Литература        24.05.2020   

Законы Кеплера. Космические скорости. Основы астрономии. Движение небесных тел. Законы Кеплера Кто открыл законы движения планет 1 балл

Обладал незаурядными математическими способностями. В начале XVII века в результате многолетних наблюдений за движением планет, а также на основе анализа астрономических наблюдений Тихо Браге, Кеплер открыл три закона, названных впоследствии его именем.

Первый закон Кеплера (закон элипсов). Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон равных площадей). Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, заметает собой равные площади.

Третий закон Кеплера (гармонический закон). Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Давайте рассмотри подробнее каждый из законов.

Первый закон Кеплера (закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Первый закон описывает геометрию траекторий планетарных орбит. Представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание. Получившейся фигурой будет эллипс. Форма эллипса и степень его сходства с окружностью характеризуется отношением e = c / a, где c — расстояние от центра эллипса до его фокуса (фокальное расстояние), a — большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0, и, следовательно, e = 0 эллипс превращается в окружность.

Ближайшая к Солнцу точка P траектории называется перигелием. Точка A, наиболее удалённая от Солнца, — афелием. Расстояние между афелием и перигелием составляет большую ось эллиптической ор-биты. Расстояние между афелием А и перигелием Р составляет большую ось эллиптической ор-биты. Половина длины большой оси, полуось a, — это среднее расстояние от планеты до Солнца. Среднее расстояние от Земли до Солнца называется астрономической единицей (а. е.) и равно 150 млн км.


Второй закон Кеплера (закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, занимает собой равные площади.

Второй закон описывает изменение скорости движения планет вокруг Солнца. С этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии. На рисунке, площади секторов выделенных синим, равны и соответственно время, за которое планета пройдет каждый сектор, тоже равно. Земля проходит перигелий в начале января, а афелий в начале июля. Второй закон Кеплера, закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит. Справедливо не только для планет, но и для их спутников.

Третий закон Кеплера позволяет сравнить орбиты планет между собой. Чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты и при движении по орбите ее полный оборот занимает больше времени. Так же с ростом расстояния от Солнца снижается линейная скорость движения планеты.

где T 1 , T 2 — периоды обращения планеты 1 и 2 вокруг Солнца; a 1 > a 2 — длины больших полуосей орбит планет 1 и 2. Полуось — это среднее расстояние от планеты до Солнца.

Познее Ньютон установил, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:

где М - масса Солнца, а m 1 и m 2 - масса планеты 1 и 2.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды. Так же зная расстояние планеты до Солнца, можно вычислить продолжительность года (время полного оборота вокруг Солнца). И наоборот, зная продолжительность года, можно вычислить расстояние планеты до Солнца.

Три закона движения планет открытые Кеплером дали точное объяснение неравномерности движения планет. Первый закон описывает геометрию траекторий планетарных орбит. Второй закон описывает изменение скорости движения планет вокруг Солнца. Третий закон Кеплера позволяет сравнить орбиты планет между собой. Законы, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения.

Коль скоро на сайте завелись "разоблачители", утверждающие, что математика - это ересь, а гравитационного притяжения между планетами вообще не существует, давайте посмотрим, как закон всемирного тяготения позволяет описать явления, установленные эмпирическим путем. Ниже представлено математическое обоснование первого закона Кеплера.

1. Исторический экскурс

Для начала вспомним, как вообще этот закон появился на свет. В 1589 году некто Иоганн Кеплер (1571 - 1630) - выходец из бедной немецкой семьи - заканчивает школу и поступает в Тюбингенский университет. Там он занимается математикой и астрономией. Причем его учитель профессор Местлин, будучи тайным поклонником идей Коперника (гелиоцентрическая система мира), преподает в университете "правильную" теорию - систему мира Птолемея (т.е. геоцентрическую). Что, впрочем, не мешает ему познакомить своего ученика с идеями Коперника, и вскоре тот сам становится убежденным сторонником этой теории.

В 1596 году Кеплер издает свою "Космографическую тайну". Хотя работа представляет сомнительную научную ценность даже по тем временам, тем не менее она не остается незамеченной для датского астронома Тихо Браге, который вел астрономические наблюдения и вычисления уже на протяжении четверти века. Тот замечает самостоятельность мышления молодого ученого и знания им астрономии.

С 1600 года Иоганн работает помощником Браге. После его смерти в 1601 году Кеплер начинает изучать результаты трудов Тихо Браге - данные многолетних астрономических наблюдений. Дело в том, что к концу XVI века прусские таблицы (таблицы движения небесных тел, вычисленные на основе учений Коперника) стали давать существенные расхождения с наблюдаемыми данными: ошибка в положении планет доходила до 4-5 0 .

Для решения проблемы Кеплер был вынужден усложнить теорию Коперника. Он отказывается от идеи о том, что планеты движутся по круговым орбитам, что в конечном итоге позволяет ему решить проблему с расхождением теории с наблюдаемыми данными. Согласно его выводам, планеты движутся по орбитам, имеющим форму эллипса, причем Солнце находится в одном из его фокусов. Так что расстояние между планетой и Солнцем периодически меняется. Этот вывод известен как первый закон Кеплера .

