А. Гладкий        14.12.2023   

Возможные варианты реакции с фосфином. Что такое фосфин. Соединения фосфора с неметаллами

Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

Получение фосфина

При нагревании белого фосфора с крепким раствором щелочи фосфор диспропорционирует, в результате образуется фосфат и фосфин PH 3 . Одновременно с фосфином образуется небольшое количество дифосфина P 2 H 4 (фосфористый аналог гидразина), который легко вспыхивает на воздухе. Одновременно образуется водород. Если газоотводную трубку направить под воду, пузырьки фосфина всплывая вспыхивают; при этом образуются кольца белого дыма.

Приведем описание опыта из практикума Рипан Р. Четяну И. Руководство к практическим работам по неорганической химии .

Получение фосфористого водорода нагреванием белого фосфора с 30-50%-ным раствором едкого кали. Уравнение реакции:

4P + 3KOH + 3H 2 O = PH 3 + 3KH 2 PO 2

При этом способе получения кроме газообразного фосфористого водорода образуется также жидкий фосфористый водород, газообразный водород и кислый гипофосфит калия по уравнениям:

6P + 4KOH + 4H 2 O = P 2 H 4 + 4KH 2 PO 2
2P + 2KOH + 2H 2 O = H 2 + 2KH 2 PO 2

Жидкий фосфористый водород, взаимодействуя с гидроксидом калия в водной среде, образует газообразный фосфористый водород, водород и кислый гипофосфит калия по уравнениям:

2P 2 H 4 + KOH + H 2 O = 3PH 3 + KH 2 PO 2
P 2 H 4 + 2KOH +2H 2 O = 3H 2 + 2KH 2 PO 2

Кислый гипофосфит калия в щелочной среде превращается в ортофосфат калия с выделением водорода:

KH 2 PO 2 + 2KOH = 2H 2 + K 3 PO 4

Согласно приведенным уравнениям реакций, при нагревании белого фосфора с гидроксидом калия образуется газообразный фосфористый водород, водород и ортофосфат калия.

Полученный этим способом фосфин самопроизвольно воспламеняется. Это происходит потому, что он содержит некоторое количество паров самовоспламеняющегося жидкого фосфористого водорода (дифосфин) и водород.

Вместо гидроксида калия можно воспользоваться гидратами окиси натрия, кальция или бария. Реакции с ними протекают аналогично.

Прибором служит круглодонная колба емкостью 100-250 мл, плотно закрытая резиновой пробкой, через которую должна быть плотно пропущена трубка, направляющая газообразные продукты в кристаллизатор с водой.

Колбу на 3/4 ее объема заполняют 30-50%-ным раствором едкого кали, в который бросают 2-3 кусочка белого фосфора, величиной с горошину. Колбу укрепляют в зажиме штатива и с помощью газоотводной трубки соединяют с кристаллизатором, наполненным водой (см. рисунок).

При нагревании колбы гидроксид калия реагирует с белым фосфором согласно приведенным выше уравнениям.

Жидкий фосфористый водород (дифосфин), достигнув поверхности жидкости в колбе, сразу же воспламеняется и сгорает в виде искр; это происходит до тех пор, пока не будет израсходован оставшийся в колбе кислород.

При сильном нагревании колбы жидкий фосфористый водород перегоняется и над водой воспламеняется газообразный фосфористый водород и водород. Фосфористый водород сгорает желтым пламенем, образуя фосфорный ангидрид в виде белых колец дыма.

По окончании опыта уменьшают пламя под колбой, вынимают пробку с отводной трубкой, прекращают нагревание и оставляют прибор под тягой до его полного охлаждения.

Неизрасходованный фосфор тщательно промывают водой и сохраняют для последующих опытов.

Мы решили получить фосфин. В пробирку насыпали едкого натра и налили до половины воды. Часть щелочи осталась в осадке. Пробирку закрепили наклонно в штативе, положили в нее кусочек желтого фосфора размером с горошину и закрыли пробкой с газоотводной трубкой, конец которой опустили в кристаллизатор с водой. Начали нагрев.

В кристаллизаторе стали пробулькивать пузырьки газа. Со временем начались желтые вспышки, сопровождаемые хлопками: пузырьки лопались и загорались на воздухе. После вспышек часто образовывались красивые белые дымовые кольца, которые поднимались вверх.

По нашим наблюдениям опыт лучше всего получался тогда, когда жидкость в пробирке активно кипела и происходил проброс части жидкости в воду кристаллизатора. В некоторых случаях оказывалось, что вспышки происходили реже и слабее, если конец газоотводной трубки слишком глубоко опустить в воду.

В целом "фейерверк с дымовыми кольцами" продолжался до нескольких минут. Можно с уверенностью сказать, что это один из самых красивых опытов.

________________________________________

ОПРЕДЕЛЕНИЕ

Фосфин (гидрид фосфора, монофосфан) в обычных условиях представляет собой бесцветный газ, плохо растворимый в воде и не реагирующий с ней.

Брутто-формула - PH 3 (строение молекулы показано на рис. 1). Молярная масса фосфина равна 34,00 г/моль.

Рис. 1. Строение молекулы фосфина с указанием валентного угла и длины химической связи.

При низких температурах образует твердый кларат 8PH 3 ×46H 2 O. Плотность - 1,5294 г/л. Температура кипения - (-87,42 o C), плавления - (-133,8 o C).

