Юриспруденция        02.05.2020   

Как работает электричество для детей. Что такое электричество определение для школьников. Как объяснить ребенку, что такое электричество. Электрические токи в природе

Тундра – огромная природная страна, растянувшаяся вдоль всего побережья Северного Ледовитого океана. Здесь настолько жесткие климатические условия , что высоким могучим деревьям, обширно занимающим солидную территорию нашей страны, не находится места.

Стандартное наполнение тундры – это растения, которые сумеют пережить мимолетное трехмесячное теплое время года. За лето они должны успеть многое – зацвести и дать плоды и семена, ведь все остальные месяцы будет хозяйничать холодная, суровая зима. Но местная флора уже привыкла к условиям тундры – созревшие семена терпеливо ждут летней погоды. Этим условиям соответствуют мхи и лишайники, а из кустарников – малоизвестные морошка и голубика. Также там можно встретить деревья-карлики – такие как береза и ива. Другим деревьям и растениям нет места в этой «стране» – во время лета низкие температуры позволяют оттаять только верхушке почвенного слоя, к таким запросам привыкли только вышеупомянутые представители растительного мира.

Тундра делится на несколько видов:

Арктическая тундра

Ннаходится на границе с ледяной зоной, температура не превышает +6 градусов. Из растительности имеется только лишайник и низкая трава. Растительность есть только на половине всей поверхности. Большую часть занимают болота, и озера. В летнее время в арктической тундре пасутся северные олени.

Мохово-лишайниковая тундра

Находится между ледяными, и более теплыми зонами. В основном растет низкая трава, кустарники, и мох. Также встречаются и небольшие деревья, такие как осока, и стелющая ива. Активно используется людьми, как пастбища для разведения оленей.

Кустарниковая тундра

Граничит с лесотундрой на юге. Заросли травы могут иногда превышать рост человека, также обильно растут кустарники. На дальнем востоке активно растет кедровый стальник. Температура не превышает +11 градусов.

Лесотундра

Редкое количество деревьев чередуется с кустарником, и высокой травой. Флора и фауна более активно развита в этом регионе.

Также в каждой зоне имеется свой тип тундры. Полигонные тундры находятся в некоторых районах арктической тундры. Еще иметься каменистые, бугристые, и кочкарные тундры.

Животный мир представлен также скупо. Большое количество воды ненадолго привлекает таких птиц как, дикие утки и гуси, но с приходом зимы они покидают территорию тундры , улетая более южные земли. Животные, сделавшие тундру своим постоянным местом жительства, были вынуждены привыкнуть к таким тяжелым условиям. Куропатка, песец, северный олень, горностай, волк, лисица, лемминг – каждый из этих животных пережидает зиму по-своему. Кто-то впадает в длительные сон, кто-то выживает под снегом, кто-то решается покинуть тундру на время, чтобы вернуться с наступлением недолгого лета. В тундре обитают как не странно, вездесущие насекомые – комары.

Природа тундры считается сильно ранимой. Со временем от следов проезжающих автомобилей, появляются овраги, и ямы. Поэтому люди принимают исключительные меры, по освоению тундры и поиску природных богатств. В прошлом люди считали тундру магической землей, это название произошло из-за продолжительных полярных ночей, и вечной мерзлоты.

Но уже в более цивилизованное время в тундре было найдено большое количество природных ресурсов. Например, в Сибири были найдены практически все полезные ископаемые таблицы Менделеева, теперь там отлично налажена добыча этих ископаемых, особенно нефти и газа. С каждым годом геологи находят новые месторождения, пробираясь все глубже в те места, куда человеку прежде не было доступа пройти.

Уровень любознательности малыша обычно зашкаливает по всем показателям, но изучение некоторых явлений может быть крайне опасным. К таким знаниям относится понимание такой небезобидной вещи, как электрический ток.

Как объяснить маленькому почемучке, что это такое и чем могут закончиться его исследования окружающего мира?