2. Математическое обоснование

Посмотрим теперь, как первый закон Кеплера согласуется с законом всемирного тяготения. Для этого выведем закон движения тела в гравитационном поле, обладающем сферической симметрией. В этом случае выполняется закон сохранения момента импульса тела $\vec{L}=[\vec{r},\vec{p}]$. Это значит, что тело будет двигаться в плоскости, перпендикулярной вектору $\vec{L}$, причем ориентация этой плоскости в пространстве неизменна. В таком случае удобно использовать полярную систему координат $(r, \phi)$ с началом в источнике гравитационного поля (т.е. вектор $\vec{r}$ перпендикулярен вектору $\vec{L}$). Т.е. одно из тел (Солнце) мы помещаем в начало координат, и ниже выведем закон движения второго тела (планеты) в этом случае.

Нормальная и тангенциальная составляющие вектора скорости второго тела в выбранной системе координат выражаются следующими соотношениями (здесь и далее точка означает производную по времени):

$$ V_{r}=\dot{r}; V_{n}=r\dot{\phi} $$

Закон сохранения энергии и момента импульса в этом случае имеют следующий вид:

$$E = \frac{m\dot{r}^2}{2}+\frac{m(r\dot{\phi})^2}{2}-\frac{GMm}{r}=const \hspace{3cm}(2.1)$$ $$L = mr^2\dot{\phi}=const \hspace{3cm}(2.2)$$

Здесь $G$ - гравитационная постоянная, $M$ - масса центрального тела, $m$ - масса "спутника", $E$ - полная механическая энергия "спутника", $L$ - величина его момента импульса.

Выражая $\dot{\phi}$ из (2.2) и подставляя его в (2.1), получаем:

$$ E = \frac{m\dot{r}^2}{2}+\frac{L^2}{2mr^2}-\frac{GMm}{r} \hspace{3cm}(2.3) $$

Перепишем полученное соотношение следующим образом:

$$ dt=\frac{dr}{\sqrt{\frac{2}{m}(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.4)$$

Из соотношения (2.2) следует:

$$ d\phi=\frac{L}{mr^2}dt $$

Подставляя вместо $dt$ выражение (2.4), получаем:

$$ d\phi=\frac{L}{r^2}\frac{dr}{\sqrt{2m(E-\frac{L^2}{2mr^2}+\frac{GMm}{r})}} \hspace{3cm}(2.5) $$

Чтобы проинтегрировать полученное выражение, перепишем выражение, стоящее под корнем в скобках, в следующем виде:

$$ E-((\frac{GMm^{3/2}}{\sqrt{2}L})^2 - \frac{GMm}{r} + \frac{L^2}{2mr^2}) + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =E-(\frac{GMm^{3/2}}{\sqrt{2}L}-\frac{L}{r\sqrt{2mr}})^2 + (\frac{GMm^{3/2}}{\sqrt{2}L})^2=$$ $$ =\frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2) $$

Введем следующее обозначение:

$$ \frac{GMm^2}{L^2}\equiv\frac{1}{p} $$

Продолжая преобразования, получаем:

$$ \frac{L^2}{2m}(\frac{2mE}{L^2}+(\frac{GMm^2}{L^2})^2-(\frac{GMm^2}{L^2}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{2mE}{L^2} + \frac{1}{p^2}-(\frac{1}{p}-\frac{1}{r})^2)=$$ $$\frac{L^2}{2m}(\frac{1}{p^2}(1+\frac{2EL^2}{(GM)^2m^3})-(\frac{1}{p}-\frac{1}{r})^2) $$

Введем обозначение:

$$ 1+\frac{2EL^2}{(GM)^2m^3} \equiv e^2 $$

В этом случае преобразуемое выражение принимает следующий вид:

$$ \frac{L^2e^2}{2mp^2}(1-(\frac{p}{e} (\frac{1}{p}-\frac{1}{r}))^2) $$

Введем для удобства следующую переменную:

$$ z=\frac{p}{e} (\frac{1}{p}-\frac{1}{r}) $$

Теперь уравнение (2.5) принимает вид:

$$ d\phi=\frac{p}{er^2}\frac{dr}{\sqrt{1-z^2}}=\frac{dz}{\sqrt{1-z^2}}\hspace{3cm}(2.6) $$

Проинтегрируем полученное выражение:

$$ \phi(r)=\int\frac{dz}{\sqrt{1-z^2}}=\arcsin{z}-\phi_0 $$

Здесь $\phi_0$ - конатснта интегрирования.

Наконец, получаем закон движения:

$$ r(\phi)=\frac{p}{1-e\sin{(\phi+\phi_0)}} $$

Положив константу интегрирования $\phi_0=\frac{3\pi}{2}$ (данное значение соответствует экстремуму функции $r(\phi)$), окончательно получаем:

$$r(\phi)=\frac{p}{1+e\cos{\phi}} \hspace{3cm}(2.7)$$ $$p=\frac{L^2}{GMm^2}$$ $$e=\sqrt{1+\frac{2EL^2}{(GM)^2m^3}}$$

Из курса аналитической геометрии известно, что выражение, полученное для функции $r(\phi)$, описывает кривые второго порядка: эллипс, параболу и гиперболу. Параметры $p$ и $e$ называют, соответственно, фокальным параметром и эксцентриситетом кривой. Фокальный параметр может принимать любое положительное значение, а величина эксцентриситета определяет вид траектории: если $e\in}