Здоровье        18.01.2024   

Случайная последовательность прямоугольных импульсов. Спектральный состав последовательности прямоугольных импульсов при различном периоде их скважности. Спектр периодической последовательности прямоугольных импульсов

С выхода источника сообщений поступают сигналы, несущие информацию, а также тактовые, используемые для синхронизации работы передатчика и приемника системы передачи. Информационные сигналы имеют вид непериодической, а тактовые- периодическойпоследовательности импульсов.

Для правильной оценки возможности передачи таких импульсов по каналам связи определим их спектральный состав. Периодический сигнал в виде импульсов любой формы можно разложить в ряд Фурье согласно (7).

Для передачи по воздушным и кабельным линиям связи применяются сигналы различной формы. Выбор той или иной формы зависит от характера передаваемых сообщений, частотного спектра сигналов, частотных ивременных параметров сигналов. Большое применение в технике передачи дискретных сообщений получили сигналы, близкие по форме к прямоугольным импульсам.

Вычислим спектр, т.е. совокупность амплитуд постоянной и

гармонических составляющих периодических прямоугольных импульсов (рисунок 4,а) длительностью и периодом. Поскольку сигнал является четной функцией времени, то в выражении (3) все четные гармонические составляющие обращаются в нуль (=0), а нечетные составляющие принимают значения:

(10)

Постоянная составляющая равна

(11)

Для сигнала 1:1 (телеграфные точки) рисунок 4а:

,
. (12)

Модули амплитуд спектральных составляющих последовательности прямоугольных импульсов с периодом
приведены на рис. 4,б. По оси абсцисс отложены основная частота повторения импульсов
() и частоты нечетных гармонических составляющих
,
и т.д. Огибающая спектра изменяется по закону.

При увеличении периода ,по сравнению с длительностью импульса,число гармонических составляющих в спектральном составе периодического сигнала увеличиваются. Например, для сигнала с периодом (рисунок 4,в)получаем, что постоянная составляющая равнаи

В полосе частот от нуля до частотырасполагается пять гармоническихсоставляющих (рисунок 4,г), в то время как прилишь одна.

При дальнейшем увеличении периода повторения импульсов число гармонических составляющих становится все больше и больше. В предельном случае когда
сигнал становится непериодической функцией времени, число его гармонических составляющих в полосе частот от нуля до частотыувеличивается до бесконечности; расположены они будут набесконечноблизких расстояниях по частоте;спектр непериодического сигналастановится непрерывным.

Рисунок 4

2.4 Спектр одиночного импульса

Задан одиночный видеоимпульс (рисунок 5):

Рисунок 5

Метод рядов Фурье допускает глубокое и плодотворное обобщение, позволяющее получать спектральные характеристики непериодических сигналов. Для этого мысленно дополним одиночный импульс такими же импульсами, периодически следующими через некоторый интервал времени , и получим изученную ранее периодическую последовательность:

Представим одиночный импульс как сумму периодических импульсов с большим периодом .

, (14)

где - целые числа.

Для периодического колебания

. (15)

Для того, чтобы вернуться к одиночному импульсу, устремим к бесконечности период повторения: . При этом, очевидно:

, (16)

Обозначим

. (17)

Величиной называется спектральная характеристика (функция) одиночного импульса (прямое преобразование Фурье). Она зависит только от временного описания импульсаи в общем виде является комплексной:

, (18) где
; (19)

; (20)

,

где
- модуль спектральной функции (амплитудно-частотная характеристика импульса);

- фазовый угол, фазо-частотная характеристика импульса.

Найдем для одиночного импульса по формуле (8), используя спектральную функцию:

.

Если , получим:


. (21)

Полученное выражение называется обратным преобразованием Фурье.

Интеграл Фурье определяет импульс в виде бесконечной суммы бесконечно малых гармонических составляющих, расположенных на всех частотах.

На этом основании говорят о непрерывном (сплошном) спектре, которым обладает одиночный импульс.

