Сказки        18.11.2020   

Звезды горят как. Почему звезды светятся ночью, а днём их не видно? Закон Вина: длина волны, на которой абсолютно черное тело излучает наибольшее количество энергии, обратно пропорциональна температуре этого тела

Кто не любит ночью полюбоваться красивейшим видом звездного неба, посмотреть на тысячи ярких и не очень звезд. О том, почему светят звезды, расскажет наша статья.

Звезды - это космические объекты, которые выделяют громадное количество энергии тепла. Такое большое выделение энергии тепла, конечно же, сопровождается сильным световым излучением. Свет, который дошел до нас, мы и можем наблюдать.

Когда Вы смотрите на звездное небо, то можете заметить, что большинство звезд разные. Одни звезды светят былым, другие - голубым светом. Также есть и звезды, которые светят оранжевым светом. Звезды - это большие шары, состоящие из сильно раскаленных газов. Поскольку они раскалены по-разному, у них разный цвет свечения. Так, самые горячие светят голубым светом. Звезды, которые немного холоднее - белым. Еще более холодные звезды светят желтым светом. Затем идут «оранжевые» и «красные» звезды.

Нам кажется, будто звезды мерцают нестабильным светом, а планеты светят немигающим и ровным светом. На самом деле это не так. Звезды не мерцают, а нам так кажется потому, что свет звезд проходит через толщу нашей земной атмосферы. В результате этого луч света, преодолев расстояние от самой звезды до поверхности нашей планеты, претерпевает большое количество преломлений, изменений и многое другое.

Наше Солнце - это также звезда, хотя и не очень большая и яркая. По сравнению с другими звездами Солнце занимает по вышеприведенным параметрам среднее положение. Много миллионов звезд намного меньше нашего Солнца, в то же время другие звезды - во много раз больше его.

Но почему звезды светятся ночью? На самом деле, светятся звезды не только ночью, но и днем. Однако в дневное время суток нам они не видны из-за Солнца, которое своими лучами ярко освещает всю поверхность нашей планеты, а космос и звезды скрываются от нашего взгляда. Вечером, когда Солнце заходит, эта завеса приоткрывается, и мы можем видеть звездные сияние до утра, пока снова не взойдет Солнце.

Теперь Вы знаете, почему светят звезды!


Внимание, только СЕГОДНЯ!

ДРУГОЕ

Прекрасны звезды на ночном небе! Так приятно посмотреть на них и помечтать, загадать желание на падающую звезду... Но к…

Глядя на ночное небо, мы видим множество сияющих звезд. Все дети думают, что звездочки маленькие и даже могут…

Любуясь самой яркой звездой на вечернем небе, мы, нередко, не догадываемся, что это не звезда, а планета. Да, именно –…

О существовании других планет и звезд знают, пожалуй, все, однако об их расположении к нашей планете - далеко не…

Звездное небо всегда притягивало взгляды людей своей красотой. Долгие века считалось, что кроме звезд на нем ничего…

Полярная звезда издавна известна человечеству. Древнегреческие поэты слагали о ней легенды и воспевали её в мифах. А…

Каждый из нас хоть раз, но любовался прекрасным ночным небом, усыпанным множеством звёзд. Не задумывались ли вы о том,…

Устройство окружающего мира издавна интересовало человека. С самых древних времен и до наших дней неотъемлемой частью…

Она объединяет романтиков и философов, охотников и путешественников. Одних она привлекает своей красотой и яркостью,…

Как известно, звездное небо, как и земной шар, условно делится на два полушария: северное и южное. И в каждом полушарии…

Как называются звезды?Каждый из нас хотя бы однажды любовался видом звездного неба. О звездах ходит множество легенд -…

Для большинства людей вопрос, какого цвета солнце, звучит бессмысленно. Они предложат просто посмотреть на небо и…

Цвет является, пожалуй, самой легко измеряемой звездной характеристикой. Его можно определить даже «на…

Наша вселенная располагается на Млечном пути – галактике, единственной и непохожей на другие. Каждая планета, также как…

Для удобства ориентирования астрономы условно разделили небесную сферу на созвездия – группы ярких звезд, которые…

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Почему светят звёзды

ВВЕДЕНИЕ

астрономия звезда вселенная

К началу нашего века границы разведанной Вселенной раздвинулись настолько, что включили в себя Галактику. Многие, если не все, думали тогда, что эта огромная звездная система и есть вся Вселенная в целом.

Но вот в 20-е годы были построены новые крупные телескопы, и перед астрономами открылись совершенно неожиданные горизонты. Оказалось, что за пределами Галактики мир не кончается. Миллиарды звездных систем, галактик, похожих на нашу и отличающихся от нее, рассеяны тут и там по просторам Вселенной.

Фотографии галактик, сделанные с помощью самых больших телескопов, поражают красотой и разнообразием форм: это и могучие вихри звездных облаков, и правильные шары, а иные звездные системы вообще не обнаруживают никаких определенных форм, они клочковаты и бесформенны. Все эти типы галактик спиральные, эллиптические, неправильные, - получившие названия по своему виду на фотографиях, открыты американским астрономом Э. Хабблом в 20 30-е годы нашего века.

Если бы мы могли увидеть нашу Галактику издалека, то она предстала бы перед нами совсем не такой, как на схематическом рисунке. Мы не увидели бы ни диска, ни гало, ни, естественно, короны. С больших расстояний были бы видны лишь самые яркие звезды. А все они, как выяснилось, собраны в широкие полосы, которые дугами выходят из центральной области Галактики. Ярчайшие звезды образуют ее спиральный узор. Только этот узор и был бы различим издалека. Наша Галактика на снимке, сделанном астрономом из какого - то звездного мира, выглядела бы очень похожей на туманность Андромеды.

Исследования последних лет показали, что многие крупные спиральные галактики обладают, как и наша Галактика протяженными и массивными невидимыми коронами. Это очень важно: ведь если так, то, значит, и вообще чуть ли не вся масса Вселенной (или, во всяком случае, подавляющая ее часть) это загадочная, невидимая, но тяготеющая скрытая масса

Многие, а может быть, и почти все галактики собраны в различные коллективы, которые называют группами, скоплениями и сверхскоплениями, смотря по тому, сколько их там. В группу может входить всего три или четыре галактики, а в сверхскопление до тысячи или даже нескольких десятков тысяч. Наша Галактика, туманность Андромеды и еще более тысячи таких же объектов входят в так называемое Местное сверхскопление. Оно не имеет четко очерченной формы.

Небесные тела находятся в непрерывном движении и изменении. Когда и как именно они произошли, наука стремится выяснить, изучая небесные тела и их системы. Раздел астрономии, занимающийся проблемами происхождения и эволюции небесных тел, называется космогонией.

Современные научные космогонические гипотезы - результат физического, математического и философского обобщения многочисленных наблюдательных данных. В космогонических гипотезах, присущих данной эпохе, в значительной мере находит свое отражение общий уровень развития естествознания. Дальнейшее развитие науки, обязательно включающее в себя астрономические наблюдения, подтверждает или опровергает эти гипотез.

В данной работе рассмотрены следующие вопросы:

· Представлена структура вселенной, дана характеристика основным ее элементам;

· Показаны основные методы получения информации о космических объектах;

· Определяется понятие звезда, ее характеристики и эволюция

· Представлены основные источники энергии звезд

· Дано описание ближайшей к нашей планете звезде - Солнцу

1.ИСТОРИЧЕСКОЕ РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ВСЕЛЕННОЙ

Еще на заре цивилизации, когда пытливый человеческий ум обратился к заоблачным высотам, великие философы мыслили свое представление о Вселенной, как о чем-то бесконечном.

Древнегреческий философ Анаксимандр (VI в. до н.э.) ввел представление о некой единой беспредельности, не обладавшей никакими привычными наблюдениями и качествами. Стихии мыслились сначала как полуматериальные, полубожественные, одухотворенные субстанции. Итак, он сказал, что начало и стихия сущего есть Беспредельное, первый дав название началу. Кроме того, он говорил о существовании вечного движения, в котором происходит возникновение небес. Земля же парит в воздухе, ничем не поддерживаемая, остается же на месте вследствие равного расстояния отовсюду. Форма же ее кривая, закругленная, подобная отрезку каменной колонны. По одной из ее плоскостей мы ходим, другая же находится на противоположной стороне. Звезды же представляют собой огненный круг, отделившийся от мирового огня и окруженный воздухом. Но в воздушной оболочке имеются отдушины, какие-то трубкообразные, т. е. узкие и длинные отверстия, по направлению вниз от которых и видны звезды. Вследствие этого при закупорке этих отдушин происходит затмение. Луна же кажется то полной, то на ущербе в зависимости от закрытия и открытия отверстий. Солнечный же круг в 27 раз больше земного и в 19 раз больше лунного, и солнце находится выше всего, а за ним луна, и ниже всего круги неподвижных звезд и планет.Шарообразность Земли утверждал другой пифагорец Парменид (VI-V в.в. до н.э.). Гераклид Понтийский (V-IV в до н.э.) утверждал так же ее вращение вокруг своей оси и донес до греков еще более древнюю идею египтян о том, что само солнце может служить центром вращение некоторых планет (Венера, Меркурий).

Французский философ и ученый, физик, математик, физиолог Рене Декарт (1596-1650) создал теорию о эволюционной вихревой модели Вселенной на основе гелиоцентрализма. В своей модели он рассматривал небесные тела и их системы в их развитии. Для XVII в.в. его идея была необыкновенно смелой.