Что такое электрический ток: варианты объяснений ребенку

Варианты объяснений зависят от фантазии родителя и дотошности ребенка. Самый элементарный путь - рассказать малышу о том, что во всех розетках и проводах живет строгий дядя Ток, который очень не любит, когда его беспокоят маленькие детки, и может больно их ударить.

Родители, которые хотят не просто запретить малышу лезть куда не нужно, но и объяснить, почему так делать нельзя, могут рассказать о том, что во всех проводах, розетках и электроприборах есть много маленьких шариков - электронов. Пока мы не пользуемся электричеством, шарики прыгают на месте. Но как только мы включаем свет, телевизор, утюг, шарики начинают быстро бежать. И если им на пути попадается ручка ребенка или мамин пальчик, шарикам это не нравится. Они продолжают бежать вперед, пробивают ручку и пальчики, и это очень больно. Можно вместо шариков использовать аналогию с пчелами, которые могут больно ужалить. Правда, не каждый малыш поймет, почему пчелы - это плохо, т.к. скорее всего не сталкивался с их укусами.

Также родителям помогут мультфильмы, например, «Советы тетушки Совы» или «Фиксики», где в простой и доступной форме рассказывается об электрическом токе и электроприборах.

Эксперименты с электрическим током для детей

Нет нужды говорить о том, что любые опыты, связанные с электричеством, следует проводить под неусыпным контролем взрослых. Вот несколько экспериментов, которые наглядно продемонстрируют малышу, что такое электрический ток:

  1. Возьмите батарейку на 9 В (т.н. «таблетку») и предложите ребенку положить ее на кончик языка. Объясните ему, что легкое жжение на языке - это и есть маленькие шарики, которые побежали, и им не понравилось, что им помешали бежать. Только шариков в маленькой батарейке немножко, поэтому бьются они совсем чуть-чуть. А в розетках и проводах таких шариков намного больше, поэтому они ударят гораздо больнее.
  2. Очень наглядная демонстрация получается при помощи лампочки на 12 В. Включите ее в обычную электрическую сеть. Естественно, она мгновенно перегорит, причем очень показательно - с резким хлопком, а на внутренней поверхности колбы останутся черные пятна. Объясните малышу, что шарики очень рассердились, потому что их заставили зря работать, поэтому испортили лампочку.
  3. Возьмите пластиковую палочку, потрите ее о кусок шерстяной ткани или волосы, а затем приложите к кусочкам бумаги. Объясните ребенку, что бумага пристает к палочке потому, что шарики выпрыгивают наружу, хватают бумагу и ее не отпускают. Но если притронуться к палочке рукой, шарики рассердятся, потому что у них нет сил удержать руку, и больно ее оттолкнут.
  4. Детям постарше можно продемонстрировать, как получается электричество. Для этого возьмите фонарик, работающий на батарейке, или небольшую лампу. В качестве батарейки используйте лимон или клубень картофеля, в который воткните два провода - один медный, второй оцинкованный. Концы провода аккуратно подсоедините к контактам фонарика или лампочки - они должны зажечься. Особо продвинутым родителям можно последовательно соединить несколько клубней, чтобы на выходе получить более высокое напряжение. У ребенка подобное зрелище вызывает бурный восторг.

Также при наличии подручных средств сконструируйте для малыша простейшую динамо-машину и покажите ему, что лампочка горит только тогда, когда крутишь ручку, а как только останавливаешься - лампочка гаснет. Как минимум короткая передышка и тишина в доме после демонстрации подобного чуда техники вам обеспечена.

Ребенку рассказывай, но сам не плошай

Следует отдавать себе отчет в том, что даже после ваших объяснений чадо пожелает лично убедиться в том, насколько больно могут ужалить пчелы из розетки. Поэтому примите все меры предосторожности, связанные с электрическим током. Вот наиболее простые и действенные рекомендации:

  1. Все розетки должны быть со специальной защитой от вмешательства детей.
  2. По возможности не используйте удлинители, дети очень любят их исследовать.
  3. Не пользуйтесь неисправными электроприборами или плохо закрепленными в гнездах розетками.
  4. Старайтесь не оставлять малыша одного в комнате с включенными электроприборами.
  5. Наказывайте ребенка за самовольное включение электроприборов в розетку.