В ОВР является сильным восстановителем, окисляется концентрированной серной и азотной кислотами, йодом, кислородом, пероксидом водорода, гипохлоритом натрия. Донорные свойства выражены значительно слабее, чем у аммиака.

PH3, степени окисления элементов в нем

Чтобы определить степени окисления элементов, входящих в состав фосфина, сначала необходимо разобраться с тем, для каких элементов эта величина точно известна.

Фосфин - это тривиальное название гидрида фосфора, а, как известно, степень окисления водорода в гидридах равна (+1). Для нахождения степени окисления фосфора примем её значение за «х» и определим его при помощи уравнения электронейтральности:

x + 3×(+1) = 0;

Значит степень окисления фосфора в фосфине равна (-3):

Примеры решения задач

ПРИМЕР 1

Задание Определите степени окисления кислотообразующих элементов в следующих соединениях: HNO 2 , H 2 CO 3 , H 4 SiO 4 , HPO 3 .
Решение В указанных соединениях кислотообразующими элементами являются азот, углерод, кремний и фосфор. Степень окисления кислорода равна (-2), а водорода - (+1). Примем за «х» степень окисления кислотообразующего элемента и при помощи уравнения электронейтральности найдем её значение:

1 + x + 2×(-2) = 0;

Степень окисления азота равна (+3).

2×(+1) + x + 3×(-2) = 0;

Степень окисления углерода равна (+4).

4×(+1) + x + 4×(-2) = 0;

Степень окисления кремния равна (+4).

1 + x + 3×(-2) = 0;

Степень окисления фосфора равна (+5).

Ответ HN +3 O 2 , H 2 C +4 O 3 , H 4 Si +4 O 4 , HP +5 O 3

ПРИМЕР 2

Задание Наибольшую степень окисления железо проявляет в соединении:
  • K 4 ;
  • K 3 ;
  • Fe(OH) 2 .
Решение Для того, чтобы дать правильный ответ на поставленный вопрос будем поочередно определять степень окисления железа в каждом из предложенных соединений с помощью уравнения электронейтральности.

а) Степень окисления калия всегда равна (+1). Степень окисления углерода в цианид-ионе равна (+2), а азота - (-3). Примем за «х» значение степени окисления железа:

4×1 + х + 6×2 + 6× (-3) = 0;

б) Степень окисления калия всегда равна (+1). Степень окисления углерода в цианид-ионе равна (+2), а азота - (-3). Примем за «х» значение степени окисления железа:

3×1 + х + 6×2 + 6× (-3) = 0;

в) Степень окисления кислорода в оксидах (-2). Примем за «х» значение степени окисления железа:

г) Степени окисления кислорода и водорода равны (-2) и (+1) соответственно. Примем за «х» значение степени окисления железа:

x + 2×(-2) + 2× 1 = 0;

Наибольшая степень окисления железа равна (+3) и её оно проявляет в соединении состава K 3 .

Ответ Вариант 2

Пособие-репетитор по химии

Продолжение. Cм. в № 22/2005; 1, 2, 3, 5, 6, 8, 9, 11, 13, 15, 16, 18, 22/2006;
3, 4, 7, 10, 11, 21/2007;
2, 7, 11, 18, 19, 21/2008;
1, 3, 10, 11/2009

ЗАНЯТИЕ 30

10-й класс (первый год обучения)

Фосфор и его соединения

1. Положение в таблице Д.И.Менделеева, строение атома.

2. Краткая история открытия и происхождение названия.

3. Физические свойства.

4. Химические свойства.

5. Нахождение в природе.

6. Основные методы получения

7. Важнейшие соединения фосфора.

Фосфор находится в главной подгруппе V группы периодической системы Д.И.Менделеева. Его электронная формула 1s 2 2s 2 p 6 3s 2 p 3 , это р -элемент. Характерные степени окисления фосфора в соединениях –3, +3, +5; наиболее устойчивой является степень окисления +5. В соединениях фосфор может входить как в состав катионов, так и в состав анионов, например:

Фосфор получил свое название благодаря свойству белого фосфора светиться в темноте. Греческое слово переводится как «несущий свет». Этим названием фосфор обязан своему первооткрывателю – алхимику Бранду, который, завороженный свечением белого фосфора, пришел к выводу, что получил философский камень.

Фосфор может существовать в виде нескольких аллотропных модификаций, наиболее устойчивыми из которых являются белый, красный и черный фосфор.

Молекула белого фосфора (наиболее активного аллотропа) имеет молекулярную кристаллическую решетку, в узлах которой находятся четырехатомные молекулы Р 4 тетраэдрического строения.

Белый фосфор мягкий, как воск, плавится и кипит без разложения, обладает чесночным запахом. На воздухе белый фосфор быстро окисляется (светится зеленоватым цветом), возможно самовоспламенение мелкодисперсного белого фосфора. В воде нерастворим (хранят под слоем воды), но хорошо растворяется в органических растворителях. Ядовит (даже в малых дозах, ПДК = 0,03 мг/м 3). Обладает очень высокой химической активностью. При нагревании без доступа воздуха до 250–300 °С превращается в красный фосфор.

Красный фосфор – это неорганический полимер; макромолекулы Р n могут иметь как циклическое, так и ациклическое строение. По свойствам резко отличается от белого фосфора: не ядовит, не светится в темноте, не растворяется в сероуглероде и других органических растворителях, не обладает высокой химической активностью. При комнатной температуре медленно переходит в белый фосфор; при нагревании до 200 °С под давлением превращается в черный фосфор.

