Психология        23.01.2024   

Уравнения щелочных и щелочноземельных металлов. Оксиды щелочноземельных металлов. Взаимодействие со сложными веществами

Щелочными металлами (ЩМ) называют все элементы IA группы таблицы Менделеева, т.е. литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr.

У атомов ЩМ на внешнем электронном уровне находится только один электрон на s- подуровне, легко отрывающийся при протекании химических реакций. При этом из нейтрального атома ЩМ образуется положительно заряженная частица – катион с зарядом +1:

М 0 – 1 e → М +1

Семейство ЩМ является наиболее активным среди прочих групп металлов в связи с чем в природе обнаружить их в свободной форме, т.е. в виде простых веществ невозможно.

Простые вещества щелочные металлы являются крайне сильными восстановителями.

Взаимодействие щелочных металлов с неметаллами

с кислородом

Щелочные металлы реагируют с кислородом уже при комнатной температуре, в связи с чем их требуется хранить под слоем какого-либо углеводородного растворителя, такого как, например, керосина.

Взаимодействие ЩМ с кислородом приводит к разным продуктам. С образованием оксида, с киcлородом реагирует только литий:

4Li + O 2 = 2Li 2 O

Натрий в аналогичной ситуации образует с кислородом пероксид натрия Na 2 O 2:

2Na + O 2 = Na 2 O 2 ,

а калий, рубидий и цезий – преимущественно надпероксиды (супероксиды), общей формулы MeO 2:

Rb + O 2 = RbO 2

с галогенами

Щелочные металлы активно реагируют с галогенами, образуя галогениды щелочных металлов, имеющих ионное строение:

2Li + Br 2 = 2LiBr бромид лития

2Na + I 2 = 2NaI иодид натрия

2K + Cl 2 = 2KCl хлорид калия

с азотом

Литий реагирует с азотом уже при обычной температуре, с остальными же ЩМ азот реагирует при нагревании. Во всех случаях образуются нитриды щелочных металлов:

6Li + N 2 = 2Li 3 N нитрид лития

6K + N 2 = 2K 3 N нитрид калия

с фосфором

Щелочные металлы реагируют с фосфором при нагревании, образуя фосфиды:

3Na + P = Na 3 Р фосфид натрия

3K + P = K 3 Р фосфид калия

с водородом

Нагревание щелочных металлов в атмосфере водорода приводит к образованию гидридов щелочных металлов, содержащих водород в редкой степени окисления – минус 1:

Н 2 + 2K = 2KН -1 гидрид калия

Н 2 + 2Rb = 2RbН гидрид рубидия

с серой

Взаимодействие ЩМ с серой протекает при нагревании с образованием сульфидов:

S + 2K = K 2 S сульфид калия

S + 2Na = Na 2 S сульфид натрия

Взаимодействие щелочных металлов со сложными веществами

с водой

Все ЩМ активно реагируют с водой с образованием газообразного водорода и щелочи, из-за чего данные металлы и получили соответствующее название:

2HOH + 2Na = 2NaOH + H 2

2K + 2HOH = 2KOH + H 2

Литий реагирует с водой довольно спокойно, натрий и калий самовоспламеняются в процессе реакции, а рубидий, цезий и франций реагируют с водой с мощным взрывом.

с галогенпроизводными углеводородов (реакция Вюрца):

2Na + 2C 2 H 5 Cl → 2NaCl + C 4 H 10

2Na + 2C 6 H 5 Br → 2NaBr + C 6 H 5 –C 6 H 5

со спиртами и фенолами

ЩМ реагируют со спиртами и фенолами, замещая водород в гидроксильной группе органического вещества:

2CH 3 OH + 2К = 2CH 3 OК + H 2

метилат калия

2C 6 H 5 OH + 2Na = 2C 6 H 5 ONa + H 2

фенолят натрия

Химические свойства щелочных и щелочноземельных металлов схожи. На внешнем энергетическом уровне щелочных металлов находится один электрон, щелочноземельных - два. При реакциях металлы легко расстаются с валентными электронами, проявляя свойства сильного восстановителя.

Щелочные

В I группу периодической таблицы входят щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

Рис. 1. Щелочные металлы.

Они отличаются мягкостью (можно разрезать ножом), низкими температурами плавления и кипения. Это наиболее активные металлы.

Химические свойства щелочных металлов представлены в таблице.