По Декарту, все небесные тела образовывались в результате вихревых движений, происходивших в однородной в начале, мировой материи. Совершенно одинаковые материальные частицы находясь в непрерывном движении и взаимодействии, меняли свою форму и размеры, что привело к наблюдаемому нами богатому разнообразию природы.

Великий немецкий ученый, философ Иммануил Кант (1724-1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее ровной структуры и представлял Вселенную бесконечной в особом смысле.

Он обосновал возможности и значительную вероятность возникновение такой Вселенной исключительно под действием механических сил притяжения и отталкивания и попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях - начиная с планетной системных и кончая миром туманности.

Эйнштейн совершил радикальную научную революцию, введя свою теорию относительности. Специальная или частная теория относительности Эйнштейна явилась результатом обобщения механики Галилея и электродинамики Максвелла Лоренца.

Она описывает законы всех физических процессов при скоростях движения близких к скорости света. Впервые принципиально новые космогологические следствие общей теории относительности раскрыл выдающийся советский математик и физик - теоретик Александр Фридман (1888-1925 гг.). Выступив в 1922-24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн сделал свой вывод исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

Фридман привел две модели Вселенной. Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в эффекте «красного смещения» в их спектрах. В 1929 г. Хаббл открыл замечательную закономерность, которая была названная «законом Хаббла» или «закон красного смещения»: линии галактик, смещенных к красному концу, причем смещение тем больше, чем дальше находится галактика.

2.СРЕДСТВА НАБЛЮДАТЕЛЬНОЙ АСТРОНОМИИ

Телескопы

Основным астрономическим прибором является телескоп. Телескоп с объективом из вогнутого зеркала называется рефлектором, а телескоп с объективом из линз - рефрактором.

Назначение телескопа - собрать больше света от небесных источников и увеличить угол зрения, под которым виден небесный объект.

Количество света, которое попадает в телескоп от наблюдаемого объекта, пропорционально площади объектива. Чем больше размер объектива телескопа, тем более слабые светящиеся объекты в него можно увидеть.

Масштаб изображения, даваемого объективом телескопа, пропорционален фокусному расстоянию объектива, т. е. расстоянию от объектива, собирающего свет, до той плоскости, где получается изображение светила. Изображение небесного объекта можно фотографировать или рассматривать через окуляр.

Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, а также угловые расстояния между звездами, но звезды даже в очень сильный телескоп из-за огромной удаленности видны лишь как светящиеся точки.

В рефракторе лучи, пройдя через объектив, преломляются, образуя изображение объекта в фокальной плоскости. В рефлекторе лучи от вогнутого зеркала отражаются и потом также собираются в фокальной плоскости. При изготовлении объектива телескопа стремятся свести к минимуму все искажения, которыми неизбежно обладает изображение объектов. Простая линза сильно искажает и окрашивает края изображения. Для уменьшения этих недостатков объектив изготовляют из нескольких линз с разной кривизной поверхностей и из разных сортов стекла. Поверхности вогнутого стеклянного зеркала придают для уменьшения искажений не сферическую форму, а несколько иную (параболическую).

Советский оптик Д.Д. Максутов разработал систему телескопа, называемую менисковой. Она соединяет в себе достоинства рефрактора и рефлектора. По этой системе устроена одна из моделей школьного телескопа. Существуют и другие телескопические системы.

В телескопе получается перевернутое изображение, но это не имеет никакого значения при наблюдении космических объектов.

При наблюдениях в телескоп редко используются увеличения свыше 500 раз. Причина этому - воздушные течения, вызывающие искажения изображения, которые тем заметнее, чем больше увеличение телескопа.

Самый большой рефрактор имеет объектив диаметром около 1 м. Наибольший в мире рефлектор с диаметром вогнутого зеркала 6 м изготовлен в СССР и установлен в горах Кавказа. Он позволяет фотографировать звезды в 107 раз более слабые, чем видимые невооруженным глазом.

Спектральная грамота

До середины XX в. нашим знаниям о Вселенной мы были обязаны почти исключительно загадочным световым лучам. Световая волна, как и всякая другая волна, характеризуется частотой х и длиной волны л. Между этими физическими параметрами существует простая зависимость:

где с -- скорость света в вакууме (пустоте). А энергия фотонов пропорциональна частоте излучения.

В природе световые волны распространяются лучше всего в просторах Вселенной, так как там на их пути меньше всего помех. И человек, вооружившийся оптическими приборами, научился читать загадочные световые письмена. С помощью специального прибора - спектроскопа, приспособленного к телескопу, астрономы стали определять температуру, яркость и размеры звезд; их скорости, химический состав и даже процессы, происходящие в недрах далеких светил.

Еще Исаак Ньютон установил, что белый солнечный свет состоит из смеси лучей всех цветов радуги. При переходе из воздуха в стекло цветовые лучи преломляются в разной мере. Поэтому если на пути узкого солнечного луча поставить трехгранную призму, то после выхода луча из призмы па экране возникает радужная полоска, которая называется спектром.

Спектр содержит важнейшую информацию об излучающем свет небесном теле. Без всякого преувеличения можно сказать, что астрофизика своими замечательными успехами обязана прежде всего спектральному анализу. Спектральный анализ является в наше время основным методом изучения физической природы небесных тел.

Каждый газ, каждый химический элемент дает свои, только ему одному присущие линии в спектре. Они могут быть похожими по цвету, но обязательно отличаются одна от другой своим расположением в спектральной полоске. Одним словом, спектр химического элемента - это его своеобразный «паспорт». И опытному спектроскописту достаточно лишь взглянуть на набор цветных линий, чтобы определить, какое вещество излучает свет. Следовательно, для определения химического состава светящегося тела нет никакой необходимости брать его в руки и подвергать непосредственным лабораторным исследованиям. Расстояния здесь, пусть даже космические, тоже не помеха. Важно только, чтобы исследуемое тело было в раскаленном состоянии - ярко светилось и давало спектр. Исследуя спектр Солнца или другой звезды, астроном имеет дело с темными линиями, так называемыми линиями поглощения. Линии поглощения в точности совпадают с линиями излучения данного газа. Именно благодаря этому по спектрам поглощения можно изучать химический состав Солнца и звезд. Измеряя энергию, излученную или поглощенную в отдельных спектральных линиях, можно провести количественный химический анализ небесных светил, то есть узнать о процентном содержании различных химических элементов. Так было установлено, что в атмосферах звезд преобладают водород и гелий.

Очень важная характеристика звезды - ее температура. В первом приближении о температуре небесного светила можно судить по его цвету. Спектроскопия позволяет определять поверхностную температуру звезд с очень высокой точностью.

Температура поверхностного слоя большинства звезд заключена в пределах от 3000 до 25000 К.

Возможности спектрального анализа почти неисчерпаемы! Он убедительно показал, что химический состав Земли, Солнца и звезд одинаков. Правда, на отдельных небесных телах некоторых химических элементов может быть больше или меньше, но нигде не было обнаружено присутствие какого-то особого «неземного вещества». Сходство химического состава небесных тел служит важным подтверждением материального единства Вселенной.

Астрофизика - большой отдел современной астрономии - занимается изучением физических свойств и химического состава небесных тел и межзвездной среды. Она разрабатывает теории строения небесных тел и протекающих в них процессов. Одна из важнейших задач, стоящих сегодня перед астрофизикой, заключается в уточнении внутреннего строения Солнца и звезд и источников их энергии, в установлении процесса их возникновения и развития. И всей богатейшей информацией, поступающей к нам из глубин Вселенной, мы обязаны вестникам далеких миров - лучам света.

Каждый, кто наблюдал звездное небо, знает, что созвездия не меняют своей формы. Большая и Малая Медведицы похожи на ковш, созвездие Лебедя имеет вид креста, а зодиакальное созвездие Льва напоминает трапецию. Однако впечатление, что звезды неподвижны, обманчиво. Оно создается лишь потому, что небесные светочи очень далеки от нас, и даже по прошествии многих сотен лет человеческий глаз не в состоянии заметить их перемещение. В настоящее время астрономы измеряют собственное движение звезд по фотографиям звездного неба, полученным с интервалом в 20, 30 и более лет.

Собственное движение звезд - это угол, на который звезда перемещается по небу в течение одного года. Если измерено и расстояние до этой звезды, то можно вычислить ее собственную скорость, т. е. ту часть скорости небесного светила, которая перпендикулярна лучу зрения, а именно, направлению «наблюдатель-звезда». Но чтобы получить полную скорость звезды в пространстве, необходимо знать еще скорость, направленную по лучу зрения - к наблюдателю или от него.

Рис.1 Определение пространственной скорости звезды при известном до нее расстоянии

Определить же лучевую скорость звезды можно по расположению линий поглощения в ее спектре. Как известно, все линии в спектре движущегося источника света смещаются пропорционально скорости его движения. У звезды, летящей по направлению к нам, световые волны укорачиваются и спектральные линии смещаются к фиолетовому концу спектра. У звезды, удаляющейся от нас, световые волны удлиняются и линии смещаются к красному концу спектра. Таким путем астрономы находит скорость движения звезды вдоль луча зрения. А когда обе скорости (собственная и лучевая) известны, то не представляет особого труда по теореме Пифагора вычислить полную пространственную скорость звезды относительно Солнца.