Черный фосфор по виду похож на графит. По структуре – это неорганический полимер, молекулы которого имеют слоистую структуру. Полупроводник. Не ядовит. Химическая активность значительно ниже, чем у белого фосфора. На воздухе устойчив. При нагревании переходит в красный фосфор.

Х и м и ч е с к и е с в о й с т в а

Наиболее активным в химическом отношении является белый фосфор (но на практике предпочитают работать с красным фосфором). Он может проявлять в реакциях свойства как окислителя, так и восстановителя, например:

4Р + 3О 2 2Р 2 О 3 ,

4Р + 5О 2 2Р 2 О 5 .

Металлы (+/–)*:

3Ca + 2P Ca 3 P 2 ,

3Na + P Na 3 P,

Cu + P реакция не идет.

Неметаллы (+):

2Р + 3I 2PI 3 ,

6P + 5N 2 2P 2 N 5 .

Основные оксиды (–).

Кислотные оксиды (–).

Щелочи (+):

Кислоты (не окислители) (–).

Кислоты-окислители (+):

3P (кр.) + 5HNO 3 (разб.) + 2H 2 O = 3H 3 PO 4 + 5NO,

P (кр.) + 5HNO 3 (конц.) H 3 PO 4 + 5NO 2 + H 2 O,

2P (кр.) + H 2 SO 4 (конц.) 2H 3 PO 4 + 5SO 2 + 2H 2 O.

Соли (–)**.

В п р и р о д е фосфор встречается в виде соединений (солей), важнейшими из которых являются фосфорит (Ca 3 (PO 4) 2), хлорапатит (Ca 3 (PO 4) 2 CaCl 2) и фторапатит (Ca 3 (PO 4) 2 CaF 2). Фосфат кальция содержится в костях всех позвоночных животных, обусловливая их прочность.

Фосфор п о л у ч а ю т в электропечах, сплавляя без доступа воздуха фосфат кальция, песок и уголь:

Сa 3 (PO 4) 2 + 3SiO 2 + 5C 2P + 5CO + 3CaSiO 3 .

К важнейшим соединениям фосфора относятся: фосфин, оксид фосфора(III), оксид фосфора(V), фосфорные кислоты.

Ф о с ф и н

Это водородное соединение фосфора, бесцветный газ с чесночно-рыбным запахом, очень ядовит. Плохо растворим в воде, но хорошо растворим в органических растворителях. Гораздо менее устойчив, чем аммиак, но является более сильным восстановителем. Практического значения не имеет.

Для п о л у ч е н и я фосфина обычно не используют реакцию прямого синтеза из простых веществ; наиболее распространенный способ получения фосфина – гидролиз фосфидов:

Сa 3 P 2 + 6HOH = 3Ca(OH) 2 + 2PH 3 .

Кроме того, фосфин можно получить реакцией диспропорционирования между фосфором и растворами щелочей:

4P + 3KOH + 3H 2 O PH 3 + KPO 2 H 2 ,

или из солей фосфония:

PH 4 I PH 3 + HI,

PH 4 I + NaOH PH 3 + NaI + H 2 O.

Химические свойства фосфина целесообразно рассматривать с двух сторон.

Кислотно-основные свойства. Фосфин образует с водой неустойчивый гидрат, проявляющий очень слабые основные свойства:

PH 3 + H 2 O PH 3 H 2 O (PH 4 OH),

PH 3 + HCl PH 4 Cl,

2PH 3 + H 2 SO 4 (PН 4) 2 SO 4 .

Окислительно-восстановительные свойства . Фосфин – сильный восстановитель:

2PH 3 + 4O 2 P 2 O 5 + 3H 2 O,

PH 3 + 8AgNO 3 + 4H 2 O = H 3 PO 4 + 8Ag + 8HNO 3 .

О к с и д ф о с ф о р а(III)

Оксид Р 2 О 3 (истинная формула – Р 4 О 6) – белое кристаллическое вещество, типичный кислотный оксид. При взаимодействии с водой на холоде образует фосфористую кислоту (средней силы):

P 2 O 3 + 3H 2 O = 2H 3 PO 3

Поскольку фосфористая кислота является двухосновной, при взаимодействии триоксида фосфора со щелочами образуется два типа солей – гидрофосфиты и дигидрофосфиты.

Например:

P 2 O 3 + 4NaOH = 2Na 2 HPO 3 + H 2 O,

P 2 O 3 + 2NaOH + H 2 O = 2NaH 2 PO 3 .

Диоксид фосфора Р 2 О 3 окисляется кислородом воздуха до пентаоксида:

P 2 O 3 + O 2 P 2 O 5 .

Триоксид фосфора и фосфористая кислота являются достаточно сильными восстановителями. Получают оксид фосфора(III) медленным окислением фосфора в недостатке кислорода:

4P + 3O 2 2P 2 O 3 .

