого следующего выстрела не зависит от предыдущего, то вероятности воз­можных значений:

P1 = P(x1 = 1) = P(1) = 0.7; P2 = P(x2 = 2) = P(01) = 0.3 · 0.7 = 0.21;

P3 = P(x3 = 3) = P(001) = 0.32 · 0.7 = 0.063;

P4 = P(x4 = 4) = P(0001) = 0.33 · 0.7 = 0.0189;

P5 = P(x5 = 5) = P(00001 + 00000) = 0.34 · 0.7 + 0.35 = 0.0081.

Искомый закон распределения:

Найдем функцию распределения F (X ), Пользуясь формулой (2.5)

X ≤1, F(x) = P(X < x) = 0

1 < x ≤2, F(x) = P(X < x) = P1 (X1 = 1) = 0.7

2 < x ≤ 3, F(x) = P1 (X = 1) + P2(x = 2) = 0.91

3 < x ≤ 4, F(x) = P1 (x = 1) + P2(x = 2) + P3(x = 3) =

= 0.7 + 0.21 + 0.063 = 0.973

4 < x ≤ 5, F(x) = P1(x = 1) + P2(x = 2) + P3(x = 3) +

+ P4(x = 4) = 0.973 + 0.0189 = 0.9919

X > 5, F (x) = 1

Найдем P(2 < x < 5). Применим формулу (2.4): P(2 < X < 5) = F(5) - F (2) = 0.9919 - 0.91 = 0.0819

Задача. 2.1.4 Дана F (X ) некоторой случайной величины:

Записать ряд распределения дляX.

Решение.

Из свойств F (X ) Следует, что возможные значения слу­чайной величины X - Точки разрыва функции F (X ), А со­ответствующие им вероятности - скачки функции F (X ). Находим возможные значения случайной величины X={0,1,2,3,4}.

Задача. 2.1.5 Установить, какая из функций

Является функцией распределения некоторой случайной величины.

В случае утвердительного ответа, найти вероят­ность того, что соответствующая случайная величина принимает значения на [-3,2].

Решение. Построим графики функций F1(x) и F2(x):

Функция F2(x) не является функцией распределения, так как не является неубывающей. Функция F1(x) является

Функцией распределения некоторой случайной величины, так как является неубывающей и удовлетворяет условию (2.3). Найдем вероятность попадания на промежуток:

Задача. 2.1.6 Дана плотность вероятности непрерывной случайной величины X:

Найти:

1. Коэффициент C;

2. Функцию распределения F(x);

3. Вероятность попадания случайной величины в интер­вал (1, 3).

Решение. Из условия нормировки (2.9)находим

Следовательно,

По формуле (2.10) находим:

Таким образом,

По формуле (2.4) находим

Задача. 2.1.7 Случайное время простоя радиоэлектрон­ной аппаратуры в ряде случаев имеет плотность вероят­ности

Где M = lge = 0.4343...

Найти функцию распределения F(x).

Решение. По формуле (2.10) находим

Где

Задача. 2.2.1 Дан ряд распределения дискретной случай­ной величины X:

Найти математическое ожидание, дисперсию, сред­нее квадратичное отклонение, M, D[-3X + 2].

Решение.

По формуле (2.12) находим математическое ожидание:

M[X] = x1p1 + x2p2 + x3p3 + x4p4 = 10 · 0.2 + 20 · 0.15 + 30 · 0.25 + 40 · 0.4 = 28.5

M = 2M[X] + M = 2M[X] + 5 = 2 · 28.5 + 5 = 62. По формуле (2.19) найдем дисперсию:

Задача. 2.2.2 Найти математическое ожидание, диспер­сию и среднее квадратичное отклонение непрерывной слу­чайной величины X, функция распределения которой

.

Решение. Найдем плотность вероятности:

Математическое ожидание найдем по формуле (2.13):

Дисперсию найдем по формуле (2.19):

Найдем сначала математическое ожидание квадрата случайной величины:

Среднее квадратичное отклонение

Задача. 2.2.3 X имеет ряд распределения:

Найти математическое ожидание и дисперсию случайной величины Y = EX.

Решение. M [ Y ] = M[ EX] = e -- 1 · 0.2 + e0 · 0.3 + e1 · 0.4 + e2 · 0.1 =

0.2 · 0.3679 + 1 · 0.3 + 2.71828 · 0.4 + 7.389 · 0.1 = 2.2.

D[Y] = D = M[(eX)2 - M2 [E X] =

[(e-1)2 0.2 + (e0)2 0.3 + (e1)2 0.4 + (e2)2 0.1] - (2.2)2 =

= (e--2 0.2 + 0.3 + e2 0.4 + e4 0.1) - 4.84 = 8.741 - 4.84 = 3.9.