Реакция

Особенности

Уравнение

С кислородом

Быстро окисляются на воздухе. Литий образует оксид при температуре выше 200°C. Натрий образует смесь - 80 % пероксида (R 2 O 2) и 20 % оксида. Остальные металлы образуют надпероксиды (RO 2)

4Li + O 2 → 2Li 2 O;

2Na + О 2 → Na 2 O 2 ;

Rb + O 2 → RbO 2

Реагирует только литий при комнатной температуре

6Li + N 2 → 2Li 3 N

С галогенами

Реакция проходит бурно

2Na + Cl 2 → 2NaCl

С неметаллами

При нагревании. Образуют сульфиды, гидриды, фосфиды, силициды. С углеродом реагируют только литий и натрий, образуя карбиды

2K + S → K 2 S;

2Na + H 2 → 2NaH;

2Cs + 5P → Cs 2 P 5 ;

Rb + Si → RbSi;

2Li + 2C → Li 2 C 2

Спокойно реагирует только литий. Натрий горит жёлтым пламенем. Калий реагирует со вспышкой. Цезий и рубидий взрываются

2Na + 2H 2 O → 2NaOH + H 2 -

С кислотами

С соляной, фосфорной, разбавленной серной кислотами реагируют с взрывом. При реакции с концентрированной серной кислотой выделяется сероводород, с концентрированной азотной кислотой образует оксид азота (I), с разбавленной азотной кислотой - азот

2Na + 2HCl → 2NaCl + H 2 ;

8Na + 5H 2 SO 4 (конц) → 4Na 2 SO 4 + H 2 S + 4H 2 O;

8K + 10HNO 3 (конц) → 8KNO 3 + N 2 O + 5H 2 O;

10Na + 12HNO 3 (разб) → N 2 + 10NaNO 3 + 6H 2 O

С аммиаком

Образуют амины

2Li + 2NH 3 → 2LiNH 2 + H 2

Могут реагировать с органическими кислотами и спиртами.

Щелочноземельные

Во II группе таблицы Менделеева находятся щелочноземельные металлы:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Рис. 2. Щелочноземельные металлы.

В отличие от щелочных металлов они более твёрдые. Ножом можно разрезать только стронций. Наиболее плотный металл - радий (5,5 г/см 3).

Бериллий взаимодействует с кислородом только при нагревании до 900°С. С водородом и водой не реагирует при любых условиях. Магний окисляется при температуре 650°С и взаимодействует с водородом под высоким давлением.

В таблице отражены основные химические свойства щелочноземельных металлов.

Реакция

Особенности

Уравнение

С кислородом

Образуют оксидные плёнки. При нагревании до 500°С самовоспламеняются

2Mg + O 2 → 2MgO

С водородом

При высокой температуре образуют гидриды

Sr + H 2 → SrH 2

С галогенами и неметаллами

Реагируют при нагревании

Be + Cl 2 → BeCl 2 ;

Mg + S → MgS;

3Ca + 2P → Ca 3 P 2 ;

3Ca + N 2 → Ca 3 N 2 ;

Ba + 2C → BaC 2

При комнатной температуре

Mg + 2H 2 O → Mg(OH) 2 + H 2

С кислотами

Реагируют все металлы с образованием солей

4Ca + 10HNO 3 (конц.) → 4Ca(NO 3) 2 + N 2 O + 5H 2 O

Со щелочами

Реагирует только бериллий

Be + 2NaOH + 2H 2 O → Na 2 + H 2

Замещение

Замещают менее активные металлы в оксидах. Исключение - бериллий

2Mg + ZrO 2 → Zr + 2MgO

Ионы щелочных и щелочноземельных металлов в солях легко обнаружить по изменению цвета пламени. Соли натрия горят жёлтым пламенем, калия - фиолетовым, рубидия - красным, кальция - кирпично-красным, бария - жёлто-зелёным. Соли этих металлов используют для создания фейерверков.

Рис. 3. Качественная реакция.

Что мы узнали?

Щелочные и щелочноземельные металлы - активные элементы периодической таблицы, вступающие в реакции с простыми и сложными веществами. Щелочные металлы более мягкие, бурно реагируют с водой и галогенами, легко окисляются на воздухе, образуя оксиды, пероксиды, надпероксиды, взаимодействуют с кислотами и аммиаком. При нагревании вступают в реакцию с неметаллами. Щелочноземельные металлы реагируют с неметаллами, кислотами, водой. Бериллий не взаимодействует с водородом и водой, но реагирует со щелочами и с кислородом при высокой температуре.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 106.

К понятию щелочноземельных металлов относится часть элементов II группы системы Менделеева: бериллий, магний, кальций, стронций, барий, радий. Четыре последних металла имеют наиболее ярко выраженные признаки щелочноземельной классификации, поэтому в некоторых источниках бериллий и магний не включают в список, ограничиваясь четырьмя элементами.

Свое название металла получили благодаря тому, что при взаимодействии их оксидов с водой образуется щелочная среда. Физические свойства щелочноземельных металлов: все элементы имеют серый металлический цвет, при нормальных условиях имеют твердую структуру, с ростом порядкового номера увеличивается их плотность, имеют очень высокую температуру плавления. В отличие от щелочных металлов, элементы данной группы не режутся ножом (за исключением стронция). Химические свойства щелочноземельных металлов: имеют два валентных электрона, активность растет с повышением порядкового номера, в реакциях выступают в качестве восстановителя.

Характеристика щелочноземельных металлов свидетельствует об их высокой активности. В особенности это относится к элементам с большим порядковым номером. Например, бериллий в нормальных условиях не ступает во взаимодействие с кислородом и галогенами. Для запуска механизма реагирования его необходимо нагреть до температуры свыше 600 градусов по Цельсию. Магний в нормальных условиях имеет на поверхности оксидную пленку и также не реагирует с кислородом. Кальций окисляется, но достаточно медленно. А вот стронций, барий и радий окисляются практически мгновенно, поэтому их хранят в безкислородной среде под керосиновым слоем.