Оказалось, что скорости у звезд различные и, как правило, составляют несколько десятков километров в секунду.

Изучив собственные движения звезд, астрономы получили возможность представить себе вид звездного неба (созвездии) в далеком прошлом и в отдаленном будущем. Знаменитый «ковш» Большой Медведицы через 100 тыс. лет превратится, например, в «утюг с поломанной ручкой».

Радиоволны и радиотелескопы

До недавнего времени небесные светила изучались почти исключительно в видимых лучах спектра. Но в природе существуют еще невидимые электромагнитные излучения. Они не воспринимаются даже с помощью самых мощных оптических телескопов, хотя их диапазон во много раз шире видимой области спектра. Так, за фиолетовым концом спектра идут невидимые ультрафиолетовые лучи, которые активно воздействуют па фотографическую пластинку - вызывают ее потемнение. За ними располагаются рентгеновские лучи и, наконец, гамма-лучи с самой короткой длиной волны.

Для улавливания радиоизлучения, поступающего к нам из космоса, применяются специальные радиофизические приборы - радиотелескопы. Принцип действия радиотелескопа тот же, что и оптического: он собирает электромагнитную энергию. Только вместо линз или зеркал в радиотелескопах используются антенны. Очень часто антенна радиотелескопа сооружается в виде огромной параболической чаши, иногда сплошной, а иногда решетчатой. Ее отражающая металлическая поверхность концентрирует радиоизлучение наблюдаемого объекта на небольшой приемной антенне-облучателе, которая помещается в фокусе параболоида. В результате этого в облучателе возникают слабые переменные токи. По волноводам электрические токи передаются в очень чувствительный радиоприемник, настроенный на длину рабочей волны радиотелескопа. Здесь они усиливаются, и, подключив к приемнику репродуктор, можно было бы прослушать «голоса звезд». Но голоса звезд лишены всякой музыкальности. Это вовсе не чарующие слух «космические мелодии», а потрескивающее шипение или пронзительный свист… Поэтому к приемнику радиотелескопа присоединяют обычно специальный самопишущий прибор. И вот уже на движущейся ленте самописец вычерчивает кривую интенсивности входного радиосигнала определенной длины волны. Следовательно, радиоастрономы не «слышат» шороха звезд, а «видят» его на разграфленной бумаге.

Как известно, в оптический телескоп мы наблюдаем сразу все, что попадает в его поле зрения.

С радиотелескопом дело обстоит сложнее. Там всего лишь один приемный элемент (облучатель), поэтому изображение строится построчно - путем последовательного прохождения источника радиоизлучения через луч антенны, то есть аналогично тому, как на телевизионном экране.

Закон Вина

Закон Вина - зависимость, определяющая длину волны при излучении энергии абсолютно чёрным телом. Была выведена немецким физиком, нобелевским лауреатом Вильгельмом Вином в 1893 году.

Закон Вина: длина волны, на которой абсолютно черное тело излучает наибольшее количество энергии, обратно пропорциональна температуре этого тела.

Абсолютно черным телом называется поверхность, полностью поглощающая излучение, падающее на неё. Понятие абсолютно черного тела исключительно теоретическое: в действительности объектов с такой идеальной поверхностью, полностью поглощающей все волны, не существует.

3. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О СТРУКТУРЕ, ОСНОВНЫХ ЭЛЕМЕНТАХ ВИДИМОЙ ВСЕЛЕННОЙ И ИХ СИСТЕМАТИЗАЦИИ

Если описывать структуру Вселенной, как она представляется учёным сейчас, то получится следующая иерархическая лестница. Существуют планеты- небесные тела, вращающиеся по орбите вокруг звезды или ее остатков, достаточно массивные, чтобы стать округлыми под действием собственной гравитации, но недостаточно массивные для начала термоядерной реакции, которые «привязаны» к той или иной звезде, то есть находятся в зоне её гравитационного воздействия. Так, Земля и ещё несколько планет с их спутниками находятся в зоне гравитационного воздействия звезды под названием Солнце, движутся по собственным орбитам вокруг неё и тем самым образуют Солнечную систему. Подобные звёздные системы, находящиеся рядом в огромном количестве, образуют галактику - сложную систему со своим центром. Кстати, относительно центра галактик нет пока единого мнения, что они собой представляют - выдвигается предположение, что в центре галактик находятся чёрные дыры.

Галактики, в свою очередь, составляют своего рода цепочки, создающего некое подобие сетки. Ячейки этой сетки созданы из цепочек галактик и центральных «пустот», которые либо совсем лишены галактик, либо имеют очень малое их число. Основную часть Вселенной занимает вакуум, что, впрочем, не означает абсолютной пустоты этого пространства: в вакууме также присутствуют отдельные атомы, наличествуют фотоны (реликтовое излучение), а также происходит появление частиц и античастиц в результате квантовых явлений. Видимой части Вселенной, то есть той её части, которая доступна изучению человечества, присущи однородность и постоянство в том смысле, что в этой части действуют, как принято считать, одни и те же закономерности. Обстоит ли ситуация также в других частях Вселенной, определить невозможно.

Помимо планет и звезд элементами Вселенной являются такие небесные тела, как кометы, астероиды и метеориты.

Комета - небольшое небесное тело, обращающееся вокруг Солнца по коническому сечению с весьма растянутой орбитой. При приближении к Солнцу комета образует кому и иногда хвост из газа и пыли.

Условно комету можно разделить на три части -- ядро, кома, хвост. Всё в кометах абсолютно холодное, а свечение их -- лишь отражение солнечного света пылью и свечение ионизированного ультрафиолетом газа.

Ядро -- самая тяжелая часть этого небесного тела. В нем сосредоточена основная масса кометы. Состав ядра кометы точно изучить довольно нелегко, так как на расстоянии, доступном телескопу, оно постоянно окружено газовой мантией. В связи с этим за основу теории о составе ядра кометы принята теория американского астронома Уипла.

По его теории ядро кометы представляет собой смесь замороженных газов с примесью различной пыли. Поэтому, когда комета приближается к Солнцу и нагревается, газы начинают «таять», образуя хвост.

Хвост кометы -- самая ее выразительная часть. Он образуется у кометы с приближением к Солнцу. Хвост представляет собой светящуюся полоску, которая тянется от ядра в противоположную от Солнца сторону, «отдуваемый» солнечным ветром.

Кома -- окружающая ядро светлая туманная оболочка чашеобразной формы, состоящая из газов и пыли. Обычно тянется от 100 тысяч до 1,4 миллиона километров от ядра. Давление света может деформировать кому, вытянув её в антисолнечном направлении. Кома вместе с ядром составляет голову кометы.

Астероидами называются небесные тела, имеющие в основном неправильную камнеподобную форму, размером от нескольких метров до тысячи километров. Астероиды, как и метеориты, состоят из металлов (в основном железа и никеля) и каменистых пород. В переводе латинского слово астероид означает «подобный звезде». Это наименование астероиды получили за сходство со звёздами при наблюдении их при помощи не слишком мощных телескопов.

Астероиды могут сталкиваться друг с другом, со спутниками и с большими планетами. В результате столкновения астероидов образуются более мелкие небесные тела - метеориты. При столкновении с планетой или спутником астероиды оставляют следы в виде огромных многокилометровых кратеров.

Поверхность всех без исключения астероидов очень холодна, так как сами они представляют собой подобие больших камней и тепла не образуют, а от солнца находятся на значительном расстоянии. Даже если астероид и нагревается от Солнца, то он достаточно быстро отдаёт тепло.

У астрономов существует две наиболее популярных гипотезы относительно происхождения астероидов. По одной из них они являются осколками некогда существовавших планет, разрушившихся в результате столкновения или взрыва. Согласно другой версии астероиды образовались из остатков вещества, из которого сформировались планеты Солнечной системы.

Метеориты - небольшие фрагменты небесных тел, состоящие в основном из камня и железа, падающие на поверхность Земли из межпланетного пространства. Для астрономов метеориты являются настоящим сокровищем: нечасто удаётся тщательно исследовать в лабораторных условиях частичку космоса. Большинство специалистов считают метеориты осколками астероидов, которые образуются при столкновении космических тел.

4. ТЕОРИЯ ЗВЕЗД

Звезда -- массивный газовый шар, излучающий свет и удерживаемый силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза.

Основные характеристики звезд:

Светимость

Светимость определяется, если известны видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояние до звезд определить не так просто. Для сравнительно близких звезд, расстояние определяется известным еще с начала прошлого столетия тригонометрическим методом, заключающимся в измерении ничтожно малых угловых смещений звезд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Этот метод имеет довольно большую точность и достаточно надежен. Однако для большинства других более удаленных звезд он уже не годится: слишком малые смещения положения звезд надо измерять - меньше одной сотой доли секунды дуги. На помощь приходят другие методы, значительно менее точные, но, тем не менее, достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно, без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения.

По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство звезд составляют «карлики», светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая «абсолютная величина» звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой - от расстояния до нее. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например, +8, +10.

Химический состав звезд

Химический состав наружных слоев звезды, откуда к нам «непосредственно» приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов сравнительно невелико. Приблизительно на каждые 10000 атомов водорода приходится тысяча атомов гелия, около десяти атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно.

Можно сказать, что наружные слои звезд - это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов.