Задача. 2.2.4 Дискретная случайная величина X Может принимать только два значения X1 И X2, причем X1 < x2. Известны вероятность P1 = 0.2 Возможного значения X1, математическое ожидание M[X] = 3.8 И дисперсия D[X] = 0.16. Найти закон распределения случайной величины.

Решение. Так как случайная величина X принимает толь­ко два значения x1 и x2, то вероятность p2 = P(X = x2) = 1 - p1 = 1 - 0.2 = 0.8.

По условию задачи имеем:

M[X] = x1p1 + x2p2 = 0.2x1 + 0.8x2 = 3.8;

D[X] = (x21p1 + x22p2) - M2[X] = (0.2x21 + 0.8x22) - (0.38)2 = 0.16.

Таким образом получили систему уравнений:

Условию x1

Задача. 2.2.5 Случайная величина X подчинена закону распределения, график плотности которого имеет вид:

Найти математическое ожидание, дисперсию и сред­нее квадратичное отклонение.

Решение. Найдем дифференциальную функцию распре­деления f(x). Вне интервала (0, 3) f(x) = 0. На интервале (0, 3) график плотности есть прямая с угловым коэффици­ентом k = 2/9, проходящая через начало координат. Таким образом,

Математическое ожидание:

Найдем дисперсию и среднее квадратичное отклоне­ние:

Задача. 2.2.6 Найти математическое ожидание и дис­персию суммы очков, выпадающих на четырех игральных кубиках при одном бросании.

Решение. Обозначим A - число очков на одном кубике при одном бросании, B – число очков на втором кубике, C - на третьем кубике, D - на четвертом кубике. Для случайных ве­личин A, B, C, D за­кон распределения один.

Тогда M[A] = M[B] = M[C] = M[D] = (1+2+3+4+5+6) / 6 = 3.5

Задача. 2.3.1 Вероятность того, что частица, вылетев­шая из радиоактивного источника, будет зарегистриро­вана счетчиком, равна 0.0001. За время наблюдения из ис­точника вылетело 30000 Частиц. Найти вероятность то­го, что счетчик зарегистрировал:

1. Ровно 3 частицы;

2. Ни одной частицы;

3. Не менее 10 частиц.

Решение. По условию П = 30000, P = 0.0001. События, со­стоящие в том, что частицы, вылетевшие из радиоактив­ного источника, зарегистрированы, независимы; число П Велико, а вероятность P Мала, поэтому воспользуемся рас­пределением Пуассона:Найдем λ: λ = п P = 30000 0.0001 = 3 = М[Х]. Искомые вероятности:

Задача. 2.3.2 В партии 5% нестандартных деталей. На­удачу отобраны 5 деталей. Написать закон распределе­ния дискретной случайной величины X - числа нестан­дартных деталей среди пяти отобранных; найти мате­матическое ожидание и дисперсию.

Решение. Дискретная случайная величина X - число нестандартных деталей - имеет биномиальное распреде­ление и может принимать следующие значения: x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 4, x6 = 5. Вероятность нестандарт­ной детали в партии p = 5/100 = 0.05. Найдем вероятности этих возможных значений:

Напишем искомый закон распределения:

Найдем числовые характеристики:

0 0.7737809 + 1 0.2036267 + 2 0.0214343+

3 0.0011281 + 4 0.0000297 + 5 0.0000003 = 0.2499999 ≈ 0.250

M[X] = N p = 5 0.05 = 0.25.

D[X] = M M 2 [X] = 02 0.7737809 + 12 0.2036267+

22 0.0214343 + 32 0.0011281 + 42 0.0000297 + 52 0.0000003- 0.0625 =

0.2999995 - 0.0625 = 0.2374995 ≈ 0.2375

Или D [ X ] = n p (1 - P) = 5 0.05 0.95 = 0.2375.

Задача. 2.3.3 Время обнаружения цели радиолокатором распределено по показательному закону

Где 1/ λ = 10 Сек. - среднее время обнаружения цели. Найти вероятность того, что цель будет обнаружена за время от 5 До 15 Сек. после начала поиска.

Решение. Вероятность попадания случайной величины X В интервал (5, 15) Найдем по формуле (2.8):

ПриПолучаем

0.6065(1 - 0.3679) = 0.6065 0.6321 = 0.3834

Задача. 2.3.4 Случайные ошибки измерения подчинены нормальному закону с параметрами a = 0, σ = 20 Мм . За­писать дифференциальную функцию распределения F (X ) и найти вероятность того, что при измерении допущена ошибка в интервале от 5 До 10 Мм .

Решение. Подставим значения параметров a и σ в диффе­ренциальную функцию распределения (2.35):

По формуле (2.42) найдем вероятность попадания слу­чайной величины X В интервале , т. е. A = 0, B = 0.1. То­гда дифференциальная функция распределения F(x) Будет иметь вид