О к с и д ф о с ф о р а(V) и ф о с ф о р н ы е к и с л о т ы

Пентаоксид фосфора Р 2 О 5 (истинная формула – Р 4 О 10) – белое гигроскопичное кристаллическое вещество. В твердом и газообразном состояниях молекула существует в виде димера, при высоких температурах мономеризуется. Типичный кислотный оксид. Очень хорошо растворяется в воде, образуя ряд фосфорных кислот:

метафосфорную :

P 2 O 5 + H 2 O = 2HPO 3

пирофосфорную (дифосфорную) :

P 2 O 5 + 2H 2 O = H 4 P 2 O 7

ортофосфорную (фосфорную) :

P 2 O 5 + 3H 2 O = 2H 3 PO 4

Пентаоксид фосфора проявляет все свойства, характерные для кислотных оксидов, например:

P 2 O 5 + 3H 2 O = 2H 3 PO 4 ,

P 2 O 5 + 3CaO 2Ca 3 (PO 4) 2 ;

может образовывать три типа солей:

Окислительные свойства для него не характерны, т.к. степень окисления +5 является для фосфора очень устойчивой. Получают пентаоксид фосфора при горении фосфора в достаточном количестве кислорода:

4P + 5O 2 2P 2 O 5 .

Ортофосфорная кислота Н 3 РО 4 – бесцветное кристаллическое вещество, очень хорошо растворимое в воде, гигроскопична. Это трехосновная кислота средней силы; не обладает выраженными окислительными свойствами. Проявляет все химические свойства, характерные для кислот, образует три типа солей (фосфаты, гидрофосфаты и дигидрофосфаты):

2H 3 PO 4 + 3Ca = Ca 3 (PO 4) 2 + 3H 2 ,

H 3 PO 4 + Cu ,

2H 3 PO 4 + 3CaO = Ca 3 (PO 4) 2 + 3H 2 O,

2H 3 PO 4 + K 2 CO 3 = 2KH 2 PO 4 + CO 2 + H 2 O.

В промышленности фосфорную кислоту п о л у ч а ю т экстракционным:

Ca 3 (PO 4) 2 + 3H 2 SO 4 = 2H 3 PO 4 + 3CaSO 4 ,

а также термическим методом:

Ca 3 (PO 4) 2 + 3SiO 2 + 5C 3СaSiO 3 + 2P + 5CO,

4P + 5O 2 2P 2 O 5 ,

P 2 O 5 + 3H 2 O = 2H 3 PO 4 .

К лабораторным методам получения ортофосфорной кислоты относят действие разбавленной азотной кислоты на фосфор:

3Р (кр.) + 5HNO 3 (разб.) + 2Н 2 О = 3H 3 PO 4 + 5NO,

взаимодействие метафосфорной кислоты с водой при нагревании:

HPO 3 + H 2 O H 3 PO 4 .

В организме человека ортофосфорная кислота образуется при гидролизе аденозинотрифосфорной кислоты (АТФ):

АТФ АДФ + H 3 PO 4 .

Качественной реакцией на фосфат-ион является реакция с катионом серебра; образуется осадок желтого цвета, не растворимый в слабокислых средах:

3Ag + + = Ag 3 PO 4 ,

3AgNO 3 + K 3 PO 4 = Ag 3 PO 4 + 3KNO 3 .

Кроме вышеперечисленных фосфорных кислот (содержащих фосфор в степени окисления +5), для фосфора известно много других кислородсодержащих кислот. Приведем некоторые из важнейших представителей.

Фосфорноватистая (НРО 2 Н 2) – одноосновная кислота средней силы. Второе ее название – фосфиновая:

Соли этой кислоты называют гипофосфитами, или фосфитами, например KРО 2 Н 2 .

Фосфористая (Н 3 РО 3) – двухосновная кислота средней силы, немного слабее фосфорноватистой. Также имеет второе название – фосфоновая:

Ее соли называются фосфиты, или фосфонаты, например K 2 РО 3 Н.

Дифосфорная (пирофосфорная) (Н 4 Р 2 О 7) – четырехосновная кислота средней силы, чуть сильнее ортофосфорной:

Соли – дифосфаты, например K 4 P 2 O 7 .

Тест по теме «Фосфор и его соединения»

1. Исключите «лишний» элемент из перечисленных по принципу возможности образования аллотропных модификаций:

а) кислород; б) азот;

в) фосфор; г) сера.

2. При взаимодействии 42,6 г фосфорного ангидрида и 400 г 15%-го раствора гидроксида натрия образуется:

а) фосфат натрия;

б) гидрофосфат натрия;

в) смесь фосфата и гидрофосфата натрия;

г) смесь гидро- и дигидрофосфата натрия.

3. Сумма коэффициентов в уравнении электролитической диссоциации фосфата калия равна:

а) 5; б) 3; в) 4; г) 8.

4. Число электронов на внешнем уровне атома фосфора:

а) 2; б) 3; в) 5; г) 15.

5. Фосфор, полученный из 33 г технического фосфата кальция, сожгли в кислороде. Образовавшийся оксид фосфора(V) прореагировал с 200 мл 10%-го раствора гидроксида натрия (плотность – 1,2 г/мл) с образованием средней соли. Масса примесей в техническом образце фосфата кальция (в г) составляет:

а) 3,5; б) 1,5; в) 2; г) 4,8.

6. Число -связей в молекуле пирофосфорной кислоты:

а) 2; б) 12; в) 14; г) 10.

7. Число атомов водорода, содержащихся в 4,48 л (н.у.) фосфина равно:

а) 1,2 10 23 ; б) 0,6 10 23 ;

в) 6,02 10 23 ; г) 3,6 10 23 .