Все оксиды усиливают основные свойства с ростом порядкового номера металла. Гидроксид бериллия представляет собой амфотерное соединение, которое не реагирует с водой, но хорошо растворяется в кислотах. Гидроксид магния является слабой щелочью, нерастворимой в воде, но реагирующей с сильными кислотами. Гидроксид кальция - сильное, малорастворимое в воде основание, реагирующее с кислотами. Гидроксиды бария и стронция относятся к сильным основаниям, хорошо растворимым в воде. А гидроксид радия - это одна из сильнейших щелочей, которая хорошо реагирует с водой и практически всеми видами кислот.

Способы получения

Получают гидроксиды щелочноземельных металлов путем воздействия воды на чистый элемент. Реакция протекает при комнатных условиях (кроме бериллия, для которого требуется повышение температуры) с выделением водорода. При нагревании все щелочноземельные металлы реагируют с галогенами. Полученные соединения используются в производстве большого ассортимента продукции от химических удобрений до сверхточных деталей микропроцессора. Соединения щелочноземельных металлов проявляют такую же высокую активность, как и чистые элементы, поэтому их используют во многих химических реакциях.

Чаще всего это происходит при реакциях обмена, когда необходимо вытеснить из вещества менее активный металл. В окислительно-восстановительных реакциях принимают участие в качестве сильного восстановителя. Двухвалентные катионы кальция и магния придает воде так называемую жесткость. Преодоление этого явления происходит путем осаждения ионов при помощи физического воздействия или добавления в воду специальных смягчающих веществ. Соли щелочноземельных металлов образуются путем растворения элементов в кислоте либо в результате реакций обмена. Полученные соединения имеют прочную ковалентную связь, поэтому обладают невысокой электропроводностью.

В природе щелочноземельные металлы не могут находиться в чистом виде, так как быстро вступают во взаимодействие с окружающей средой, образую химические соединения. Они входят в состав минералов и горных пород, содержащихся в толще земной коры. Наиболее распространен кальций, немного уступает ему магний, довольно часто встречаются барий и стронций. Бериллий относится к редким металлам, а радий - к очень редким. За все время, которое прошло с момента открытия радия, во всем мире было добыто всего полтора килограмма чистого металла. Как и большинство радиоактивных элементов, радий имеет изотопы, коих у него насчитывается четыре штуки.

Получают щелочноземельные металлы путем разложения сложных веществ и выделения из них чистого вещества. Бериллий добывают путем восстановления его из фторида при воздействии высокой температуры. Барий восстанавливает из его оксида. Кальций, магний и стронций получают путем электролиза их хлоридного расплава. Сложнее всего синтезировать чистый радий. Его добывают путем воздействия на урановую руду. По подсчетам ученых в среднем на одну тонну руды приходится 3 грамма чистого радия, хотя встречаются и богатые месторождения, в которых содержится целых 25 грамм на тонну. Для выделения металла используются методы осаждения, дробной кристаллизации и ионного обмена.

Применение щелочноземельных металлов

Спектр применения щелочноземельных металлов очень обширен и охватывает многие отрасли. Бериллий в большинстве случаев используется в качестве легирующей добавки в различные сплавы. Он повышает твердость и прочность материалов, хорошо защищает поверхность от воздействия коррозии. Также благодаря слабому поглощению радиоактивного излучения бериллий используется при изготовлении рентгеновских аппаратов и в ядерной энергетике.

Магний используют как один из восстановителей при получении титана. Его сплавы отличаются высокой прочностью и легкостью, поэтому используются при производстве самолетов, автомобилей, ракет. Оксид магния горит ярким ослепительным пламенем, что нашло отражение в военном деле, где он используется для изготовления зажигательных и трассирующих снарядов, сигнальных ракет и светошумовых гранат. Является одним из важнейших элементов для регуляции нормального процесса жизнедеятельности организма, поэтому входит в состав некоторых лекарств.

Кальций в чистом виде практически не применяют. Он нужен для восстановления других металлов из их соединений, а также в производстве препаратов для укрепления костной ткани. Стронций используют для восстановления других металлов и в качестве основного компонента для производства сверхпроводящих материалов. Барий добавляют во многие сплавы, которые предназначены для работы в агрессивной среде, так как он обладает отличными защитными свойствами. Радий используется в медицине для кратковременного облучения кожи при лечении злокачественных образований.

Свежая поверхность Э быстро темнеет вследствие образования оксидной пленки. Пленка эта относительно плотна - с течением времени весь металл медленно окисляется. Пленка состоит из ЭО, а также ЭО 2 и Э 3 N 2 . Нормальные электродные потенциалы реакций Э-2е = Э 2+ равны =-2,84В(Са), =-2,89(Sr). Э очень активные элементы: растворяются в воде и кислотах, вытесняют большинство металлов из их оксидов, галогенидов, сульфидов. Первично (200-300 о С) кальций взаимодействует с водяным паром по схеме:

2Са + Н 2 О = СаО + СаН 2 .