Также обязательно учите ребенка , что при появлении дыма, треска, искр и прочих признаков неисправности электропроводки или электроприборов он срочно должен позвать на помощь родителей и ни в коем случае не лезть туда сам. Желаем успехов!

Уважаемые читатели и просто посетители нашего журнала! Мы достаточно много и довольно подробно пишем о том, какими способами, при помощи каких именно энергетических ресурсов, производится электроэнергия на электростанциях. Атом, газ, вода – были нашими с вами «героями», разве что до альтернативных, «зеленых» вариантов еще не успели добраться. Но, если присмотреться внимательно, рассказы были далеко не полными. Еще ни разу мы не пробовали отследить детально путь электроэнергии от турбины до наших с вами розеток, с тропинками на освещение наших населенных пунктов и дорог, на обеспечение работы многочисленных насосов, обеспечивающих комфорт наших с вами жилищ.

Дороги и тропинки эти отнюдь не просты, порой извилисты и многократно меняют направление, но знать, как они выглядят – обязанность каждого культурного человека XXI века. Века, облик которого во многом определяет покорившаяся нам электроэнергия, которую мы научились преобразовывать так, чтобы были удовлетворены все наши потребности – как в промышленности, так и в частном пользовании. Ток в проводах линий электропередач и ток в батарейках наших гаджетов – очень разные токи, но они остаются все тем же электричеством. Какие усилия приходится прилагать электроэнергетикам, инженерам, чтобы обеспечить мощнейшие токи сталеплавильных заводов и маленькие, крошечные токи, допустим, наручных часов? Сколько работы приходится проделывать всем тем, кто поддерживает систему преобразований, передачи и распределения электроэнергии, какими такими методами обеспечена стабильность этой системы? Чем «Системный Оператор» отличается от «Федеральной Сетевой Компании», почему обе этих компании были, есть и будут в России не частными а государственными?

Вопросов очень много, ответы на них надо знать, чтобы более менее представлять, зачем нам так много энергетиков и чем же они, грубо говоря, занимаются? Мы ведь настолько привыкли, что с электричеством в домах и в городах все в полном порядке, что про электроинженеров вспоминаем только тогда, когда что-то вдруг перестает работать, когда мы выпадаем из зоны привычного уровня комфорта. Темно и холодно – вот только тогда мы с вами и говорим об энергетиках, причем говорим такие слова, которые мы печатать точно не будем.

Мы уверены, что нам откровенно повезло – взяться за эту не простую, нужную, да еще и огромную тему согласился настоящий профессионал. Просим любить и жаловать – Дмитрий Таланов, Инженер с большой буквы. Знаете, есть такая страна – Финляндия, в которой звание инженера настолько значимо, что в свое время ежегодно издавался каталог с перечнем специалистов, его имеющих. Хотелось бы, чтобы и в России когда-нибудь появилась такая славная традиция, благо в наш электронно-интернетный век завести такой ежегодно обновляемый каталог намного проще.

Статья, которую мы предлагаем вашему вниманию по инженерному коротка, точна и емка. Конечно, обо всем, что написал Дмитрий, можно рассказать намного подробнее, и в свое время наш журнал начал цикл статей о том, как в XIX веке происходило покорение электричества.

Георг Ом, Генрих Герц, Андре-Мари Ампер, Алессандро Вольт, Джеймс Ватт, Фарадей, Якоби, Ленц, Грамм, Фонтен, Лодыгин, Доливо-Добровольский, Тесла, Яблочков, Депрё, Эдисон, Максвелл, Кирхгоф, братья Сименсы и братья Вестингаузы – в истории электричества много славных имен, достойных того, чтобы мы о них помнили. В общем, если кому-то хочется припомнить подробности того, как все начиналось, милости просим, а статья Дмитрия – начало совсем другой истории. Очень надеемся, что она вам понравится, а продолжение статей Дмитрия Таланова мы увидим в самое ближайшее время.