8. При температуре 30 °С некая реакция протекает за 15 с, а при 0 °С – за 2 мин. Коэффициент Вант-Гоффа для данной реакции:

а) 2,4; б) 2; в) 1,8; г) 3.

9. Ортофосфорная кислота может реагировать со следующими веществами:

а) оксид меди(II); б)гидроксид калия;

в) азотная кислота; г) цинк.

10. Сумма коэффициентов в реакции между фосфором и бертолетовой солью равна:

а) 9; б) 6; в) 19; г) такая реакция невозможна.

Ключ к тесту

1 2 3 4 5 6 7 8 9 10
б в а в в б г б а, б,г в

Задачи и упражнения на фосфор и его соединения

Ц е п о ч к и п р е в р а щ е н и й:

1. Фосфор -> пентаоксид фосфора -> ортофосфорная кислота -> фосфат кальция ® фосфорная кислота.

2. Фосфат кальция -> фосфор -> фосфид кальция -> фосфин -> пентаоксид фосфора -> фосфорная кислота -> дигидрофосфат кальция.

3. Фосфат кальция -> А -> В -> С -> Д -> Е -> фосфат кальция. Все вещества содержат фосфор, в схеме три ОВР подряд.

4. Фосфор -> пентаоксид фосфора -> фосфат кальция -> фосфор -> фосфин -> фосфорная кислота -> дигидрофосфат кальция.

5. Фосфид кальция (+ р-р соляной кислоты) -> А (+ кислород) -> В (+ гидроксид натрия, недостаток) -> С (+ гидроксид натрия, избыток) -> Д (+ гидроксид кальция) -> Е.

У р о в е н ь А

1. При полном сгорании 6,8 г вещества получили 14,2 г пентаоксида фосфора и 5,4 г воды. К полученным продуктам реакции добавили 37 мл 32%-го раствора едкого натра (плотность 1,35 г/мл). Установите формулу исходного вещества и определите концентрацию полученного раствора.

Решение

Уравнение реакции:

(P 2 O 5) = 0,1 моль, (H 2 O) = 0,3 моль.

(P) = 0,2 моль, (H) = 0,6 моль.

m(P) = 6,2 г, m (H) = 0,6 г.

m = 6,8 г.

(P) : (Н) = 0,2: 0,6 = 1: 3.

Следовательно, формула исходного вещества – PH 3 , а уравнение реакции:

тогда фосфорной кислоты образуется:

(H 3 PO 4) = 2(P 2 O 5) = 0,2 моль.

Со щелочью фосфорная кислота может реагировать следующим образом:

Определим по условию задачи количество вещества NaOH:

(Н 3 PO 4) : (NaOН) = 0,2: 0,4 = 1: 2,

следовательно, идет реакция 2.

(Na 2 HPO 4) = (Н 3 PO 4) = 0,2 моль;

m (Na 2 HPO 4) = M (Na 2 HPO 4) (Na 2 HPO 4) = 142 0,2 = 28,4 г;

m (р-ра) = m (Р 2 О 5) + m (Н 2 О) + m (р-ра NaOH) =14,2 + 5,4 + 37 1,35 = 69,55 г.

(Na 2 HPO 4) = m (Na 2 HPO 4)/m (р-ра) = 28,4/69,55 = 0,4083, или 40,83 %.

Ответ. PH 3 ; (Na 2 HPO 4) = 40,83 %.

2. При полном электролизе 1 кг раствора сульфата железа(II) на катоде выделилось 56 г металла. Какая масса фосфора может вступить в реакцию с веществом, выделившимся на аноде, и каков будет состав соли, если полученный продукт реакции растворить в 87,24 мл 28%-го раствора гидроксида натрия (плотность раствора 1,31 г/мл)?

Ответ. 12,4 г фосфора; гидрофосфат натрия.

3. 20 г смеси, состоящей из сульфата бария, фосфата кальция, карбоната кальция и фосфата натрия, растворили в воде. Масса нерастворившейся части составила 18 г. При действии на нее соляной кислоты выделилось 2,24 л газа (н.у.) и масса нерастворимого остатка составила 3 г. Определите состав исходной смеси солей по массе.

Ответ. Na 3 PO 4 – 2 г; BaCO 3 – 3 г;
CaCO 3 – 10 г; Ca 3 (PO 4) 3 – 5 г.

4. Сколько кг фосфора может быть получено из 1 т фосфорита, содержащего 40 % примесей? Какой объем при н.у. займет фосфин, полученный из этого фосфора?

Ответ. 120 кг P; 86,7 м 3 PH 3 .

5. 40 г минерала, содержащего 77,5 % фосфата кальция, смешали с избытком песка и угля и нагрели без доступа воздуха в электрической печи. Полученное простое вещество растворили в 140 г 90%-й азотной кислоты. Определите массу гидроксида натрия, который потребуется для полной нейтрализации продукта окисления простого вещества.

Ответ. 24 г NaOH.

У р о в е н ь Б

1. Для полной нейтрализации раствора, полученного при гидролизе 1,23 г некоторого галогенида фосфора, потребовалось 35 мл 2М раствора гидроксида калия. Определите формулу галогенида.

Ответ. Трифторид фосфора.

2. Пробу безводного этанола, содержащего в качестве примеси 0,5 % оксида фосфора(V), сожгли в достаточном количестве кислорода. Образовавшиеся газы отделили, а полученный раствор нагрели до прекращения выделения газа, после чего к нему добавили равный по массе 0,5%-й раствор гидроксида калия. Определите массовые доли веществ в полученном растворе.