Хотя химический состав звезд в первом приближении одинаков, все же имеются звезды, показывающие определенные особенности в этом отношении. Например, есть звезда с аномально высоким содержанием углерода, или встречаются объекты с аномально высоким содержанием редких земель. Если у подавляющего большинства звезд обилие лития совершенно ничтожно (приблизительно 10 11 от водорода), то изредка попадаются «уникумы», где этот редкий элемент довольно обилен.

Спектры звезд

Исключительно богатую информацию дает изучение спектров звезд. Сейчас принята так называемая гарвардская спектральная классификация. В ней десять классов, обозначенных латинскими буквами: O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1… В9, А0 и так далее. Спектр звезд в первом приближении похож на спектр излучающего «черного» тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч кельвинов у звезд спектрального класса О до 3000 кельвинов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли.

Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. Различия в спектрах в первую очередь объясняются различием в температурах наружных слоев звезды. По этой причине состояние ионизации и возбуждения разных элементов в наружных слоях звезд резко отличаются, что приводит к сильным различиям в спектрах.

Температура

Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. - желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым «показателем цвета», равным разности фотографической и визуальной величины. Каждому значению показателя цвета соответствует определенный тип спектра.

У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, СП, Н20 и др.). По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К. наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра.

Масса звезд

Астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (то есть не входящей в состав кратных систем) изолированной звезды. И это весьма серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее «сестра», входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.

Считается, что объекты с массами меньшими 0,02 М уже не являются звездами. Они лишены внутренних источников энергии, и их светимость близка к нулю. Обычно эти объекты относят к планетам. Наибольшие непосредственно измеренные массы не превышают 60 М.

КЛАССИФИКАЦИЯ ЗВЕЗД

Классификации звёзд начали строить сразу после того, как начали получать их спектры. В начале XX века, Герцщпрунг и Рассел нанесли на диаграмму различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой. Диаграмма Герцшпрунга --показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звёзды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Диаграмма даёт возможность найти абсолютную величину по спектральному классу. Особенно для спектральных классов O--F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом. Однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор.

Около 90 % звёзд находятся на главной последовательности. Их светимость обусловлена термоядерными реакциями превращения водорода в гелий. Выделяется также несколько ветвей проэволюционировавших звёзд - гигантов, в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики.

ВИДЫ ЗВЕЗД

Гиганты -- тип звёзд со значительно большим радиусом и высокой светимостью, чем у звёзд главной последовательности, имеющих такую же температуру поверхности. Обычно звёзды-гиганты имеют радиусы от 10 до 100 солнечных радиусов и светимости от 10 до 1000 светимостей Солнца. Звёзды со светимостью большей, чем у гигантов, называются сверхгиганты и гипергиганты. Горячие и яркие звёзды главной последовательности также могут быть отнесены к белым гигантам. Помимо этого, из-за своего большого радиуса и высокой светимости, гиганты лежат выше главной последовательности.

Карлики -тип звезд небольших размеров от 1 до 0,01 радиуса. Солнца и невысоких светимостей от 1 до 10-4 светимости Солнца с массой от 1 до 0,1 солнечной массы.

· Белый карлик - проэволюционировавшие звезды с массой, не превышающей 1,4 солнечных массы, лишенные собственных источников термоядерной энергии. Диаметр таких звезд может быть в сотни раз меньше солнечного, а потому плотность может быть в 1 000 000 раз больше плотности воды.

· Красный карлик -- маленькая и относительно холодная звезда главной последовательности, имеющая спектральный класс М или верхний К. Они довольно сильно отличаются от других звезд. Диаметр и масса красных карликов не превышает трети солнечной (нижний предел массы -- 0,08 солнечной, за этим идут коричневые карлики).

· Коричневый карлик -- субзвездные объекты с массами в диапазоне 5--75 масс Юпитера (и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.

· Субкоричневые карлики или коричневые субкарлики -- холодные формирования, по массе лежащие ниже предела коричневых карликов. Их в большей мере принято считать планетами.

· Черный карлик - остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Нейтронная звезда - звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Плотность таких звезды может достигать 1000 000 000 000 плотностей воды. А магнитное поле во столько же раз больше, чем магнитное поле Земли. Такие звезды состоят в основном из нейтронов, плотно сжатых гравитационными силами. Часто такие звезды представляют собой пульсары.

Новая звезда - звезды, светимость которых внезапно увеличивается в 10000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызываю вспышку светимости.

Сверхновая звезда - это звезда, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

Двойная звезда - это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс. Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой. В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам - колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Пульсары - это нейтронные звезды, у которых магнитное поле наклонено к оси вращения и вращаясь, они вызывают модуляцию излучения, которое приходит на Землю.

Первый пульсар был открыт на радиотелескопе Маллардской радиоастрономической обсерватории Кембриджского университета. Открытие сделала аспирантка Джоселин Белл в июне 1967г на длине волны 3.5 м, то есть 85.7 МГц. Этот пульсар имеет название PSR J1921+2153. Наблюдения за пульсаром хранились несколько месяцев в тайне, и название он тогда получил LGM-1, что обозначает - «маленькие зеленые человечки». Причиной тому были радиоимпульсы, которые доходили до Земли с равномерной периодичностью, и потому было предположено, что эти радиоимпульсы искусственного происхождения.

Джоселин Белл была в группе Хьюиша, они нашли еще 3 источника аналогичных сигналов, после этого уже никто не сомневался, что сигналы не искусственного происхождения. До конца 1968 года уже было обнаружено 58 пульсаров. А в 2008 году было известно уже 1790 радиопульсаров. Самый близкий пульсар к нашей Солнечной системе находится на расстоянии 390 световых лет.

Квазары - это сверкающие объекты, которые излучают самое значительное количество энергии, обнаруженное во Вселенной. Находясь на колоссальном расстоянии от Земли, они демонстрируют большую яркость, чем космические тела, расположенные в 1000 раз ближе. Согласно современному определению, квазар - это активное ядро галактики, где протекают процессы, освобождающие огромную массу энергии. Сам термин означает «похожий на звезду радиоисточник». Первый квазар был замечен американскими астрономами А. Сендиджем и Т. Метьюзом, проводившими наблюдение за звездами в калифорнийской обсерватории. В 1963 году М. Шмидт с помощью рефлекторного телескопа, собирающего в одну точку электромагнитное излучение, обнаружил отклонение в спектре наблюдаемого объекта в красную сторону, определяющее, что его источник удаляется от нашей системы. Последующие исследования показали, что небесное тело, записанное как 3C 273, находится на отдалении в 3 млрд. св. лет и отдаляется с огромной скоростью - 240 000 км/с. Московские ученые Шаров и Ефремов изучили имевшиеся ранние фотографии объекта и выяснили, что он неоднократно менял свою яркость. Нерегулярная смена интенсивности блеска предполагает маленький размер источника.

5. ИСТОЧНИКИ ЭНЕРГИИ ЗВЕЗД

На протяжении ста лет после формулирования Р. Майэром в 1842 году закона сохранения энергии высказывали много гипотез о природе источников энергии звезд, в частности была предложена гипотеза о выпадении на звезду метеорных тел, радиоактивном распаде элементов, аннигиляции протонов и электронов. Реальное значение имеют только гравитационное сжатие и термоядерный синтез.

Термоядерный синтез в недрах звёзд

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез. Большинство звёзд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным или p-p-циклом и углеродно-азотным или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых -- вторым. Запас ядерной энергии в звезде конечен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, и излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Ханс Альбрехт Бете -- американский астрофизик, лауреат Нобелевской премии по физике в 1967 году. Основные работы посвящены ядерной физике и астрофизике. Именно он открыл протон-протонный цикл термоядерных реакций (1938) и предложил шестиступенчатый углеродно-азотный цикл, позволяющий объяснить процесс протекания термоядерных реакций в массивных звёздах, за что и получил Нобелевскую премию по физике за «вклад в теорию ядерных реакций, особенно за открытия, относящиеся к источникам энергии звезд».

Гравитационное сжатие

Гравитационное сжатие -- это внутренний процесс звезды за счёт которого выделяется её внутренняя энергия.

Пусть в некоторый момент времени из-за охлаждения звезды температура в её центре несколько понизится. Давление в центре тоже понизится, и уже не будет компенсировать вес вышележащих слоёв. Силы гравитации начнут сжимать звезду. При этом потенциальная энергия системы уменьшится (так как потенциальная энергия отрицательна, то её модуль увеличится), при этом внутренняя энергия, а значит, и температура внутри звезды увеличатся. Но на повышение температуры потратится только половина выделившейся потенциальной энергии, другая половина пойдёт на поддержание излучения звезды.

6.ЭВОЛЮЦИЯ ЗВЕЗД

Звёздная эволюция в астрономии -- последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Основные фазы в эволюции звезды - ее рождение (звездообразование), длительный период (обычно стабильного) существования звезды как целостной системы, находящейся в гидродинамическом и тепловом равновесии, и, наконец, период ее «смерти», т.е. необратимое нарушение равновесия, которое ведет к разрушению звезды или к ее катастрофическому сжатию. Ход эволюции звезды зависит от ее массы и исходного химического состава, который, в свою очередь, зависит от времени образования звезды и ее положения в Галактике в момент образования. Чем больше масса звезды, тем быстрее идет ее эволюция и тем короче ее «жизнь».

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15--20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой.