Полная энергия импульса (энергия, выделяемая на активном сопротивлении Ом) равна

(22)

Изменяя порядок интегрирования, получим

.

Внутренний интеграл есть спектральная функция импульса , взятая при аргументе -, т.е. представляет собой комплексно сопряженную свеличину:

Следовательно

Квадрат модуля (произведение двух сопряженных комплексных чисел равно квадрату модуля).

В этом случае условно говорят, что спектр импульса является двусторонним, т.е. размещается в полосе частот от до.

Приведенное соотношение (23), устанавливающее связь между энергией импульса (на сопротивлении 1 Ом) и модулем его спектральной функции известно под названием равенство Парсеваля.

Оно утверждает, что энергия, заключенная в импульсе , равна сумме энергий всех составляющих его спектра. Равенство Парсеваля характеризует важное свойство сигналов. Если некоторая избирательная система пропускает только часть спектра сигнала, ослабляя другие её составляющие, то это означает, что часть энергии сигнала теряется.

Так как квадрат модуля является четной функцией переменной интегрирования , то удвоив значение интеграла можно ввести интегрирование в пределах от 0 до:

. (24)

При этом говорят, что спектр импульса размещается в полосе частот от 0 до и называется односторонним.

Подынтегральная величина в (23) называется энергетическим спектром (спектральная плотность энергии) импульса

Она характеризует распределение энергии по частоте, и её значение на частоте равно энергии импульса, приходящейся на полосу частот, равной 1 Гц. Следовательно, энергия импульса есть результат интегрирования энергетического спектра сигнала по всему диапазону частот отдо.Иначе говоря, энергия равна площади, заключённой между кривой, изображающей энергетический спектр сигнала и осью абсцисс.

Для оценки распределения энергии по спектру пользуются относительной интегральной функцией распределения энергии (энергетической характеристикой)

, (25)

где
- энергия импульса в заданной полосе частот от 0 до, которая характеризует долю энергии импульса, сосредоточенную в интервале частот от 0 до.

Для одиночных импульсов различной формы выполняются следующие закономерности:


Спектральный анализ периодических сигналов

Как известно, любой сигнал S(t), описываемый периодической функцией времени, удовлетворяющей условиям Дирихле (модели реальных сигналов им удовлетворяют), можно представить в виде суммы гармонических колебаний, называемой рядом Фурье:

где - среднее значение сигнала за период или постоянная составляющая сигнала;

Коэффициенты ряда Фурье;

Основная частота (частота первой гармоники); n=1,2,3,…

Совокупность значений An и n (или при разложении по синусоидальным функциям n) называется спектром периодической функции. Амплитуды гармоник An характеризуют амплитудный спектр, а начальные фазы n (или "n) - фазовый спектр.

Таким образом, спектр периодического сигнала представляется в виде постоянной составляющей и бесконечного числа гармонических колебаний (синусоидальных или косинусоидальных) с соответствующими амплитудами и начальными фазами. Частоты всех гармоник кратны основной частоте. Это означает, что если периодический сигнал следует с частотой, например, 1 кГц, то в его спектре могут быть только частоты 0кГц, 1 кГц, 2 кГц и т.д. В спектре такого периодического сигнала не могут присутствовать, например, частоты 1,5 кГц или 1,2 кГц.

На рис. 1. приведены амплитудный и фазовый спектры некоторого периодического сигнала. Каждая гармоническая составляющая изображена вертикальными отрезки, длины которых (в некотором масштабе) равны ее амплитуде и фазе. Как видно, спектр периодического сигнала является дискретным или, как говорят, линейчатым.

С целью упрощения расчетов часто используют вместо тригонометрической формы записи ряда Фурье комплексную форму его записи, коэффициенты которой объединяют коэффициенты An и n:


Совокупность комплексных амплитуд n называют комплексным спектром периодического сигнала.

Расчет спектров сигналов в комплексной области значительно проще, поскольку нет необходимости рассматривать отдельно коэффициенты и тригонометрической формы записи ряд Фурье.