Ответ. K 2 HPO 4 – 0,261 %;
KH 2 PO 4 – 0,204 %.

3. К 2 г смеси гидрофосфата и дигидрофосфата калия, в которой массовая доля фосфора равна 20 %, добавили 20 г 2%-го раствора фосфорной кислоты. Вычислите массовые доли веществ в полученном растворе.

Ответ. KH 2 PO 4 – 9,03 %;
K 2 HPO 4 (ост.) – 1,87 %.

4. При обработке водой смеси гидрида и фосфида щелочного металла с равными массовыми долями образовалась газовая смесь с плотностью по азоту 0,2926. Установите, какой металл входил в состав соединений.

Ответ. Натрий.

5. 50 г смеси фосфата кальция и карбонатов кальция и аммония прокалили, в результате получили 25,2 г твердого остатка, к которому добавили воду, а затем пропустили избыток углекислого газа. Масса нерастворившегося остатка составила 14 г. Определите массу карбоната аммония в исходной смеси.

Решение

При прокаливании смеси идут следующие процессы:

1) Ca 3 (PO 4) 2 ;

2)

3) (NH 4) 2 CO 3 2NH 3 + СO 2 + H 2 O.

В твердом остатке – Са 3 (PO 4) 2 и CaO.

После добавления воды:

4) Ca 3 (PO 4) 2 + H 2 O;

5) СаО + H 2 O = Ca(OH) 2 .

После пропускания углекислого газа:

6) Са(ОН) 2 + H 2 O + CO 2 = Ca(HСО 3) 2 .

Нерастворившийся остаток – Ca 3 (PO 4) 2 , следовательно, m (Ca 3 (PO 4) 2) = 14 г.

Находим массу CaO:

m (CaO) = 25,2 – 14 = 11,2 г.

(CaO) = 11,2/56 = 0,2 моль,

(CaCO 3) = (CaO) = 0,2 моль,

m (CaCO 3) = 0,2 100 = 20 г.

m (NH 4) 2 CO 3 = m (смеси) – m (Ca 3 (PO 4) 2) – m (CaCO 3) = 50 – 14 – 20 = 16 г.

Ответ . m (NH 4) 2 CO 3 = 16 г.

К а ч е с т в е н н ы е з а д а ч и

1. Твердое, белое, хорошо растворимое в воде соединение А представляет собой кислоту. При добавлении к водному раствору А оксида В образуется белое нерастворимое в воде соединение С. В результате прокаливания при высокой температуре вещества С в присутствии песка и угля образуется простое вещество, входящее в состав А. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – H 2 PO 4 , В – CaO,
C – Ca 3 (PO 4) 2 .

2. Смесь двух твердых веществ красного цвета (А) и белого цвета (В) воспламеняется при слабом трении. В результате реакции образуются два твердых вещества белого цвета, одно из которых (С) растворяется в воде с образованием кислого раствора. Если к веществу С добавить оксид кальция, образуется белое нерастворимое в воде соединение. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – P (кр.), В – KClO 3 ,
C – P 2 O 5 .

3. Нерастворимое в воде соединение А белого цвета в результате прокаливания при высокой температуре с углем и песком в отсутствии кислорода образует простое вещество В, существующее в нескольких аллотропных модификациях. При сгорании вещества В образуется соединение С, растворяющееся в воде с образованием кислоты Е, способной образовывать три типа солей. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – Ca 3 (PO 4) 2 , В – P,
C – P 2 O 5 , Е – H 3 PO 4 .

* Знак +/– означает, что данная реакция протекает не со всеми реагентами или в специфических условиях.

** Интересной является окислительно-восстановительная реакция (ОВР), протекающая при зажигании спичек:

Продолжение следует

Формула фосфина ………………………………………………………….....РН 3

Молекулярная масса …………………………………………………………34,04

Цвет и вид.......................................................Бесцветный газ.

Температура плавления............................................ - 133,5°С.

Температура кипения.................................................... -87,7°С.

Давление при испарении...............40 мм рт. ст. при - 129,4°С.

Растворимость в воде........................26% от объема при 17°С.

Плотность..........................1,18 (0°С, 760 мм рт. ст.) (Воздух-1).

Температура вспышки.....................................................100°С.

Нижний предел взрываемости........... 1,79-1,89% от объема;

Появление запаха при.....................................................1,3 - 2,6 ррт.

При сравнительно высоких концентрациях фосфин взрывоопасен.

Нижний концентрационный предел воспламеняемости (НКПВ) – 1,79-1,89%

по объему или ………………………………..26,15-27,60 г/м 3 , или 17000-18900 мл/м 3 .

Скрытая теплота испарения фосфина равна …………………………………102,6 кал/г.

Растворимость в воде составляет 0,52 г/л при температуре 20 0 С и давлении 34,2 кгс/см 2 .

Фосфин – высокотоксичный,бесцветный газ который тяжелее воздуха в 1,5 раза, поэтому при применении легко проникает во все щели и труднодоступные места в помещениях и эффективно уничтожает яйца, личинки, куколки и взрослых насекомых.
Плохо растворяется в воде, не реагирует с ней. Растворим в бензоле, диэтиловом эфире, сероуглероде. Фосфин сильно ядовит, действует на нервную систему, нарушает обмен веществ. ПДК = 0,1 мг/м³. Запах ощущается при концентрации 2-4 мг/м³, длительное вдыхание при концентрации 10 мг/м³ приводит к летальному исходу.