Вторичные реакции имеют вид:

CаН 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2 и СаО + Н 2 О = Са(ОН) 2 .

В крепкой серной кислоте Э почти не растворяются ввиду образования пленки из малорастворимых ЭSO 4 . С разбавленными минеральными кислотами Э реагируют бурно с выделением водорода. Кальций при нагревании выше 800 о С с метаном реагирует по схеме:

3Cа + СН 4 = СаН 2 + СаС 2 .

Э при нагревании реагируют с водородом, с серой и с газообразным аммиаком. По химическим свойствам радий ближе всего к Ва, но он более активен. При комнатной температуре он заметно соединяется с кислородом и азотом воздуха. В общем, его химические свойства немного более выражены чем у его аналогов. Все соединения радия медленно разлагаются под действием собственного излучения, приобретая при этом желто-ватую или коричневую окраску. Соединения радия обладают свойством автолюминесценции. В результате радиоактивного распада 1 г Ra каждый час выделяет 553,7 Дж тепла. Поэтому температура радия и его соединений всегда выше температуры окружающей среды на 1,5 град. Также известно, что 1 г радия в сутки выделяет 1 мм 3 радона(226 Ra = 222 Rn + 4 He), на чем основано его применение как источника радона для радоновых ванн.

Гидриды Э - белые, кристаллические солеобразные вещества. Их получают непосредственно из элементов при нагревании. Температуры начала реакции Э + Н 2 = ЭН 2 равны 250 о С (Са), 200 о С (Sr), 150 о С (Ва). Термическая диссоциация ЭН 2 начинается при 600 о С. В атмосфере водорода СаН 2 не разлагается при температуре плавления (816 о С). В отсутствии влаги гидриды щелочноземельных металлов устойчивы на воздухе при обычной температуре. Они не реагируют с галогенами. Однако при нагревании химическая активность ЭН 2 возрастает. Они способны восстанавливать оксиды до металлов(W, Nb, Ti, Се, Zr, Ta), например

2СаН 2 + ТiO 2 = 2CaO + 2H 2 + Ti.

Реакция СаН 2 с Al 2 O 3 идет при 750 о С:

3СаН 2 + Al 2 O 3 = 3СаО + 3Н 2 + 2Аl,

СаН 2 + 2Al = CaAl 2 + H 2 .

С азотом СаН2 при 600оС реагирует по схеме:

3СаН 2 + N 2 = Ca 3 N 2 +3H 2 .

При поджигании ЭН 2 они медленно сгорают:

ЭН 2 + О 2 = Н 2 О + СаО.

В смеси с твердыми окислителями взрывоопасны. При действии воды на ЭН 2 выделяется гидроокись и водород. Эта реакция сильно экзотермична: смоченный водой на воздухе ЭН 2 самовоспламеняется. С кислотами ЭН 2 реагирует, например по схеме:

2HCl + CaH 2 = CaCl 2 + 2H 2 .

ЭН 2 применяют для получения чистого водорода, а также для определения следов воды в органических растворителях. Нитриды Э представляют собой бесцветные тугоплавкие вещества. Они получаются непосредственно из элементов при повышенной температуре. Водой они разлагаются по схеме:

Э 3 N 2 + 6H 2 O = 3Э(ОН) 2 + 2NH 3 .

Э 3 N 2 реагируют при нагревании с СО по схеме:

Э 3 N 2 + 3СО = 3ЭО + N 2 + 3C.

Процессы которые происходят при нагревании Э 3 N 2 с углем выглядят так:

Э3N2 + 5С = ЭCN2 + 2ЭС2; (Э = Са, Sr); Ва3N2 + 6С = Ва(СN)2 + 2ВаC2;

Нитрид стронция реагирует с HCl, давая хлориды Sr и аммония. Фосфиды Э 3 Р 2 образуются непосредственно из элементов или прокаливанием трехзамещенных фосфатов с углем:

Cа 3 (РО 4) 2 + 4С = Са 3 Р 2 + 4СО

Они гидролизуются водой по схеме:

Э 3 Р 2 + 6Н 2 О = 2РН 3 + 3Э(ОН) 2 .

С кислотами фосфиды щелочноземельных металлов дают соответствующую соль и фосфин. На этом основано их применение для получения фосфина в лаборатории.

Комплексные аммиакаты состава Э(NН 3) 6 - твердые вещества с металлическим блеском и высокой электропроводностью. Их получают действием жидкого аммиака на Э. На воздухе они самовоспламеняются. Без доступа воздуха они разлагаются на соответствующие амиды: Э(NH 3) 6 = Э(NH 2) 2 + 4NH 3 + Н 2 . При нагревании они энергично разлагаются по этой же схеме.

Карбиды щелочноземельных металлов которые получаются прокаливанием Э с углем разлагаются водой с выделением ацетилена:

ЭС 2 + 2Н 2 О = Э(ОН) 2 + С 2 Н 2 .