Уважаемого Дмитрия от себя лично – с дебютом, ко всем читателям просьба – не скупитесь на комментарии!

Что такое электрический ток, откуда он берется и как добирается до наших домов?

Для чего нам электроэнергия и насколько она помогает нам жить, может узнать каждый, обведя критическим взглядом свое жилище и место работы.

Первое, что бросается в глаза, это освещение. И верно, без него даже 8-часовой рабочий день превратился бы в муку. Добираться до работы во многих мегаполисах и так небольшое счастье, а если придется это делать в темноте? А зимой так и в оба конца! Газовые фонари помогут на главных магистралях, но чуть свернул в сторону, и не видно ни зги. Можно легко провалиться в подвал или яму. А за городом на природе, освещаемой только светом звезд?

Ночное освещение улицы, Фото: pixabay.com

Удалять жару из офисов, куда с трудом добрался, без электричества тоже нечем. Можно, конечно, открыть окна и обвязать голову мокрым полотенцем, но надолго ли это поможет. Качающим воду насосам тоже нужно электричество, или придется регулярно ходить с ведром на ручную колонку.

Кофе в офисе? Забудьте! Только если всем сразу и не часто, чтобы дым от сгорающего угля не отравил рабочую атмосферу. Или за дополнительную денежку получать из соседнего трактира.

Отправить письмо в соседний офис? Надо взять бумагу, написать письмо от руки, затем ножками отнести его. На другой конец города? Вызываем курьера. В другую страну? А вы знаете, сколько это будет стоить? К тому же ответа не ждите ранее полугода из соседних стран и от года до пяти из-за океана.

Вернулись домой, надо зажечь свечи. Читать при них – мучение для глаз, поэтому придется заняться чем-то другим. А чем? ТВ нет, компьютеров нет, смартфонов – и тех нет, ибо нечем их запитать. Лежи на лавке и гляди в потолок! Хотя рождаемость точно повысится.

К этому следует добавить, что все пластмассы и удобрения сейчас получают из природного газа на заводах, где крутятся тысячи моторов, приводимых в движение всё тем же электричеством. Отсюда список доступных удобрений сильно укорачивается до тех, которые можно приготовить из природного сырья в чанах, размешивая в них ядовитую жижу лопатками с ручным, водяным или паровым приводом. Как результат, сильно сжимается объем производимых продуктов.

О пластмассах – забудьте! Эбонит – наше высшее счастье из длинного списка. А из металлов самым доступным становится чугун. Из медицины на сцену в качестве главного орудия снова выступают стетоскоп и быстро ржавеющий скальпель. Остальное канет в Лету.

Продолжать можно долго, но идея должна быть уже понятна. Нам нужно электричество. Мы можем выжить без него, но что это будет за жизнь! Так откуда же появилось это волшебное электричество?

Открытие электричества

Все мы знаем физическую истину, что ничто никуда бесследно не исчезает, а только переходит из одного состояния в другое. С этой истиной столкнулся греческий философ Фалес Милетский в VII веке до н. э. обнаружив электричество как вид энергии, натирая кусок янтаря шерстью. Часть механической энергии при этом перешла в электрическую и янтарь (на древнегреческом «электрон») электризовался, то есть приобрел свойства притягивать легкие предметы.

Этот вид электричества сейчас называют статическим, и он нашел себе широкое применение, в том числе в системах очистки газов на электростанциях. Но в Древней Греции ему не нашлось применения и, если бы Фалес Милетский не оставил после себя записей о своих экспериментах, мы бы никогда не узнали, кто был тот первый мыслитель, заостривший свое внимание на виде энергии, являющейся едва ли не самой чистой среди всех, с которыми мы знакомы по настоящий день. Ею также наиболее удобно управлять.

Сам термин «электричество» – то есть «янтарность» – ввел в употребление Уильям Гилберт в 1600 году. С этого времени с электричеством начинают широко экспериментировать, пытаясь разгадать его природу.