Применение фосфина. При проведении фумигации фосфином используются неорганические препараты на основе фосфидов алюминия и магния. Объекты и технология применения препаратов на основе фосфида магния идентичны с препаратами на основе фосфида алюминия. Допуск людей и загрузку складов разрешают после полного проветривания и при содержании фосфина в воздухе рабочей зоны не выше ПДК (0,1 мг/ м³). Реализацию продукции осуществляют при остатке фосфина не выше МДУ (0,1 мг/кг для зерна, 0,01 мг/кг – для продуктов переработки зерна).

Газ Фосфин является сильным ядом для человека и других теплокровных животных. Острое отравление фосфином происходит при концентрации его в воздухе – 568 мг/м3. Газ фосфин обладает высокой токсичностью в отношении насекомых – вредителей хлебных запасов. При работе с ним желательно иметь представление о способе и механизме действия на вредные организмы . Предельно допустимая концентрация (ПДК) фосфина в воздухе рабочей зоны сотавляет 0,1 мг/м3. Однако запах газа начинает ощущаться при меньших концентрациях (около 0,03 мг/м3). Максимально допустимый уровень (МДУ) фосфина в зерне – 0,01 мг/кг, в зернопродуктах остатки фосфина не допускаются. Зерно и продукты его переработки могут быть использованы для пищевых целей только при условии, если остаточные количества фосфина в них не будут превышать МДУ.

Газ Фосфин слабо сорбируется зерном и зернопродуктами, поэтому легко дегазируется. В рекомендуемых для дезинсекции нормах расхода он не изменяет качества зерна и не ухудшает его семенных достоинств. Впервые он был применен в 1934 г. для фумигации зерновой продукции. В настоящее время, ввиду запрета на применение бромистого метила в целях фумигации, фосфин является основным фумигантом, предназначенным для борьбы с вредными насекомыми.

Фосфор (от греч. phosphoros - светоносный; лат. Phosphorus) P, химический элемент V группы периодической системы; атомный номер 15, атомная масса 30,97376. Имеет один устойчивыйнуклид 31 P. Эффективное сечение захвата тепловыхнейтронов18 10 -30 м 2 . Конфигурация внеш. электронной оболочкиатома3s 2 3p 3 ; степени окисления-3, +3 и +5; энергия последовательной ионизации при переходе от Р 0 до P 5+ (эВ): 10,486, 19,76, 30,163, 51,36, 65,02; сродство к электрону 0,6 эВ;электроотрицательностьпо Полингу 2,10;атомный радиус0,134 нм,ионные радиусы(в скобках указаны координационные числа) 0,186 нм для P 3- , 0,044 нм (6) для P 3+ , 0,017 нм (4), 0,029 нм (5), 0,038 нм (6) для P 5+ .

Среднее содержание фосфора в земной коре 0,105% по массе, в водеморей и океанов 0,07 мг/л. Известно около 200 фосфорныхминералов. все они представляют собой фосфаты. Из них важнейший -апатит, который является основойфосфоритов. Практическое значение имеют также монацит CePO 4 , ксенотим YPO 4 , амблигонит LiAlPO 4 (F, ОН), трифилин Li(Fe, Mn)PO 4 , торбернит Cu(UO 2) 2 (PO 4) 2 12H 2 O, отунит Ca(UO 2) 2 (PO 4) 2 x x 10H 2 O, вивианит Fe 3 (PO 4) 2 8H 2 O, пироморфит Рb 5 (РО 4) 3 С1, бирюза СuА1 6 (РО 4) 4 (ОН) 8 5Н 2 О.

Свойства. Известно св. 10 модификаций фосфора, из них важнейшие - белый, красный и черный фосфор (технический белый фосфор называют желтым фосфором). Единой системы обозначений модификаций фосфора нет. Некоторые свойства важнейших модификаций сопоставлены в табл. Термодинамически устойчив при нормальных условиях кристаллический черный фосфор (P I). Белый и красный фосфор метастабильны, но вследствие малой скорости превращения могут практически неограниченное время сохраняться при нормальных условиях.

Соединения фосфора с неметаллами

Фосфор и водород в виде простых веществ практически не взаимодействуют. Водородные производные фосфора получают косвенным путем, например:

Са 3 Р 2 + 6НСl = 3СаСl 2 + 2РН 3

Фосфин РН 3 представляет собой бесцветный сильнотоксичный газ с запахом гнилой рыбы. Молекулу фосфина можно рассматривать как молекулу аммиака. Однако угол между связями Н-Р-Н значительно меньше, чем у аммиака. Это означает уменьшение доли участия s-облаков в образовании гибридных связей в случае фосфина. Связи фосфора с водородом менее прочны, чем связи азота с водородом. Донорные свойства у фосфина выражены слабее, чем у аммиака. Малая полярность молекулы фосфина, и слабая активность акцептировать протон приводят к отсутствию водородных связей не только в жидком и твердом состояниях, но и с молекулами воды в растворах, а также к малой стойкости иона фосфония РН 4 + . Самая устойчивая в твердом состоянии соль фосфония - это его иодид РН 4 I. Водой и особенно щелочными растворами соли фосфония энергично разлагаются:

РН 4 I + КОН = РН 3 + КI + Н 2 О

Фосфин и соли фосфония являются сильными восстановителями. На воздухе фосфин сгорает до фосфорной кислоты:

РН 3 + 2О 2 = Н 3 РО 4

При разложении фосфидов активных металлов кислотами одновременно с фосфином образуется в качестве примеси дифосфин Р 2 Н 4 . Дифосфин - бесцветная летучая жидкость, по структуре молекул аналогична гидразину, но фосфин не проявляет основных свойств. На воздухе самовоспламеняется, при хранении на свету и при нагревании разлагается. В продуктах его распада присутствуют фосфор, фосфин и аморфное вещество желтого цвета. Этот продукт получил название твердого фосфористого водорода, и ему приписывается формула Р 12 Н 6 .