Реакция с ВаС 2 идет настолько бурно, что он воспламеняется в контакте с водой. Теплоты образования ЭС 2 из элементов для Са и Ва равны 14 и 12 ккалмоль. При нагревании с азотом ЭС 2 дают СаСN 2 , Ba(CN) 2 , SrCN 2 . Известны силициды (ЭSi и ЭSi 2). Их можно получить при нагревании непосредственно из элеменов. Они гидролизуются водой и реагируют с кислотами, давая H 2 Si 2 O 5 , SiH 4 , соответствующее соединение Э и водород. Известны бориды ЭВ 6 получаемые из элементов при нагревании.

Окиси кальция и его аналогов - белые тугоплавкие(T кип СаО = 2850 о С) вещества, энергично поглощающие воду. На этом основано применение ВаО для получения абсолютного спирта. Они бурно реагируют с водой, выделяя много тепла (кроме SrO растворение которой эндотермично). ЭО растворяются в кислотах и хлориде аммония:

ЭО + 2NH 4 Cl = SrCl 2 + 2NH 3 + H 2 O.

Получают ЭО прокаливанием карбонатов, нитратов, перекисей или гидроксидов соответствующих металлов. Эффективные заряды бария и кислорода в ВаО равны 0,86. SrO при 700 о С реагирует с цианистым калием:

KCN + SrO = Sr + KCNO.

Окись стронция растворяется в метаноле с образованием Sr(ОСН 3) 2 . При магнийтермическом восстановлении ВаО может быть получен промежуточный окисел Ва 2 О, который неустойчив и диспропорционирует.

Гидроокиси щелочноземельных металлов - белые растворимые в воде вещества. Они являются сильными основаниями. В ряду Са-Sr-Ba основной характер и растворимость гидроокисей увеличиваются. рПР(Са(ОН) 2) = 5,26, рПР(Sr(ОН) 2) = 3,5, рПР(Bа(ОН) 2) = 2,3. Из растворов гидроокисей обычно выделяются Ва(ОН) 2 . 8Н 2 О, Sr(ОН) 2 . 8Н 2 О, Cа(ОН) 2 . Н 2 О. ЭО присоединяют воду с образованием гидроокисей. На этом основано использование СаО в строительстве. Тесная смесь Са(ОН) 2 и NaOH в весовом соотношении 2:1 носит название натронная известь, и широко используется как поглотитель СО 2 . Са(ОН) 2 при стоянии на воздухе поглощает СО 2 по схеме:

Ca(OH)2 + CO2 = CaCO3 + Н2О.

Около 400 о С Са(ОН) 2 реагирует с угарным газом:

СО + Ca(OH) 2 = СаСО 3 + Н 2 .

Баритовая вода реагирует с СS 2 при 100 о С:

СS 2 + 2Ва(ОН) 2 = ВаСО 3 + Ва(НS) 2 + Н 2 О.

Алюминий реагирует с баритовой водой:

2Al + Ba(OH) 2 + 10H 2 O = Ba 2 + 3H 2 . Э(ОН) 2

используются для открытия угольного ангидрида.

Э образуют перекиси белого цвета. Они существенно менее стабильны в отличие от окисей и являются сильными окислителями. Практическое значение имеет наиболее устойчивая ВаО 2 , которая представляет собой белый, парамагнитный порошок с плотностью 4,96 г1см 3 и т. пл. 450°. BaО 2 устойчива при обычной температуре (может храниться годами), плохо растворяется в воде, спирте и эфире, растворяется в разбавленных кислотах с выделением соли и перекиси водорода. Термическое разложение перекиси бария ускоряют окислы, Cr 2 O 3 , Fe 2 O 3 и CuО. Перекись бария реагирует при нагревании с водородом, серой, углеродом, аммиаком, солями аммония, феррицианидом калия и т. д. С концентрированной соляной кислотой перекись бария реагирует, выделяя хлор:

ВаO 2 + 4НСl = BaCl 2 + Cl 2 + 2H 2 O.

Она окисляет воду до перекиси водорода:

Н 2 О + ВаО 2 = Ва(ОН) 2 + Н 2 О 2 .

Эта реакция обратима и в присутствии даже угольной кислоты равновесие смещено вправо. ВаО 2 используется как исходный продукт для получения Н 2 О 2 , а также как окислитель в пиротехнических составах. Однако, ВаО 2 может выступать и в качестве восстановителя:

HgCl 2 + ВаО 2 = Hg + BaCl 2 + O 2 .

Получают ВаО 2 нагреванием ВаО в токе воздуха до 500 о С по схеме:

2ВаО + О 2 = 2ВаО 2 .

При повышении температуры имеет место обратный процесс. Поэтому при горении Ва выделяется только окись. SrO 2 и СаО 2 менее устойчивы. Общим методом получения ЭО 2 является взаимодействие Э(ОН) 2 с Н 2 О 2 , при этом выделяются ЭО 2 . 8Н 2 О. Термический распад ЭО 2 начинается при 380 о С (Са), 480 о С (Sr), 790 о С (Ва). При нагревании ЭО 2 с концентрированной перекисью водорода могут быть получены желтые неустойчивые вещества -- надпероксиды ЭО 4 .