По прошествии определённого времени -- от миллиона до десятков миллиардов лет (в зависимости от начальной массы) -- звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, возникавшего в ходе этих реакций и уравновешивавшего внутреннюю гравитацию в теле звезды, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования. Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

СОЛНЦЕ

Солнце является единственной звездой в Солнечной системе, вокруг нее совершают свое движение все планеты системы, а также их спутники и другие объекты, вплоть до космической пыли.

Характеристики Солнца

· Масса Солнца: 2 1030 кг (332 946 масс Земли)

· Диаметр: 1 392 000 км

· Радиус: 696 000 км

· Средняя плотность: 1 400 кг/м3

· Наклон оси: 7,25° (относительно плоскости эклиптики)

· Температура поверхности: 5 780 К

· Температура в центре Солнца: 15 млн градусов

· Спектральный класс: G2 V

· Среднее расстояние от Земли: 150 млн. км

· Возраст: около 5 млрд. лет

· Период вращения: 25,380 суток

· Светимость: 3,86 1026 Вт

· Видимая звездная величина: 26,75m

Строение солнца

По спектральной классификации звезда относится к типу «желтый карлик», по приблизительным расчетам ее возраст составляет чуть более 4,5 миллиардов лет, она находится в середине своего жизненного цикла. Солнце, состоящее на 92% из водорода и на 7% из гелия, имеет очень сложное строение. В его центре находится ядро с радиусом примерно 150 000-175 000 км, что составляет до 25% от общего радиуса звезды, в его центре температура приближается к 14 000 000 К. Ядро с большой скоростью производит вращение вокруг оси, причем эта скорость существенно превышает показатели внешних оболочек звезды. Здесь происходит реакция образования гелия из четырех протонов, вследствие чего получается большой объем энергии, проходящий через все слои и излучающийся с фотосферы в виде кинетической энергии и света. Над ядром находится зона лучистого переноса, где температуры находятся в диапазоне 2-7 миллионов К. Затем следует конвективная зона толщиной примерно 200 000 км, где наблюдается уже не переизлучение для переноса энергии, а перемешивание плазмы. На поверхности слоя температура составляет примерно 5800 К. Атмосфера Солнца состоит из фотосферы, образующей видимую поверхность звезды, хромосферы толщиной порядка 2000 км и короны, последней внешней солнечной оболочки, температура которой находится в диапазоне 1 000 000-20 000 000 К. Из внешней части короны происходит выход ионизированных частиц, называемых солнечным ветром.

В возникновении явлений, происходящих на Солнце, большую роль играют магнитные поля. Вещество на Солнце всюду представляет собой намагниченную плазму. Иногда в отдельных областях напряженность магнитного поля быстро и сильно возрастает. Этот процесс сопровождается возникновением целого комплекса явлений солнечной активности в различных слоях солнечной атмосферы. К ним относятся факелы и пятна в фотосфере, флоккулы в хромосфере, протуберанцы в короне. Наиболее замечательным явлением, охватывающим все слои солнечной атмосферы и зарождающимся в хромосфере, являются солнечные вспышки.

В ходе наблюдений ученые выяснили, что Солнце -- мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны).

Радиоизлучение Солнца имеет две составляющие -- постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц -- корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы -- солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы -- солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего они связаны с особыми областями солнечной короны -- коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связаны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество интересных геофизических явлений.

Эволюция солнца

Считается, что Солнце сформировалось примерно 4,5 млрд. лет назад, когда быстрое сжатие под действием сил гравитации облака молекулярного водорода привело к образованию в нашей области Галактики звезды первого типа звёздного населения типа T Тельца.

Звезда такой массы, как Солнце, должна существовать на главной последовательности в общей сложности примерно 10 млрд. лет. Таким образом, сейчас Солнце находится примерно в середине своего жизненного цикла. На современном этапе в солнечном ядре идут термоядерные реакции превращения водорода в гелий. Каждую секунду в ядре Солнца около 4 млн. тонн вещества превращается в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино.

Когда Солнце достигнет возраста примерно в 7,5 - 8 миллиардов лет (то есть через 4-5 млрд. лет) звезда превратится в красного гиганта, ее внешние оболочки расширятся и достигнут орбиты Земли, возможно, отодвинув планету на более дальнее расстояние. Под воздействием высоких температур жизнь в сегодняшнем понимании станет просто невозможна. Заключительный цикл своей жизни Солнце проведет в состоянии белого карлика.

ЗАКЛЮЧЕНИЕ

По данной работе можно сделать следующие выводы:

· Основные элементы структуры Вселенной: галактики, звёзды, планеты

Галактики - системы из миллиардов звёзд, обращающихся вокруг центра галактики и связанных взаимным тяготением и общим происхождением,

Планеты- тела, не испускающие энергию, со сложной внутренней структурой.

Самым распространенным небесным телом в наблюдаемой Вселенной являются звезды.

По современным представлениям звезда - это газоплазменный объект, в котором происходит термоядерный синтез при температурах свыше 10 млн градусов К.

· Основными методами изучения видимой Вселенной являются телескопы и радиотелескопы, спектральная грамота и радиоволны;

· Основными понятиями, описывающими звезды, являются:

Звездная величина, которая характеризует не размеры звезды, а ее блеск, то есть освещенность, которую звезда создает на Земле;

...

Подобные документы

    Формирование основных положений космологической теории - науки о строении и эволюции Вселенной. Характеристика теорий происхождения Вселенной. Теория Большого взрыва и эволюция Вселенной. Строение Вселенной и её модели. Сущность концепции креационизма.

    презентация , добавлен 12.11.2012

    Современные физические представления о кварках. Синтетическая теория эволюции. Гипотеза Геи (Земли). Теория Дарвина в ее сегодняшней форме. Космические лучи и нейтрино. Перспективы развития гравитационной астрономии. Современные методы изучения Вселенной.

    реферат , добавлен 18.10.2013

    Представление о Большом Взрыве и расширяющейся Вселенной. Теория горячей Вселенной. Особенности современного этапа в развитии космологии. Квантовый вакуум в основе теории инфляции. Экспериментальные основания для представления о физическом вакууме.

    презентация , добавлен 20.05.2012

    Структура Вселенной и ее будущее в контексте Библии. Эволюция звезды и взгляд Библии. Теории появления Вселенной и жизни на ней. Концепция возобновления и преобразования будущего Вселенной. Метагалактика и звезды. Современная теория эволюции звезд.

    реферат , добавлен 04.04.2012

    Гипотетические представления о Вселенной. Основные принципы познания в естествознании. Развитие Вселенной после Большого Взрыва. Космологическая модель Птолемея. Особенности теории Большого Взрыва. Этапы эволюции и изменение температуры Вселенной.

    курсовая работа , добавлен 28.04.2014

    Принципы неопределенности, дополнительности, тождественности в квантовой механике. Модели эволюции Вселенной. Свойства и классификация элементарных частиц. Эволюция звезд. Происхождение, строение Солнечной системы. Развитие представлений о природе света.

    шпаргалка , добавлен 15.01.2009

    Теория Большого Взрыва. Понятие реликтового излучения. Инфляционная теория физического вакуума. Основы модели однородной изотропной нестационарной расширяющейся Вселенной. Сущность моделей Леметра, де Ситтера, Милна, Фридмана, Эйнштейна-де Ситтера.

    реферат , добавлен 24.01.2011

    Структура и эволюция Вселенной. Гипотезы происхождения и строения Вселенной. Состояние пространства до Большого Взрыва. Химический состав звезд по данным спектрального анализа. Строение красного гиганта. Черные дыры, скрытая масса, квазары и пульсары.

    реферат , добавлен 20.11.2011

    Революция в естествознании, возникновение и дальнейшее развитие учения о строении атома. Состав, строение и время мегамира. Кварковая модель адронов. Эволюция Метагалактики, галактик и отдельных звезд. Современная картина происхождения Вселенной.

    курсовая работа , добавлен 16.07.2011

    Основные гипотезы мироздания: от Ньютона до Эйнштейна. Теория "большого взрыва" (модель расширяющейся Вселенной) как величайшее достижение современной космологии. Представления А. Фридмана о расширении Вселенной. Модель Г.А. Гамова, образование элементов.


Вопрос о том, почему светятся звезды, относится к разряду детских, но, тем не менее, он ставит в тупик добрую половину взрослых, которые не то забыли школьный курс физики и астрономии, не то много в детстве прогуливали.

Объяснение свечения звезд

Звезды по своей сути являются газовыми шарами, следовательно, они в процессе своего существования и химических процессов, происходящих в них, излучают свет. В отличие от луны, которая просто отражает свет солнца, звезды, как и наше солнце, светятся сами. Если говорить о нашем солнце, оно является средней по величине, как и по возрасту звездой. Как правило, те звезды, которые визуально на небе кажутся больше, находятся ближе, те, которые еле видны – дальше. Есть еще миллионы тех, которые невооруженным глазом не видны вовсе. Люди познакомились с ними тогда, когда был изобретен первый телескоп.

У звезды, хоть она и не живая, имеется свой жизненный цикл, потому на разных его этапах она имеет различное свечение. Когда ее жизненный путь подходит к концу, она постепенно превращается в красного карлика. В таком случае ее свет, соответственно, красноватый, возможны как бы импульсы, свет кажется мигающим, словно свечение лампы накаливания при резких перепадах напряжения в сети. Определенные ее части то покрываются коркой, то вновь взрываются с новой силой, образуя визуально такие мигания.