Как результат, с 1600 по 1747 годы последовала череда увлекательных открытий и появилась первая теория электричества, созданная американцем Бенджамином Франклином. Он ввел понятие положительного и отрицательного заряда, изобрел молниеотвод и с его помощью доказал электрическую природу молний.

Далее в 1785 происходит открытие закона Кулона, а в 1800 году итальянец Вольта изобретает гальванический элемент (первый источник постоянного тока, предшественник нынешних батарей и аккумуляторов), представлявший собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой. С появлением этого, стабильного по тем временам, источника электричества новые и важнейшие открытия быстро следуют одно за другим.

Майкл Фарадей, читающий рождественскую лекцию в Королевском институте. Фрагмент литографии, Фото: republic.ru

В 1820 году датский физик Эрстед обнаружил электромагнитное взаимодействие: замыкая и размыкая цепь с постоянным током, он заметил цикличные колебания стрелки компаса, расположенной вблизи проводника. А в 1821 году французский физик Ампер открыл, что вокруг проводника с переменным электрическим током образуется переменное электромагнитное поле. Это позволило уже Майклу Фарадею в 1831 году открыть электромагнитную индукцию, описать уравнениями электрическое и магнитное поле и создать первый электрогенератор переменного тока. Фарадей вдвигал катушку с проводом в намагниченный сердечник и в результате в обмотке катушки появлялся электрический ток. Фарадей также придумал первый электродвигатель – проводник с электрическим током, вращающийся вокруг постоянного магнита.

Всех участников «гонки за электричеством» невозможно упомянуть в этой статье, но результатом их усилий явилась доказуемая экспериментом теория, детально описывающая электричество и магнетизм, в соответствии с которой мы производим сейчас всё, что требует электричества для своего функционирования.

Постоянный или переменный ток?

В конце 1880-х годов, еще до появления мировых стандартов на производство, распределение и потребление промышленной электроэнергии, разразилась битва между сторонниками использования постоянного и переменного тока. Во главе противостоящих друг другу армий встали Тесла и Эдисон.

Оба были талантливыми изобретателями. Разве что Эдисон обладал куда более развитыми способностями к бизнесу и к моменту начала «войны» успел запатентовать множество технических решений, в которых использовался постоянный ток (в то время в США постоянный ток являлся стандартом по умолчанию; постоянным называется ток, направление которого не меняется по времени).

Но была одна проблема: в те времена постоянный ток было очень трудно трансформировать в более высокое или низкое напряжение. Ведь если сегодня мы получаем электроэнергию напряжением 240 вольт, а наш телефон требует 5 вольт, мы втыкаем в розетку универсальную коробочку, которая преобразует что угодно во что угодно в нужном нам диапазоне, используя современные транзисторы, управляемые крошечными логическими схемами с изощренным программным обеспечением. А что можно было сделать тогда, когда до изобретения самых примитивных транзисторов оставалось еще 70 лет? И если по условиям электрических потерь требовалось повысить напряжение до 100’000 вольт, чтобы доставить электроэнергию на расстояние 100 или 200 километров, любые столбы Вольта и примитивные генераторы постоянного тока оказывались бессильны.

Понимая это, Тесла выступал за переменный ток, трансформация которого в любые уровни напряжения не представляла труда и в те времена (переменным считается ток, величина и направление которого периодически меняются со временем даже при неизменном сопротивлении этому току; при частоте сети 50Гц это происходит 50 раз в секунду). Эдисон же, не желая терять патентные отчисления себе, развернул кампанию по дискредитации переменного тока. Он уверял, что этот вид тока особо опасен для всего живого, и в доказательство публично убивал бродячих кошек и собак, прикладывая к ним электроды, соединенные с источником переменного тока.

Эдисон проиграл битву, когда Тесла предложил за 399’000 долларов осветить весь город Буффало против предложения Эдисона сделать то же за 554’000 долларов. В день, когда город осветился электричеством, полученным от станции, расположенной у Ниагарского водопада и вырабатывающей именно переменный ток, компания General Electric выкинула постоянный ток из рассмотрения в своих будущих бизнес-проектах, полностью поддержав своим влиянием и деньгами переменный ток.