С галогенами фосфор образует три- и пентагалогениды. Эти производные фосфора известны для всех аналогов, но практически важны соединения хлора. РГ 3 и РГ 5 токсичны, получают непосредственно из простых веществ.

РГ 3 - устойчивые экзотермические соединения; РF 3 - бесцветный газ, РСl 3 и РВr 3 - бесцветные жидкости, а РI 3 - красные кристаллы. В твердом состоянии все тригалогениды образуют кристаллы с молекулярной структурой. РГ 3 и РГ 5 являются кислотообразующими соединениями:

РI 3 + 3Н 2 О = 3НI + Н 3 РО 3

Известны оба нитрида фосфора, отвечающие трех- и пятиковалентному состояниям: РN и Р 2 N 5 . В обоих соединениях азот трехвалентен. Оба нитрида химически инертны, устойчивы к действию воды, кислот и щелочей.

Расплавленный фосфор хорошо растворяет серу, но химическое взаимодействие наступает при высокой температуре. Из сульфидов фосфора лучше изучены Р 4 S 3 , Р 4 S 7 , Р 4 S 10 . Указанные сульфиды могут быть перекристализованы в расплаве нафталина и выделены в виде желтых кристаллов. При нагревании сульфиды воспламеняются и сгорают с образованием Р 2 О 5 и SО 2 . Водой все они медленно разлагаются с выделением сероводорода и образованием кислородных кислот фосфора.

Соединения фосфора с металлами

С активными металлами фосфор образует солеобразные фосфиды, подчиняющиеся правилам классической валентности. р-Металлы, а также металлы подгруппы цинка дают и нормальные, и анионоизбыточные фосфиды. Большинство из этих соединений проявляют полупроводниковые свойства, т.е. доминирующая связь в них - ковалентная. Отличие азота от фосфора, обусловленное размерным и энергетическим факторами, наиболее характерно проявляется при взаимодействии этих элементов с переходными металлами. Для азота при взаимодействии с последними главным является образование металлоподобных нитридов. Фосфор также образует металлоподобные фосфиды. Многие фосфиды, особенно с преимущественно ковалентной связью, тугоплавки. Так, АlР плавится при 2197 град.С, а фосфид галлия имеет температуру плавления 1577 град.С. Фосфиды щелочных и щелочно-земельных металлов легко разлагаются водой с выделением фосфина. Многие фосфиды являются не только полупроводниками (АlР, GаР, InР), но и ферромагнетиками, например СоР и Fе 3 Р.

Фосфи́н (фосфористый водород , гидрид фосфора, по номенклатуре IUPAC - фосфан РН 3) - бесцветный, очень ядовитый, довольно неустойчивый газ со специфическим запахом гнилой рыбы.

Бесцветный газ. Плохо растворяется в воде, не реагирует с ней. При низких температурах образует твердый клатрат 8РН 3 ·46Н 2 О. Растворим в бензоле, диэтиловом эфире, сероуглероде. При −133,8 °C образует кристаллы с гранецентрированной кубической решёткой.

Молекула фосфина имеет форму тригональной пирамиды c молекулярной симметрией C 3v (d PH = 0.142 нм, HPH = 93.5 o). Дипольный момент составляет 0,58 D, существенно ниже, чем уаммиака. Водородная связь между молекулами PH 3 практически не проявляется и поэтому фосфин имеет более низкие температуры плавления и кипения.

Фосфин сильно отличается от его аналога аммиака. Его химическая активность выше, чем у аммиака, он плохо растворим в воде, как основание значительно слабее аммиака. Последнее объясняется тем, что связи H-P поляризованы слабо и активность неподелённой пары электронов у фосфора (3s 2) ниже, чем у азота (2s 2) в аммиаке.

В отсутствие кислорода при нагревании разлагается на элементы:

на воздухе самопроизвольно воспламеняется (в присутствии паров дифосфина или при температуре свыше 100 °C):

Проявляет сильные восстановительные свойства:

При взаимодействии с сильными донорами протонов фосфин может давать соли фосфония, содержащие ион PH 4 + (аналогичноаммонию). Соли фосфония, бесцветные кристаллические вещества, крайне неустойчивы, легко гидролизуется.

Как и сам фосфин, так и его соли являются сильными восстановителями.

Получают фосфин при взаимодействии белого фосфора с горячей щёлочью, например:

Также его можно получить воздействием воды или кислот на фосфиды:

Возможен синтез непосредственно из элементов:

Хлористый водород при нагревании взаимодействует с белым фосфором:

Разложение йодида фосфония:

Разложение фосфоновой кистоты:

или её восстановление.