Еще одна причина в разности сечения звезд кроется в их спектральности. Это как бы длина и частота световых лучей, которые они излучают. Это зависит от химического состава звезды, а также ее размеров.

По величине все звезды тоже различны. Но тут подразумевается не то, как они нам выглядят при взгляде вечером или ночью на небо, а их настоящие размеры, которые с той или иной степенью точности вычисляются астрономами.

Надо сказать, что звезды светятся не только ночью, но и днем. Просто солнце в дневное время суток освещает собой атмосферу, мы видим ее, состоящую из многих слоев облаков. Ночью солнце освещает иную сторону земли и там, где темно, атмосфера становится прозрачной. Так мы видим то, что окружает нашу планету – звезды, ее спутницу, Луну, иногда даже метеориты, кометы, даже иную планету солнечной системы – Венеру. Она кажется большой звездой,но ее свечение, как и Луны, связанно с тем, что она отражает солнечный свет. Венеру видно в основном рано вечером или на рассвете.

А знаете ли вы?

  • Жираф считается самым высоким животным в мире, его рост достигает 5,5 метров. В основном за счет длинной шеи. Не смотря на то, что в […]
  • Многие согласятся с тем, что женщины в положении становятся особенно суеверными, они больше других подвержены всяческим поверьям и […]
  • Редко можно встретить человека, который бы не находил розовый куст красивым. Но, при этом, общеизвестно. Что такие растения довольно нежны […]
  • Кто с уверенностью скажет, что не знает о том, что мужчины смотрят порнофильмы, самым наглым образом соврет. Конечно же, смотрят, просто […]
  • Нет, наверное, в просторах всемирной паутины такого сайта автомобильной тематики или такого автофорума, на котором бы не задавали вопрос о […]
  • Воробей является довольно распространенной в мире птицей небольшого размера и пестрого окраса. Но ее особенность заключается в том, что […]
  • Смех и слезы, а точнее, плач, являют собой две прямо противоположные эмоции. О них известно то, что обе они являются врожденными, а не […]

Если малыш дорос до возраста "почемучек" и засыпает вас вопросами о том, почему звезды светятся, далеко ли до солнца и что такое комета, самое время познакомить его с азами астрономии, помочь понять устройство окружающего мира, поддержать исследовательский интерес.

"Если бы на Земле было только одно место, откуда можно было бы видеть звезды, то люди толпами стекались бы туда, чтобы созерцать чудеса неба и любоваться ими". (Сенека, 1 век н.э.) Трудно не согласиться, что в этом смысле за тысячи лет на земле мало что изменилось.

Бездонность и необъятность звездного неба по-прежнему необъяснимым образом притягивает к себе взгляды людей,

завораживает, гипнотизирует, наполняет душу тихой и нежной радостью, ощущением единства со всей Вселенной. И если даже взрослое воображение порой рисует удивительные картины, то что же говорить о наших детях, фантазерах и выдумщиках, которые живут в сказочных мирах, летают во сне и мечтают о космических путешествиях и встречах с инопланетным разумом...

С чего начать?

Знакомство с астрономией не стоит начинать с "теории большого взрыва". Даже взрослому порой тяжело осознать бесконечность Вселенной, а тем более крохе, для которого пока и собственный дом сродни Вселенной. Совсем не обязательно сразу покупать телескоп. Это агрегат для "продвинутых" юных астрономов. К тому же множество интересных наблюдений можно сделать и при помощи бинокля. А начать лучше с покупки хорошей книжки по астрономии для малышей, с посещения детской программы в планетарии, космического музея и, конечно, с интересных и доходчивых рассказов мамы и папы о планетах и звездах.

Расскажите малышу о том, что наша Земля - это огромный шар, на котором нашлось место и рекам, и горам, и лесам, и пустыням, и, конечно, всем нам, его жителям. Наша Земля и все, что ее окружает, называется Вселенной или космосом. Космос очень велик, и сколько бы мы ни летели в ракете, мы никогда не сможем добраться до его края. Кроме нашей Земли, существуют и другие планеты, а также звезды. Звезды - это огромные светящиеся огненные шары. Солнце - тоже звезда. Оно расположено близко к Земле, и поэтому мы видим его свет и ощущаем тепло. Есть звезды во много раз больше и горячее Солнца, но они светят так далеко от Земли, что кажутся нам всего лишь маленькими точками на ночном небе. Часто малыши спрашивают, почему звезды не видны днем. Сравните вместе с ребенком свет фонарика днем и вечером в темноте. Днем при ярком освещении луч фонарика почти не виден, зато он ярко светит вечером. Свет звезд похож на свет фонаря: днем его затмевает солнце. Поэтому звезды можно увидеть только ночью.

Кроме нашей Земли, вокруг Солнца кружится еще 8 планет, множество мелких астероидов и комет. Все эти небесные тела образуют Солнечную систему, центр которой - солнце. У каждой планеты свой путь, который называется орбита. Запомнить названия и очередность планет малышу поможет "Астрономическая считалка" А. Усачева:

На Луне жил звездочет, Он планетам вел подсчет. Меркурий - раз, Венера - два-с, Три - Земля, четыре - Марс. Пять - Юпитер, шесть - Сатурн, Семь - Уран, восьмой - Нептун, Девять - дальше всех - Плутон. Кто не видит - выйди вон.

Расскажите ребенку, что все планеты Солнечной системы очень различаются по размеру. Если представить, что самая большая из них, Юпитер, размером с большой арбуз, то наименьшая планета, Плутон, будет похожа на горошинку. У всех планет Солнечной системы, кроме Меркурия и Венеры, есть спутники. Есть он и у нашей Земли...

Таинственная луна

Даже полуторагодовалый карапуз уже с восторгом рассматривает на небе Луну. А для подросшего малыша этот спутник Земли может стать интересным объектом изучения. Ведь Луна такая разная и постоянно меняется от едва заметного "серпика" до круглой яркой красавицы. Расскажите малышу, а еще лучше, продемонстрируйте при помощи глобуса, маленького мячика (это будет Луна) и фонарика (это будет Солнце), как Луна вращается вокруг Земли и как освещается Солнцем.

Для того чтобы лучше понять и запомнить фазы Луны, заведите с крохой дневник наблюдений, где каждый день будете зарисовывать Луну такой, какой она видна на небе. Если в какие-то дни тучи помешают вашим наблюдениям - не беда. Все равно такой дневник будет прекрасным наглядным пособием. А определить, растущая или убывающая Луна перед вами, очень просто. Если ее серпик похож на букву "С" - она старая, если на букву "Р" без палочки - растущая.

Конечно, малышу будет интересно узнать, что находится на Луне. Расскажите ему, что поверхность Луны покрыта воронками-кратерами, возникшими от столкновения с астероидами. Если рассматривать Луну в бинокль (его лучше установить на фотоштатив), то можно заметить неровности ее рельефа и даже кратеры. На Луне нет атмосферы, поэтому она не защищена от астероидов. А вот Земля защищена. Если каменный осколок попадает в ее атмосферу, он тут же сгорает. Хотя иногда астероиды бывают настолько шустрыми, что все-таки успевают долететь до поверхности Земли. Такие астероиды называют метеоритами.

Звездные загадки

Отдыхая у бабушки в деревне или на даче, посвятите несколько вечеров наблюдению за звездами. Нет ничего страшного, если ребенок немного нарушит привычный режим и ляжет спать попозже. Зато сколько незабываемых минут проведет он вместе с мамой или папой под огромным звездным небом, всматриваясь в мерцающие загадочные точки. Именно август - самый лучший месяц для таких наблюдений. Вечера достаточно темные, воздух прозрачный и, кажется, что до неба можно дотянуться руками. В августе несложно увидеть интересное явление, которое называют "падающей звездой". Конечно, на самом деле это никакая не звезда, а сгорающий метеор. Но все равно очень красиво. Точно так же смотрели на небо и наши далекие предки, угадывая в скоплениях звезд различных животных, предметы, людей, мифологических героев. Многие созвездия носят свои имена с незапамятных времен. Поучите малыша находить на небе то или иное созвездие. Такое занятие как нельзя лучше будит фантазию и развивает абстрактное мышление. Если вы сами не очень хорошо ориентируетесь в созвездиях, не беда. Практически во всех детских книгах по астрономии есть карта звездного неба и описания созвездий. Всего на небесной сфере выделено 88 созвездий, 12 из которых зодиакальные. Звезды в созвездиях обозначаются буквами латинского алфавита, а самые яркие имеют собственные названия (как, например, звезда Альтаир в созвездии Орла). Чтобы малышу было легче увидеть на небе то или иное созвездие, имеет смысл сначала внимательно рассмотреть его на картинке, а потом нарисовать или выложить из картонных звездочек. Можно сделать созвездия на потолке при помощи специальных светящихся звездочек-наклеек. Однажды отыскав созвездие на небе, ребенок уже никогда его не забудет.