Томас Эдисон (США), Рис.: cdn.redshift.autodesk.com

Может показаться, что переменный ток навсегда завоевал мир. Однако у него имеются наследственные болячки, растущие из самого факта переменности. Прежде всего это электрические потери, связанные с потерями в индуктивной составляющей проводов ЛЭП, которые используются для передачи электроэнергии на большие расстояния. Эти потери в 10-20 раз превышают возможные потери в тех же самых ЛЭП в случае протекания по ним постоянного тока. Плюс сказывается повышенная сложность синхронизации узлов энергосистемы (для пущего понимания, скажем, отдельных городов), ведь для этого требуется не только выровнять напряжения узлов, но и их фазу, ибо переменный ток представляет собой волну синусоиды.

Отсюда видна и значительно большая приверженность к «качаниям» узлов по отношению к друг другу, когда напряжение-частота начинают меняться вверх-вниз, на что обычный потребитель обращает внимание, когда у него в квартире мигает свет. Обычно это предвестник конца совместной работы узлов: связи между ними рвутся и какие-то узлы оказываются с дефицитом энергии, что ведет к снижению в них частоты (т.е. к снижению скорости вращения тех же электродвигателей и вентиляторов), а какие-то с избытком энергии, приводящем к опасному повышению напряжения по всему узлу, включая наши розетки с подключенными к ним устройствам. А при достаточно большой длине ЛЭП, что, к примеру, критично для РФ, начинают проявляться и другие портящие настроение электрикам эффекты. Не вдаваясь в детали, можно указать, что передавать электроэнергию переменного тока по проводам на сверхдальние расстояния становится трудно, а иногда и невозможно. Для сведения, длина волны частотой 50 Гц составляет 6000 км, и при приближении к половине этой длины – 3000 км – начинают сказываться эффекты бегущих и стоячих волн плюс эффекты, связанные с резонансом.

Эти эффекты отсутствуют при использовании постоянного тока. А значит, повышается стабильность работы энергосистемы в целом. Принимая это во внимание, а также то, что компьютеры, светодиоды, солнечные панели, аккумуляторы и многое другое используют для своей работы именно постоянный ток, можно заключить: война с постоянным током еще не проиграна. Современным преобразователям постоянного тока на любые используемые сегодня мощности и напряжения осталось совсем немного, чтобы сравняться в цене с привычными человечеству трансформаторами переменного тока. После чего, видимо, начнется триумфальное шествие по планете уже постоянного тока.

Электричество окружает детей повсюду: дома, на улице, в детсаду, в игрушках и бытовых приборах - сложно вспомнить сферу жизнедеятельности человека, где обходились бы без тока. А потому интерес детей к данной теме вполне объясним. Хотя рассказ о свойствах электричества - не только вопрос любознательности, но и… безопасности малыша!

В 2-3 года у маленького человечка начинается период, когда ему интересно все. Что это, зачем, как работает, почему оно такое, а не иное, как этим пользуются, чем полезно или вредно - миллион вопросов в сутки папе и маме гарантирован. Причем сфера интересов «почемучки» обширна: его волнуют как приземленные темы (вроде того, или ), так и возвышенные ( , ). И расспросы об электричестве также естественны. Что такое ток, откуда берется и куда пропадает, когда щелкаем выключателем? Почему от электричества светится лампочка, и работает телевизор? Как папин или его работают без провода к розетке? Чем так опасен ток, что родители запрещают даже приближаться к этой розетке? Вариантов не счесть! Конечно, можно отмахнуться от них, сказав, что ребенок еще мал, чтобы понять эту тему (с точки зрения науки, электричество столь сложное понятие, о котором можно рассуждать не раньше 12-14 лет). Но такой подход ошибочен. Причем с точки зрения и воспитания, и безопасности. Пусть малыш не разберется в физике процесса, но знать суть электротока и относиться к нему с должным уважением ему вполне под силу.

Электричество: пчелы или электроны?