Спектр периодической последовательности прямоугольных импульсов

Прежде чем рассмотреть спектр периодической последовательности прямоугольных импульсов, рассмотрим параметры этих импульсов.

Параметрами одиночного импульса являются амплитуда, длительность импульса, длительность фронта, длительность спада, спад (скол) плоской вершины.

Амплитуда импульса Um измеряется в вольтах.

Длительность импульса измеряется по основанию, на уровнях 0,1Um или 0,5Um. В последнем случае длительность импульса называется активной. Измеряется длительность импульса в единицах времени.

Длительность фронта tф и спада tс измеряется либо на уровне 0 - Um, либо на уровне (0,1-0,9)Um. В последнем случае длительность фронта и спада называют активными.

Скол плоской вершины характеризуется коэффициентом скола? = ?u/Um,

где?u - значение скола; Um - амплитуда импульса.

Параметрами серии импульсов являются период повторения T, частота следования f, скважность Q, коэффициент заполнения, средние значения напряжения Uср и среднее значение мощности Pср.

Период повторения T = tи +tп, где T - период, tи - длительность импульса, tп - длительность паузы. Измеряются T, tи, и tп в единицах времени.

Частота следования f = 1/T измеряется в герцах и т.д.

Скважность Q = T/tи - величина безразмерная.

Коэффициент заполнения = tи/T - величина безразмерная.

Среднее значение напряжения

Перейдем к рассмотрению амплитудного и фазового спектров сигнала в виде периодической последовательности прямоугольных импульсов длительностью и амплитудой Um, следующих с периодом T (рис. 2).


Рассмотрим случай, когда середина импульса является началом отсчета времени. Тогда на периоде сигнал описывается выражением

Комплексные амплитуды гармонических составляющих.

Функция является знакопеременной и меняет свой знак на обратный при изменении аргумента n1 на величину?щ = 2р/ф, что соответствует приращению фазы на.

где k - порядковый номер интервала на шкале частот, отсчитываемый с нулевой частоты.

Таким образом, амплитуды гармоник, включая постоянную составляющую, определяются выражением:

а фазы - выражением =1, 2,3,…

Функция характеризует изменение амплитудного спектра сигнала в зависимости от частоты. Она обращается в нуль, при значениях её аргумента, кратных. Отсюда следует, что гармоники с номером n = , где = 1,2,3,…будут иметь нулевые амплитуды, т.е. отсутствовать в спектре.

Как известно, отношение называется скважностью последовательности импульсов. Таким образом, в спектре рассматриваемой последовательности будут отсутствовать гармоники, номера которой кратны скважности.

Если начало отсчета времени связать с началом импульса, то амплитудный спектр останется без изменений, а фазы гармоник в соответствии со свойством преобразования Фурье получат дополнительный фазовый сдвиг nщ1ф/2. В результате

Выражения для тригонометрической формы записи ряда Фурье при отсчете времени от середины и начала импульса соответственно имеют вид:


На рис. 3. приведены амплитудные и фазовые спектры рассматриваемой последовательности прямоугольных импульсов при скважности, равной двум.

Фазовые спектры показаны соответственно при отсчете времени от середины и начала импульса. Пунктирные линии на амплитудных спектрах характеризуют поведение модуля спектральной плотности одиночного импульса.

Выражение для значений амплитуд и фаз гармоник легко получить в виде, удобном для расчетов. Так при отсчете времени от середины импульса для скважности, равной двум, имеем

Литература: [Л.1], с 40

В качестве примера приведем разложение в ряд Фурье периодической последовательности прямоугольных импульсов с амплитудой , длительностью и периодом следования , симметричной относительно нуля, т.е.

, (2.10)

Здесь

Разложение такого сигнала в ряд Фурье дает

, (2.11)

где – скважность.

Для упрощения записи можно ввести обозначение

, (2.12)

Тогда (2.11) запишется следующим образом

, (2.13)

На рис. 2.3 изображена последовательность прямоугольных импульсов. Спектр последовательности, как впрочем, и любого другого периодического сигнала, носит дискретный (линейчатый) характер.