У разных народов одно и то же созвездие могло называться по-разному. Все зависело от того, что подсказывала людям их фантазия. Так, всем известная Большая Медведица изображалась и как ковш, и как лошадь на привязи. Со многими созвездиями связаны удивительные легенды. Было бы здорово, если бы мама или папа почитали заранее некоторые из них, а потом пересказали малышу, вместе с ним вглядываясь в светящиеся точки и пытаясь увидеть легендарных существ. У древних греков, например, существовала такая легенда о созвездиях Большой и Малой Медведиц. Всемогущий бог Зевс влюбился в прекрасную нимфу Каллисто. Супруга Зевса Гера, узнав об этом, страшно рассердилась и превратила Каллисто и ее подругу в медведиц. Сын Каллисто Аракс во время охоты встретил двух медведиц и хотел убить их. Но Зевс помешал этому, забросив Каллисто и ее подругу на небо и превратив их в яркие созвездия. А, забрасывая, Зевс держал медведиц за хвосты. Вот хвосты и стали длинными. А вот еще одна красивая легенда сразу о нескольких созвездиях. Давным-давно в Эфиопии жил царь Цефей. Женой его была красавица Кассиопея. У них родилась дочь, прекрасная царевна Андромеда. Она подросла и стала самой красивой девушкой в Эфиопии. Кассиопея так возгордилась красотой дочери, что стала сравнивать ее с богинями. Боги разгневались и наслали на Эфиопию страшное несчастье. Каждый день выплывал из моря чудовищный кит, и самую красивую девушку отдавали ему на съедение. Пришла очередь и прекрасной Андромеды. Как ни умолял Цефей богов пощадить его дочь, боги оставались непреклонными. Андромеду приковали цепями к скале у моря. Но в это время мимо пролетел герой Персей в крылатых сандалиях. Он только что совершил подвиг, убив страшную Медузу Горгону. На голове у нее вместо волос шевелились змеи, а один ее взгляд превращал все живое в камень. Персей увидел бедную девушку и страшное чудовище, вытащил из сумки отрубленную голову Медузы и показал киту. Кит окаменел, и Персей освободил Андромеду. Обрадованный Цефей отдал Андромеду в жены Персею. А богам так понравилась эта история, что они превратили всех ее героев в яркие звезды и поместили на небо. С тех пор там можно: отыскать и Кассиопею, и Цефея, и Персея, и Андромеду. А кит стал островом у берегов Эфиопии.

Не сложно отыскать на небе и Млечный Путь. Он хорошо виден невооруженным глазом. Расскажите малышу, что Млечный Путь (а именно так называется наша галактика) - это большое скопление звезд, которое выглядит на небе, как светящаяся полоска из белых точек и напоминает путь из молока. Древние римляне приписывали происхождение Млечного Пути богине неба Юноне. Когда она кормила грудью Геркулеса, несколько капель упали и, превратившись в звезды, образовали на небе Млечный Путь...

Выбираем телескоп

Если ребенок не на шутку увлекся астрономией, имеет смысл приобрести для него телескоп. Правда, хороший телескоп стоит не дешево. Но и недорогие модели детских телескопов позволят юному астроному наблюдать за многими небесными объектами и делать свои первые астрономические открытия. Мама и папа должны помнить, что даже самый простой телескоп - штука довольно сложная для малыша-дошкольника. Поэтому, во-первых, ребенку никак не обойтись без вашей активной помощи. А, во-вторых, чем проще телескоп, тем легче будет малышу с ним управляться. Если же в будущем ребенок заинтересуется астрономией всерьез, можно будет приобрести более мощный телескоп.

Итак, что же такое телескоп и на что обратить внимание при его выборе? Принцип работы телескопа основан не на увеличении объекта, как думают многие. Правильнее сказать, что телескоп не увеличивает, а приближает объект. Основная задача телескопа - создать вблизи от наблюдателя изображение далекого предмета и позволить различить подробности; не доступные невооруженному глазу; Вторая задача - собрать как можно больше света от далекого предмета и передать его нашему глазу. Так что, чем больше объектив, тем больше света собирает телескоп и тем лучше будет детализация рассматриваемых объектов.

Все телескопы делятся на три оптических класса. Рефракторы (преломляющие телескопы) в качестве светособирающего элемента используют большую линзу-объектив. В рефлекторных (отражающих) телескопах роль объектива играют вогнутые зеркала. Самый распространенный и самый простой в изготовлении рефлектор делается по оптической схеме Ньютона (названа в честь Исаака Ньютона, который впервые применил ее на практике). Часто данные телескопы так и называют - "ньютон". Зеркально-линзовые телескопы используют одновременно и линзы и зеркала. За счет этого они позволяют добиться изображения отличного качества с высоким разрешением. Большинство детских телескопов, которые вы встретите в магазинах, относятся к рефракторам.

Важный параметр, на который следует обратить внимание, - диаметр объектива (апертура). Он определяет светособирающую способность телескопа и диапазон возможных увеличений. Измеряется в миллиметрах, сантиметрах или дюймах (например, 4,5 дюйма - это 114 мм). Чем больше диаметр объектива, тем более "слабые" звезды можно рассмотреть в телескоп. Вторая важная характеристика - фокусное расстояние . От него зависит светосила телескопа (так в любительской астрономии называют отношение диаметра объектива к его фокусному расстоянию). Обратите внимание и на окуляр . Если основная оптика (линза объектива, зеркало или система линз и зеркал) служит для формирования изображения, то назначение окуляра заключается в увеличении этого изображения. Окуляры бывают разных диаметров и фокусных расстояний. Изменение окуляра приведет и к изменению увеличения телескопа. Чтобы посчитать увеличение, нужно фокусное расстояние объектива телескопа (допустим, 900 мм) разделить на фокусное расстояние окуляра (например, 20 мм). Получаем увеличение 45 крат. Этого вполне достаточно для начинающего юного астронома, чтобы рассмотреть Луну, звездные скопления и массу других интересных вещей. В комплект телескопа может входить линза Барлоу. Она устанавливается перед окуляром, благодаря чему возрастает увеличение телескопа. В простых телескопах чаще всего используется двукратная линза Барлоу . Она позволяет повысить увеличение телескопа в два раза. В нашем случае увеличение составит 90 крат.

К телескопам прилагается множество полезных аксессуаров. Они могут входить в комплект телескопа или заказываться отдельно. Так, большинство телескопов снабжено видоискателями . Это небольшой телескоп с малым увеличением и большим полем зрения, который облегчает поиск нужных объектов наблюдения. Видоискатель и телескоп направляются параллельно друг другу. Сначала объект определяется в видоискателе, а уже затем в поле основного телескопа. Практически все рефракторы снабжены диагональным зеркалом или призмой . Это устройство облегчает наблюдения, если объект находится прямо над головой астронома. Если кроме небесных объектов вы собираетесь наблюдать и за объектами земными, вам не обойтись без выпрямляющей призмы . Дело в том, что все телескопы получают изображение, перевернутое вверх ногами и отображенное зеркально. При наблюдении небесных тел это не имеет особого значения. А вот видеть объекты земные все-таки лучше в правильном положении.

В любом телескопе есть монтировка - механическое устройство для крепления телескопа к штативу и наведения на объект. Она бывает азимутной либо экваториальной. Азимутная монтировка позволяет совершать движения телескопом в горизонтальном направлении (вправо-влево) и в вертикальном (вверх-вниз). Такая монтировка подходит для наблюдения и за наземными, и за небесными объектами и чаще всего устанавливается в телескопах для астрономов-новичков. Другой вид монтировки, экваториальный, устроен иначе. При длительных астрономических наблюдениях из-за вращения земли объекты смещаются. Благодаря особому устройству, экваториальная монтировка позволяет телескопу следовать за криволинейным путем звезды по небу. Иногда такой телескоп снабжается специальным двигателем, который управляет движением автоматически. Телескоп на экваториальной монтировке больше подходит для длительных астрономических наблюдений и фотосъемки. И, наконец, все это устройство крепится на штатив . Чаще всего он бывает металлический, реже - деревянный. Лучше, если ноги штатива будут не фиксированными, а выдвигающимися.

Как работать

Увидеть что-либо в телескоп - не такая уж и простая задача для новичка, как может показаться на первый взгляд. Нужно знать, что искать. Это раз. Нужно знать, где искать. Это два. И, конечно, знать, как искать. Это три. Начнем с конца и попробуем разобраться с основными правилами обращения с телескопом. Не переживайте из-за того, что вы сами не очень хорошо разбираетесь в астрономии (или даже вовсе не разбираетесь). Найти нужную литературу - не проблема. Зато как интересно будет и вам, и ребенку вместе открывать для себя эту непростую, но такую захватывающую науку.

Итак, прежде чем начинать поиск какого-либо объекта на небе, необходимо настроить видоискатель с телескопом. Данная процедура требует некоторых навыков. Делать это лучше днем. Выберите неподвижный, легко распознаваемый наземный объект на расстоянии от 500 метров до одного километра. Направьте на него телескоп так, чтобы объект оказался в центре окуляра. Зафиксируйте телескоп, чтобы он был неподвижен. Теперь посмотрите в видоискатель. Если выбранного объекта не видно, ослабьте регулирующий болт видоискателя и поворачивайте сам видоискатель до тех пор, пока объект не появится в поле зрения. Затем, при помощи юстировочных винтов (винты точной настройки видоискателя) добейтесь, чтобы объект располагался точно по центру окуляра. Теперь вновь загляните в телескоп. Если объект по-прежнему в центре - все в порядке. Телескоп готов к работе. Если нет, повторите настройку.

Как известно, смотреть в телескоп лучше в темной башне где-нибудь высоко в горах. Конечно, в горы мы вряд ли поедем. Но, бесспорно, наблюдать за звездами лучше за городом (например, на даче), чем из окна городской квартиры. В городе слишком много лишнего света и тепловых волн, которые будут ухудшать изображение. Чем дальше от городской засветки вы будете проводить наблюдения, тем больше небесных объектов сможете увидеть. Понятно, что небо должно быть максимально чистым.