Итак, начнем с базового вопроса: что такое электричество? В общении с ребенком 2-3 лет возможно несколько подходов. Первый: игровой. Можно рассказать малышу, что внутри проводов живут, например, маленькие пчелы или муравьи, фактически невидимые человеческому глазу. И когда электроприбор выключен, они там покоятся, отдыхают. Но стоит подключить его к розетке (либо нажать на выключатель, если он соединен с сетью), как они начинают трудиться: бегать либо летать внутри провода вперед и назад без устали! И от такого их движения вырабатывается энергия, зажигающая лампочку или позволяющая работать тем или иным приборам. Причем количество таких пчелок-муравьишек в проводе может быть разным. Чем их больше и чем активнее они двигаются, тем выше сила тока - а значит, тем больший механизм они могут запустить. Проще говоря, чтобы светилась лампочка в карманном фонарике, нужно совсем мало таких «помощников», а чтобы осветить дом - нужно иметь запас электричества намного, намного больше. И тут важно подчеркнуть: такие пчелы хоть и работают на пользу людей, но могут серьезно обидеться, если к ним относиться небрежно. Причем обидой дело не ограничится - они могут и больно-больно укусить (и чем больше пчелок, тем сильнее будет укус). А потому нельзя лезть в розетку или разбирать электроприбор, а также касаться оголенных проводов у подключенных приборов - пчелам может не понравиться, что кто-то пытается мешать им работать…

Если же вам такой подход не по душе, вы предпочитаете отвечать ребенку на его вопросы с полной серьезностью, тогда можно рассказать о физическом явлении электричества, только адаптировав его для маленького человечка. Поясните, что внутри металлических проводов есть микрочастицы - электроны. Они, с одной стороны, настолько мелкие, что их даже в микроскоп невозможно рассмотреть, а с другой - их очень много. В обычном состоянии они находятся на одном месте и ничего не делают. Но когда включаете прибор, электроны начинают с большой скоростью передвигаться внутри проводов. Это движение и рождает энергию электричества. Чтобы малышу было понятно, как такое возможно, можно сравнить это с водой в трубах - не зря же говорят, что ток по проводам течет. Словно капли жидкости в трубочке, подталкивающие друг друга, следующие одна за другой, бегущие, пока не перекрыт вентиль, электроны действуют точно так - только у них вместо вентиля выключатель. А еще от прямого контакта с электронами, в отличие от воды, вы не намокаете, а получаете электрический удар. Это самый настоящий удар: ведь электронов очень много и они бегут с огромной скоростью. А потому, если встать у них на пути, они бьются в кожу с большой силой, что, конечно, очень больно. Поэтому, если прибор включен в розетку или оголился провод (что по сути равноценно разрыву трубы, когда вода вытекает наружу: и чем больше воды, тем сильнее ее напор), нельзя мешать ему. Пусть электроны тратят энергию на лампочку, а не на то, чтобы потратить ее, обидев малыша!

Демонстрируйте электроток на примерах

Какой бы подход в рассказе об электричестве вы ни выбрали, логичным для детей выступает следующий вопрос: а почему при включении прибора пчелы или электроны начинают в проводе двигаться, что их заставляет делать это? В таком случае надо в общих чертах рассказать о строении электросети, и желательно делать это с приведением наглядных примеров из окружающей жизни либо на фото- и видеоматериалах. Расскажите, что все-все провода в доме сходятся в один кабель, вмещающий нужное для жилья количество электронов/пчел. Далее он выходит на улицу и, опираясь на столбы, ведет к фабрике, где и производят эти частицы, - такой завод называют электростанцией. О том, как их производят (сжиганием угля, от привода на гидроэлектростанции или ветряках, от солнечных батарей), можно рассказать по желанию, если ребенок проявляет к этому интерес. Но обычно в 2-3 года хватает понятия, что есть такая фабрика, где делают «электрических пчел» или электроны. Хотя никто не запрещает провести вам с ребенком маленький, но наглядный эксперимент. Вам понадобится простейшая динамо-машина: с лампочкой и ручкой, от вращения которой светится лампочка. Малыш наверняка придет в восторг, видя, что может производить собственными руками электричество! Причем стоит ему перестать вращать рукоятку, и лампочка сразу гаснет - очень наглядно и просто.