Соли Э как правило бесцветны. Хлориды, бромиды, иодиды и нитраты хорошо растворимы в воде. Фториды, сульфаты, карбонаты и фосфаты плохо растворимы. Ион Ва 2+ - токсичен. Галиды Э делятся на две группы: фториды и все остальные. Фториды почти не растворимы в воде и кислотах, и не образуют кристаллогидратов. Напротив хлориды, бромиды, и иодиды хорошо растворимы в воде и выделяются из растворов в виде кристаллогидратов. Некоторые свойства ЭГ 2 представлены ниже:

При получении путем обменного разложения в растворе фториды выделяются в виде объемистых слизистых осадков, довольно легко образующих коллоидные растворы. ЭГ 2 можно получить действуя соответствующими галогенами на соответствующие Э. Расплавы ЭГ 2 способны растворять до 30% Э. При изучении электропроводности расплавов хлоридов элементов второй группы главной подгруппы было установлено, что их молекулярно-ионный состав очень различен. Степени диссоциации по схеме ЭСl 2 = Э 2+ + 2Cl- равны: BeCl 2 - 0,009%, MgCl 2 - 14,6%, CaCl 2 - 43,3%, SrCl 2 - 60,6%, BaCl 2 - 80,2%. Галогениды (кроме фторидов) Э содержат кристаллизационную воду: CaCl 2 . 6Н 2 О, SrCl 2 . 6Н 2 О и ВаCl 2 . 2Н 2 О. Рентгеноструктурным анализом установлено строение Э[(ОН 2) 6 ]Г 2 для кристаллогидратов Са и Sr. При медленном нагревании кристаллогидратов ЭГ 2 можно получить безводные соли. CaCl 2 легко образует пересыщенные растворы. Природный СаF 2 (флюорит) применяют в керамической промышленности, а также он используется для производства HF и является минералом фтора. Безводный CaCl 2 используют как осушитель ввиду его гидроскопичности. Кристаллогидрат хлористого кальция используют для приготовления холодильных смесей. ВаСl 2 - используют в сх и для открытия

SO 4 2- (Ва 2+ + SO 4 2- = ВаSO 4).

Сплавлением ЭГ2 и ЭН2 могут быть получены гидрогалиды:

ЭГ 2 + ЭН 2 = 2ЭНГ.

Эти вещества плавятся без разложения но гидролизуются водой:

2ЭНГ + 2H 2 O = ЭГ 2 + 2Н 2 + Э(ОН) 2 .

Растворимость в воде хлоратов , броматов и иодатов в воде уменьшается по рядам Сa - Sr - Ba и Cl - Br - I. Ba(ClO 3) 2 - используется в пиротехнике. Перхлораты Э хорошо растворимы не только в воде но и в органических растворителях. Наиболее важным из Э(ClO 4) 2 является Ва(ClO 4) 2 . 3Н 2 О. Безводный перхлорат бария является хорошим осушителем. Его термический распад начинается только при 400 о С. Гипохлорит кальция Са(СlO) 2 . nH 2 O (n=2,3,4) получают действием хлора на известковое молоко. Он является окислителем и хорошо растворим в воде. Хлорную известь можно получить действуя хлором на твердую гашеную известь. Она разлагается водой и пахнет хлором в присутствии влаги. Реагирует с СО 2 воздуха:

СО 2 + 2CaOCl 2 = CаСO 3 + CaCl 2 + Cl 2 O.

Хлорная известь применяется как окислитель, отбеливатель и как дезинфицирующее средство.

Для щелочноземельных металлов известны азиды Э(N 3) 2 и роданиды Э(CNS) 2 . 3Н 2 О. Азиды по сравнению с азидом свинца гораздо менее взрывоопасны. Роданиды при нагревании легко теряют воду. Они хорошо растворимы в воде и органических растворителях. Ва(N 3) 2 и Ba(CNS) 2 могут быть использованы для получения азидов и роданидов других металлов из сульфатов обменной реакцией.

Нитраты кальция и стронция существуют обычно в виде кристаллогидратов Са(NO 3) 2 . 4H 2 O и Sr(NO 3) 2 . 4H 2 O. Для нитрата бария не свойственно образование кристаллогидрата. При нагревании Са(NO 3) 2 . 4H 2 O и Sr(NO 3) 2 . 4H 2 O легко теряю воду. В инертной атмосфере нитраты Э термически устойчивы до 455 o C (Са), 480 o C (Sr), 495 o C (Ba). Расплав кристаллогидрата нитрата кальция имеет кислую среду при 75 о С. Особенностью нитрата бария является малая скорость растворения его кристаллов в воде. Склонность к комплексообразованию проявляет лишь нитрат бария, для которого известен нестойкий комплекс K 2 . Нитрат кальция растворим в спиртах, метилацетате, ацетоне. Нитраты стронция и бария там же почти не растворимы. Температуры плавления нитратов Э оцениваются в 600 о С, однако при этой же температуре начинается распад:

Э(NO 3) 2 = Э(NO 2) 2 + O 2 .