Сначала отыщите объект в видоискателе. Затем настройте фокус телескопа - вращайте винт для фокусировки до тех пор, пока изображение не станет четким. Если у вас несколько окуляров, начните с самого слабого увеличения. Из-за очень тонкой настройки телескопа смотреть в него нужно осторожно, не совершая резких движений и затаив дыхание. Иначе настройка может легко сбиться. Сразу учите этому малыша. Кстати, такие наблюдения будут тренировать выдержку, а для чрезмерно активных шустриков станут своего рода психотерапевтической процедурой. Трудно найти лучшее успокаивающее средство, чем наблюдение за бесконечным звездным небом.

В зависимости от модели телескопа, в него можно рассмотреть несколько сот различных небесных объектов. Это планеты, звезды, галактики, астероиды, кометы.

Астероиды (малые планеты) - это большие куски скальной породы, иногда содержащие металл. Большинство астероидов вращается вокруг Солнца между Марсом и Юпитером.

Кометы - это небесные тела, которые имеют ядро и светящийся хвост. Чтобы малыш смог хоть немного представить себе эту "хвостатую странницу", расскажите, что она похожа на огромный снежок вперемешку с космической пылью. В телескоп кометы кажутся туманными пятнами, иногда со светлым хвостом. Хвост всегда развернут от Солнца.

Луна . Даже в самый простой телескоп можно хорошо рассмотреть кратеры, расщелины, горные цепи и темные моря. Лучше всего наблюдать за луной не в полнолуние, а в одну из ее фаз. В это время можно рассмотреть гораздо больше деталей, особенно на границе света и тени.

Планеты . В любой телескоп можно увидеть все планеты Солнечной Системы, кроме самой отдаленной - Плутона (он виден только в мощные телескопы). Меркурий и Венера, так же как и Луна, имеют фазы, когда они видны в телескоп. На Юпитере можно рассмотреть темные и светлые полосы (которые являются поясами облаков) и гигантский вихрь Большое Красное Пятно. Из-за быстрого вращения планеты ее внешний вид постоянно меняется. Хорошо видны четыре гелиевых спутника Юпитера. На загадочной красной планете Марс в хороший телескоп можно рассмотреть белые ледяные шапки на полюсах. Знаменитое кольцо Сатурна, которое так любит рассматривать на картинках детвора, тоже отлично видно в телескоп. Это потрясающая картина. Обычно хорошо виден и самый крупный спутник Сатурна Титан. А в более мощные телескопы можно рассмотреть щель в кольцах (щель Кассини) и тень, которую отбрасывают кольца на планету. Уран и Нептун будут видны, как маленькие точки, а в более мощные телескопы - как диски.

Между орбитами Марса и Юпитера можно наблюдать множество астероидов. Бывает, попадаются и кометы.

Звездные скопления . По всей нашей галактике расположено множество звездных скоплений, которые делят на рассеянные (значительное скопление звезд на некотором участке неба) и шаровые (плотная группа звезд, имеющая форму шара). Например, хорошо видное невооруженным глазом созвездие Плеяд (семь маленьких звездочек, прижавшихся друг к другу) в окуляре даже самого простого телескопа превращается в сверкающее поле из сотни звезд.

Туманности . По всей нашей галактике разбросаны скопления газа. Это и есть туманности. Обычно они подсвечиваются соседними звездами и представляют собой очень красивое зрелище.

Галактики . Это огромные скопления миллиардов звезд, отдельные "острова" Вселенной. Самая яркая галактика ночного неба - галактика Андромеды. Без телескопа она выглядит, как слабое неясное пятно. В телескоп можно разглядеть большое эллиптическое светящееся поле. А в более мощный телескоп видна структура галактики.

Солнце . Смотреть на Солнце через телескоп, если он не снабжен специальными солнечными фильтрами, категорически запрещается. Объясните это ребенку первым делом. От этого телескоп выйдет из строя. Но это полбеды. Есть один грустный афоризм о том, что на Солнце в телескоп можно посмотреть всего два раза в жизни: один раз правым глазом, второй раз - левым. Такие эксперименты действительно могут привести к потере зрения. И лучше в дневное время не оставлять телескоп в собранном виде, чтобы не искушать маленького астронома.

Кроме астрономических наблюдений, большинство телескопов позволяет наблюдать и за наземными объектами, что тоже может быть весьма интересно. Но, куда важнее, не столько сами наблюдения, сколько совместное увлечение малыша и родителей, общие интересы, которые делают дружбу ребенка и взрослого крепче, полнее и интереснее.

Чистого вам неба и удивительных астрономических открытий!

Звезды не отражают свет, как это делают планеты и их спутники, а излучают его. Причем ровно и постоянно. А мигание, видимое на Земле, возможно, вызвано наличием разнообразных микрочастиц в космосе, которые, попадая в световой луч, прерывают его.

Самая яркая звезда, с точки зрения землян

Со школьной скамьи известно, что Солнце - это звезда. С нашей планеты - это а по меркам Вселенной - чуть меньше средней и по размерам, и по яркости. Огромное количество звезд крупнее Солнца, но их значительно меньше.

Звездная градация

Разделять небесные светила по величине начали еще древнегреческие астрономы. Под понятием «величина» и тогда, и сейчас имеют в виду яркость свечения звезды, а не ее физическую величину.

Различаются звезды и по длине излучения. По спектру волн, а он, действительно, разнообразен, астрономы могут рассказать о химическом составе тела, температуре и даже удаленности.

Ученые спорят

Не одно десятилетие длится полемика по вопросу «почему звезды светят». Единого мнения до сих пор нет. Трудно поверить даже физикам-ядерщикам, что происходящие в звездном теле реакции, могут выделять такое огромное количество энергии, причем не останавливаясь.

Проблема проходящего в звездах, занимает ученых очень давно. Астрономы, физики, химики предпринимали попытки выяснить, что дает толчок к извержению тепловой энергии, которое сопровождается ярким излучением.

Химики полагают, что свет далекой звезды - это последствия экзотермической реакции. Она завершается выбросом значительного количества тепла. Физики утверждают, что в теле звезды не может проходить химических реакций. Ибо ни одна из них не способна идти безостановочно миллиарды лет.

Ответ на вопрос «почему звезды светят» стал немного ближе после открытия Менделеевым таблицы элементов. Теперь абсолютно по-новому стали рассматриваться химические реакции. В результате экспериментов были получены новые радиоактивные элементы, и теория радиоактивного распада становится версией номер один в бесконечном споре о свечениях звезд.

Современная гипотеза

Свет далекой звезды не давал «уснуть» Сванте Аррениусу - шведскому ученому. В начале прошлого века он перевернул идею излучения звездами тепла, разработав концепцию Она состояла в следующем. Основной источник энергии в теле звезды - атомы водорода, постоянно участвующие в химических реакциях друг с другом, образуют гелий, который значительно тяжелее своего предшественника. Процессы превращения происходят из-за давления газа большой плотности и дикой для нашего понимания температурой (15 000 000̊С).

Гипотеза пришлась по вкусу многим ученым. Вывод был однозначен: звезды на ночном небе светятся, потому что внутри происходит реакция синтеза и выделяемой при этом энергии больше чем достаточно. Также стало понятно, что соединение водорода может идти безостановочно много миллиардов лет подряд.

Итак, почему звезды светят? Энергия, которая выделяется в ядре, передается во внешнюю газовую оболочку и происходит видимое нам излучение. Сегодня ученые практически уверены, что «дорога» луча от ядра к оболочке занимает более сотни тысяч лет. До Земли луч от звезды тоже идет достаточно долго. Если излучение от Солнца доходит до Земли за восемь минут, звезды поярче - Проксимы Центавры - почти за пять лет, то свет остальных может идти десятки и сотни лет.

Ещё одно «почему»

Почему звезды излучают свет теперь понятно. Почему он мерцает? Свечение, идущее от звезды, на самом деле ровное. Это происходит из-за гравитации, которая притягивает выталкиваемый звездой газ обратно. Мерцание звезды - это своеобразная погрешность. Человеческий глаз видит звезду через несколько слоев воздуха, который пребывает в постоянном движении. Звездный луч, проходя через эти слои, кажется мерцающим.

Так как атмосфера непрестанно движется, горячие и холодные потоки воздуха, проходя друг под другом, образуют завихрения. Это приводит к искривлению светового луча. тоже изменяется. Причина в неравномерности концентрации доходящего до нас луча. Смещается и сама звездная картина. Виной этому явлению являются, проходящие в атмосфере, например, порывы ветра.

Разноцветные звезды

В безоблачную погоду ночное небо радует глаз ярким многоцветием. Насыщенно-оранжевая окраска у и Арктур, а вот Антарес и Бетельгейзе - нежно-красные. Сириус и Вега молочно-белого оттенка, с голубым отливом - Регул и Спика. Знаменитые гиганты - Альфа Центавра и Капелла - сочно желтые.

Почему звезды светят по-разному? Цвет звезды зависит от ее внутренней температуры. Самые «холодные» - красные. На их поверхности всего 4 000̊С. с поверхностным нагревом до 30 000̊С - считаются самыми горячими.

Космонавты рассказывают, что на самом деле звезды свет ровно и ярко, а подмигивают они только землянам...