Экспериментальная практика вообще крайне полезна - особенно в тех вопросах, где надо показать, что ток опасен. Для этого вам понадобится несколько батареек и пара лампочек. Вначале поясните, что батарейка - это такой маленький запас электричества: как консервы с едой, в которых припасено электронов для питания приборов на какое-то время. А потом покажите, как она работает: установили ее в игрушку и телефон, они работают. Закончился заряд пчелок/электронов - прибор выключился: и нужны или новые батарейки, или зарядить старые, «залив» из розетки партию «помощников» (подчеркните, что заряжать можно не все, а только батареи, называемые аккумуляторами). Теперь переходите к экспериментам. Возьмите батарейку на 9 В (ту, что принято именовать кроной) и предложите малышу прикоснуться одновременно к обоим контактам языком. Легкое жжение, которое почувствует, и есть проявление электрического удара - только слабым, ведь в батарейке пчелок или электронов очень мало. А в розетке их на порядок больше, а удар в десятки раз сильнее и больнее. Конечно, немалое количество детей захочет убедиться в этом. Потому нужен иной эксперимент: с парой разных лампочек - на 4,5 В и 9 В. Подключите ко все той же батарейке последнюю - она светится. А затем присоедините ту, что рассчитана на меньшее напряжение, - и она перегорит, причем эффектно: с хлопком, вспышкой и почерневшим изнутри стеклом… Объясните, что для столь маленькой лампочки электронов в батарее слишком много, либо что пчелам не понравилось, что с ними играют без толку, и они испортили ее. Так и в розетке для человека - тока много или пчелы обидятся, и он может сильно пострадать.

Научите аккуратному обращению с электричеством!

Только помните: ваша цель - не запугать ребенка. Если в этом вопросе перегнете палку, велик риск, что в душе малыша поселится страх перед электричеством. Он будет панически бояться его, ему будет сложно пользоваться электроприборами, он будет их избегать и стараться сам их не включать. Правильнее не напугать, а научить аккуратности и бережливому отношению к току. Потому рассказывайте про риски, но не приукрашайте чрез меры все детали.

Для обучения обращению с электричеством уделите внимание на эти пункты:

нельзя включать любые электроприборы в доме без разрешения взрослых, они должны знать, что малыш включает и выключает телевизор, или другой крупный электроприбор;

недопустимо разбирать электрические приборы, даже если они отключены от розетки или малышу кажется, что требуется заменить какую-то деталь - например, перегоревшую лампочку в ;

нужно сразу же сообщать взрослым о любой проблеме с электроприбором: если перестал работать, начал неприятно пахнуть, дымиться или искрить, если разбился его корпус или порвался провод;

ни в коем случае нельзя мочить электроприбор или провода - вода, с одной стороны, может вывести его из строя, а с другой, является хорошим проводником для тока, а потому через нее может пойти электроудар;

обращаться с электроприборами надо аккуратно, не бросать их и не бить, все провода надо скручивать бережно, без изломов, а вытягивать их из розетки нужно не резко и не за провод, а плавно и за защитный штепсель;

на улице нельзя подходить к висящим со столба или торчащим из земли оборванным проводам и тем более касаться их, запрещено открывать дверцы трансформаторных будок и электрощитков;

покажите ребенку общепринятые символы электричества, которые должны сказать ему, что приближаться к обозначенным ими предметам и строениям без ведома взрослых не стоит ни при каких обстоятельствах.

И не забудьте к любопытству ребенка. Как бы вы ему ни втолковывали правила безопасности, он в любом случае осознанно или нет, малыш хоть раз попытается залезть в розетку, порвать провод и разбить электроприбор. Потому различные приспособления, от заглушек до специальных креплений для кабелей, жизненно необходимы!

А ваш ребенок уже знает про пользу и опасность электричества?

7 67468
Оставить комментарии 7