Дальнейший распад идет при более высокой температуре:

Э(NO 2) 2 = ЭО + NO 2 + NO.

Нитраты Э уже издавна использовались в пиротехнике. Легколетучие соли Э окрашивают пламя в соответствующие цвета: Са - в оранжево-желтый, Sr - в красно-карминовый, Ba - в желто-зеленый. Разберемся в сущности этого на примере Sr: у Sr 2+ есть две ВАО: 5s и 5p или 5s и 4d. Сообщим энергию этой системе - нагреем. Электроны с более близлежащих к ядру орбиталей перейдут на эти ВАО. Но такая система не устойчива и выделит энергию в виде кванта света. Как раз Sr 2+ и излучает кванты с частотой, соответствующей длинам красных волн. При получении пиротехнических составов удобно использовать селитру, т.к. она не только окрашивает пламя, но и является окислителем, выделяя кислород при нагревании. Пиротехнические составы состоят из твердого окислителя, твердого восстановителя и некоторых органических веществ, обесцвечивающих пламя восстановителя, и являющихся связывающим агентом. Нитрат кальция используется как удобрение.

Все фосфаты и гидрофосфаты Э плохо растворимы в воде. Их можно получить растворением соответствующего количества СаО или СаСO 3 в ортофосфорной килоте. Также они осаждаются при обменных реакциях типа:

(3-х)Са 2+ + 2H x PO 4 -(3-х) = Са (3-х) (H x PO 4) 2 .

Практическое значение (как удобрение) имеет однозамещенный ортофосфат кальция, который наряду с Са(SO 4) входит в состав суперфосфата. Его получают по схеме:

Cа 3 (PO 4) 2 + 2H 2 SO 4 = Ca(H 2 PO 4) 2 + 2CаSO 4

Оксалаты тоже мало растворимы в воде. Практическое значение имеет оксалат кальция, который при 200 о С обезвоживается, а при 430 о С разлагается по схеме:

СаС 2 О 4 = СаСО 3 + СО.

Ацетаты Э выделяются в виде кристаллогидратов, и хорошо растворимы в воде.

Сульфаты Э - белые, плохо растворимые в воде вещества. Растворимость СaSO 4 . 2Н 2 О на 1000 г. воды при обычной температуре составляет 8 . 10 -3 моль, SrSO 4 - 5 . 10 -4 моль, ВаSO 4 - 1 . 10 -5 моль, RaSO 4 - 6 . 10 -6 моль. В ряду Са - Ra растворимость сульфатов быстро уменьшается. Ва 2+ является реактивом на сульфат-ион. Сульфат кальция содержит кристаллизационную воду. Выше 66 о С из раствора выделяется безводный сульфат кальция, ниже - гипс СаSO 4 . 2Н 2 О. Нагревание гипса выше 170 о С сопровождается выделением гидратной воды. При замешивании гипса с водой эта масса быстро твердеет вследствие образования кристал-логидрата. Это свойство гипса используется в строительстве. Египтяне использовали это знание еще 2000 лет назад. Растворимость ЭSO 4 в крепкой серной кислоте намного выше, чем в воде (ВаSO 4 до 10%), что свидетельствует о комплексообразовании. Соответствующие комплексы ЭSO 4 . Н 2 SO 4 могут быть получены в свободном состоянии. Двойные соли с сульфатами щелочных металлов и аммония известны только для Са и Sr. (NH 4) 2 растворим в воде и используется в аналитической химии для отделения Са от Sr, т.к. (NH 4) 2 мало растворим. Гипс применяют для комбинированного получения серной кислоты и цемента, т.к. при нагревании с восстановителем (углем) гипс разлагается:

СаSO 4 + С = СаО + SO 2 + СО.

При более высокой температуре (900 o C) сера еще больше восстанавливается по схеме:

СаSO 4 + 3С = СаS + CO 2 + 2СО.

Подобный распад сульфатов Sr и Ва начинается при более высоких температурах. ВаSO 4 нетоксичен и используется в медицине и производстве минеральных красок.

Сульфиды Э представляют собой белые твердые вещества, кристаллизующиеся по типу NaCl. Теплоты их образования и энергии кристаллических решеток равны (ккалмоль): 110 и 722 (Са), 108 и 687 (Sr), 106 и 656 (Ва). Могут быть получены синтезом из элементов при нагревании или прокаливанием сульфатов с углем:

ЭSO4 + 3С = ЭS + CO2 + 2СО.

Менее всех растворим СаS (0,2 гл). ЭS вступает в следующие реакции при нагревании:

ЭS + H 2 O = ЭO + H 2 S; ЭS + Г 2 = S + ЭГ 2 ; ЭS + 2O 2 = ЭSO 4 ; ЭS + xS = ЭS x+1 (x=2,3).

Сульфиды щелочноземельных металлов в нейтральном растворе нацело гидролизованы по схеме:

2ЭS + 2Н 2 О = Э(НS) 2 + Э(ОН) 2 .