Огибающая спектра (рис. 2.3, б) пропорциональна . Расстояние по оси частот между двумя соседними составляющими спектра равно , а между двумя нулевыми значениями (ширина лепестка спектра) – . Число гармонических составляющих в пределах одного лепестка, включая правое по рисунку нулевое значение, составляет , где знак означает округление до ближайшего целого числа, меньшего (если скважность – дробное число), или (при целочисленном значении скважности). При увеличении периода основная частота уменьшается, спектральные составляющие на диаграмме сближаются, амплитуды гармоник также уменьшаются. При этом форма огибающей сохраняется.

При решении практических задач спектрального анализа вместо угловых частот используют циклические частоты , измеряемые в Герцах. Очевидно, расстояние между соседними гармониками на диаграмме составит , а ширина одного лепестка спектра – . Эти значения представлены на диаграмме в круглых скобках.

В практической радиотехнике в большинстве случаев вместо спектрального представления (рис. 2.3, б) используют спектральные диаграммы амплитудного и фазового спектров. Амплитудный спектр последовательности прямоугольных импульсов представлен на рис. 2.3, в.

Очевидно, огибающая амплитудного спектра пропорциональна .

Что же касается фазового спектра (рис. 2.3, г), то полагают, что начальные фазы гармонических составляющих изменяются скачком на величину при изменение знака огибающей sinc kπ/q . Начальные фазы гармоник первого лепестка, полагаются равными нулю. Тогда начальные фазы гармоник второго лепестка составят φ = -π , третьего лепестка φ = -2π и т.д.

Рассмотрим еще одно представление сигнала рядом Фурье. Для этого воспользуемся формулой Эйлера

.

В соответствии с этой формулой k-ю составляющую (2.9) разложения сигнала в ряд Фурье можно представить следующим образом

; . (2.15)

Здесь величины и являются комплексными и представляют собой комплексные амплитуды составляющих спектра. Тогда ряд

Фурье (2.8) с учетом (2.14) примет следующую форму

, (2.16)

, (2.17)

Нетрудно убедиться в том, что разложение (2.16) проводится по базисным функциям , которые также являются ортогональными на интервале , т.е.

Выражение (2.16) представляет собой комплексную форму ряда Фурье, которая распространяется на отрицательные частоты. Величины и , где означает комплексную сопряженную с величину, называются комплексными амплитудами спектра. Т.к. является комплексной величиной, из (2.15) следует, что

и .

Тогда совокупность составляет амплитудный, а совокупность – фазовый спектр сигнала .

На рис. 2.4 представлена спектральная диаграмма спектра рассмотренной выше последовательности прямоугольных импульсов, представленного комплексным рядом Фурье

Спектр также носит линейчатый характер, но в отличие от ранее рассмотренных спектров определяется как в области положительных, так и в области отрицательных частот. Поскольку является чётной функцией аргумента , спектральная диаграмма симметрична относительно нуля.

Исходя из (2.15) можно установить соответствие между и коэффициентами и разложения (2.3). Так как

и ,

то в результате получим

. (2.18)

Выражения (2.5) и (2.18) позволяют найти значения при практических расчетах.

Дадим геометрическую интерпретацию комплексной формы ряда Фурье. Выделим k-тую составляющую спектра сигнала. В комплексной форме k-я составляющая описывается формулой

где и определятся выражениями (2.15).

В комплексной плоскости каждое из слагаемых в (2.19) изображается в виде векторов длиной , повернутых на угол и относительно вещественной оси и вращающихся в противоположных направлениях с частотой (рис. 2.5).

Очевидно, сумма этих векторов дает вектор, расположенный на вещественной оси, длина которого составляет . Но этот вектор соответствует гармонической составляющей

Что касается проекций векторов на мнимую ось, то эти проекции имеют равную длину, но противоположные направления и в сумме дают ноль. А это значит, что сигналы, представленные в комплексной форме (2.16) в действительности являются вещественными сигналами. Иными словами, комплексная форма ряда Фурье является математической абстракцией, весьма удобной при решении целого ряда задач спектрального анализа. Поэтому, иногда спектр, определяемый тригонометрическим рядом Фурье, называют физическим спектром , а комплексной формой ряда Фурье – математическим спектром .

И в заключение рассмотрим вопрос распределения энергии и мощности в спектре периодического сигнала. Для этого воспользуемся равенством Парсеваля (1.42). При разложении сигнала в тригонометрический ряд Фурье выражение (1.42) принимает вид

.

Энергия постоянной составляющей

,

а энергия k-той гармоники

.

Тогда энергия сигнала

. (2.20)

Т.к. средняя мощность сигнала

,

то с учетом (2.18)

. (2.21)

При разложение сигнала в комплексный ряд Фурье выражение (1.42) имеет вид

,

где
- энергия k-той гармоники.

Энергия сигнала в этом случае

,

а его средняя мощность

.

Из приведенных выражений следует, что энергия или средняя мощность k-той спектральной составляющей математического спектра вдвое меньше энергии или мощности соответствующей спектральной составляющей физического спектра. Это обусловлено тем, что физического спектра распределяется поровну между и математического спектра.

-τ и /2
τ и /2
Т
t
U 0
S(t)

Задание №1, группа РИ – 210701

В данном выражении

функция sinc, как показано на рис. 2.6, достигает максимума (единицы) при у = 0и стремится к нулю при у ® ±¥, осциллируя с постепенно уменьшающейся амплитудой. Через нуль она проходит в точках у = ±1, ±2, …. На рис. 2.7, а как функция отношения п/Т 0 показан амплитудный спектр последовательности импульсов |с n |, а на рис. 2.7, б изображен фазовый спектр q n . Следует отметить, что положительные и отрицательные частоты двустороннего спектра - это полезный способ математического выражения спектра; очевидно, что в реальных условиях воспроизвести можно только положительные частоты.

Отношение

Идеальная периодическая последовательность импульсов включает все гармоники, кратные собственной частоте. В системах связи часто предполагается, что значительная часть мощности или энергии узкополосного сигнала приходится на частоты от нуля до первого нуля амплитудного спектра (рис. 2.7, а ). Таким образом, в качестве меры ширины полосы последовательности импульсов часто используется величина 1/T (где Т - длительность импульса). Отметим, что ширина полосы обратно пропорциональна длительности импульса; чем короче импульсы, тем более широкая полоса с ними связана. Отметим также, что расстояние между спектральными линиями Df = 1/Т 0 обратно пропорционально периоду импульсов; при увеличении периода линии располагаются ближе друг к другу.


Таблица 2.1. Фурье-образы

x (t ) X (f )
d(t )
d(f )
cos 2 pf 0 t /2
sin 2 pf 0 t /2
d(t - t 0)
d(f - f 0)
, a >0
exp(-at )u (t ), a >0
rect(t / T ) T sinc fT
W sinc Wt rect (f / W )

sinc x =


Таблица 2.2 Свойства преобразования Фурье f )

Свертка по частоте x 1 (t )x 2 (t ) X 1 (f )*X 2 (f )

Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов t u и максимальным значением . Найдем разложение в ряд такого сигнала, выбрав начало координат, как показано на рис. 15. При этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих =0, и нужно рассчитать только коэффициенты .

постоянная составляющая

(2.28)

Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса , деленная на весь период, т.е. , т.е. то же, что получилось и при строгом формальном вычислении (2.28).

Вспомним, что частота первой гармоники ¦ 1 = , где Т – период прямоугольного сигнала. Расстояние между гармониками D¦=¦ 1 . Если номер гармоники n окажется таким, что аргумент синуса , то амплитуда этой гармоники первый раз обращается в нуль. Это условие выполняется при . Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют «первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

С другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульса N=S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных p, то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть при , где k – любое целое число. Так, например, из (2.22) и (2.23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S=2 , то и N=2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 /U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.