Кислые сульфиды могут быть получены и в свободном состоянии упариванием раствора сульфидов. Они вступают в реакции с серой:

Э(НS) 2 + хS = ЭS x+1 + H 2 S (x=2,3,4).

Из кристаллогидратов известны ВаS . 6H 2 O и Са(HS) 2 . 6Н 2 О, Ва(HS) 2 . 4Н 2 О. Са(HS) 2 применяют для удаления волос. ЭS подвержены явлению фосфоресценции. Известны полисульфиды Э: ЭS 2 , ЭS 3 , ЭS 4 , ЭS 5 . Они получаются при кипячении взвеси ЭS в воде с серой. На воздухе ЭS окисляются: 2ЭS + 3О 2 = 2ЭSО 3 . Пропусканием воздуха через суспензию СаS можно получить тиосульфат Са по схеме:

2СаS + 2О 2 + Н 2 О = Са(ОН) 2 + СаS 2 О 3

Он хорошо растворим в воде. В ряду Са - Sr - Ва растворимость тиосульфатов падает. Теллуриды Э мало растворимы в воде и тоже подвержены гидролизу, но в меньшей степени чем сульфиды.

Растворимость хроматов Э в ряду Са - Ва падает также резко, как и в случае с сульфатами. Эти вещества желтого цвета получаются при взаимодействии растворимых солей Э с хроматами (или дихроматами) щелочных металлов:

Э 2+ + СrO 4 2- = ЭCrO4.

Хромат кальция выделяется в виде кристаллогидрата - СаCrO 4 . 2H 2 O (рПР СаCrO 4 = 3,15). Еще до температуры плавления он теряет воду. SrCrO 4 и ВаCrO 4 кристаллогидратов не образуют. pПР SrCrO 4 = 4,44, рПР ВаCrO 4 = 9,93.

Карбонаты Э белые, плохо растворимые в воде вещества. При нагревании ЭСО 3 переходят в ЭО, отщепляя СО 2 . В ряду Са - Ва термическая устойчивость карбонатов возрастает. Наиболее практически важен из них карбонат кальция (известняк). Он непосредственно используется в строительстве, а также служит сырьем для получения извести и цемента. Ежегодная мировая добыча извести из известняка исчисляется десятками миллионов тонн. Термическая диссоциация СаСО 3 эндотермична:

СаСО 3 = СаО + СО 2

и требует затраты 43 ккал на моль известняка. Обжиг СаСО 3 проводят в шахтных печах. Побочным продуктом обжига является ценный углекислый газ. СаО важный строительный материал. При замешивании с водой происходит кристаллизация за счет образования гидроокиси, а затем карбоната по схемам:

СаО + Н 2 О = Са(ОН) 2 и Са(ОН) 2 + СО 2 = СаСО 3 + Н 2 О.

Колоссально важную практическую роль играет цемент - зеленовато-серый порошок, состоящий из смеси различных силикатов и алюминатов кальция. Будучи замешан с водой он отвердевает за счет гидратации. При его производстве смесь СаСО 3 с глиной обжигают до начала спекания (1400-1500 о С). Затем смесь перемалывают. Состав цемента можно выразить процентным соотношением компонентов СаО, SiO 2 , Al 2 O 3 , Fe 2 O 3 , причем СаО представляет основание, а все остальное - ангидриды кислот. Состав силикатного (портладского) цемента слагается в основном из Са 3 SiO 5 , Ca 2 SiO 4 , Ca 3 (AlO 3) 2 и Ca(FeO 2) 2 . Его схватывание проходит по схемам:

Са 3 SiO 5 + 3Н 2 О = Ca 2 SiO 4 . 2Н 2 О + Са(ОН) 2

Ca 2 SiO 4 + 2Н 2 О = Ca 2 SiO 4 . 2Н 2 О

Ca 3 (AlO 3) 2 + 6Н 2 О = Ca 3 (AlO 3) 2 . 6Н 2 О

Ca(FeO 2) 2 + nH 2 O = Ca(FeO 2) 2 . nH 2 O.

Природный мел вводят в состав различных замазок. Мелкокристаллический, осажденный из раствора СаСО 3 входит в состав зубных порошков. Из ВаСО 3 прокаливанием с углем получают ВаО по схеме:

ВаСО 3 + С = ВаО + 2СО.

Если процесс вести при более высокой температуре в токе азота образуется цианид бария:

ВаСО 3 + 4С +N 2 = 3CO + Ba(CN) 2 .

Ва(СN) 2 хорошо растворим в воде. Ва(СN) 2 может использован для производства цианидов других металлов путем обменного разложения с сульфатами. Гидрокарбонаты Э растворимы в воде и могут быть получены лишь в растворе например, пропусканием углекислого газа в взвесь СаСО 3 в воде:

СО 2 + СаСО 3 + Н 2 О = Са(НСО 3) 2 .

Эта реакция обратима и при нагревании смещается влево. Наличие гидрокарбонатов кальция и магния в природных водах обуславливает жесткость воды.