Здоровье        16.05.2020   

Самые большие телескопы в мире. Что можно увидеть в телескоп? Самый большой зеркальный телескоп в мире

Благодаря телескопам ученые сделали удивительные открытия: обнаружили огромное количество планет за пределами Солнечной системы, узнали о существовании черных дыр в центрах галактик. Но Вселенная настолько огромна, что это - лишь крупица знаний. Вот десять существующих и будущих гигантов среди наземных телескопов, которые дают ученым возможность изучать прошлое Вселенной и узнавать новые факты. Возможно, с помощью одного из них даже удастся обнаружить Девятую планету.

Большой южноафриканский телескоп (SALT)

Этот 9,2-метровый телескоп - крупнейший наземный оптический прибор в южном полушарии. Он функционирует с 2005 года и концентрируется на спектроскопических съемках (регистрирует спектры различных видов излучения). Прибор может просматривать около 70% неба, наблюдаемого в Сатерленде, ЮАР.

Телескопы Keck I и II

Двойные 10-метровые телескопы в обсерватории Кека находятся на втором месте по величине среди оптических приборов на Земле. Они расположены недалеко от вершины горы Мауна-Кеа на Гавайях. Keck I начал функционировать в 1993 году. Спустя несколько лет, в 1996, был запущен Keck II . В 2004 году на объединенных телескопах была развернута первая система адаптивной оптики с лазерной направляющей звездой. Она создает искусственное звездное пятно в качестве ориентира для коррекции атмосферных искажений при просмотре неба.


Фото: ctrl.info

Большой Канарский телескоп (GTC)

10,4-метровый телескоп расположен на пике потухшего вулкана Мучачос на Канарском острове Пальма. Он известен как оптический прибор с самым крупным зеркалом в мире. Оно состоит из 36 шестиугольных сегментов. GTC имеет несколько вспомогательных инструментов. Например, камеру CanariCam, способную исследовать инфракрасный свет среднего диапазона, излучаемый звездами и планетами. CanariCam также обладает уникальной способностью блокировать яркий звездный свет и делать слабые планеты на фотоснимках более заметными.


Фото: astro.ufl

Радиотелескоп обсерватории Аресибо

Это один из самых узнаваемых в мире наземных телескопов. Он функционирует с 1963 года и представляет собой огромную 30-метровую радиоотражающую тарелку рядом с городом Аресибо в Пуэрто-Рико. Огромный отражатель делает телескоп особо чувствительным. Он способен обнаружить слабый радиоисточник (отдаленные квазары и галактики, которые излучают радиоволны) всего за несколько минут наблюдения.


Фото: physicsworld

Комплекс радиотелескопов ALMA

Один из крупнейших наземных астрономических инструментов представлен в виде 66 12-метровых радиоантенн. Комплекс находится на высоте 5000 метров в пустыне Атакама в Чили. Первые научные исследования были проведены в 2011 году. У радиотелескопов ALMA есть одно важное предназначение. С их помощью астрономы хотят изучить процессы, которые происходили на протяжении первых сотен миллионов лет после Большого Взрыва.


Фото: Википедия

До этого момента мы говорили об уже существующих телескопах. Но сейчас строится много новых. Совсем скоро они начнут функционировать и значительно расширят возможности науки.

LSST

Это широкоугольный телескоп-рефлектор, который будет снимать определенную область неба каждые несколько ночей. Расположен он будет в Чили, на вершине горы Серо-Пачон. Пока проект находится только в разработке. Полноценное функционирование телескопа планируется к 2022 году. Тем не менее, на него уже возлагают большие надежды. Астрономы ожидают, что LSST даст им наилучшее представление о находящихся на большом удалении от Солнца небесных телах. Также ученые предполагают, что этот телескоп сможет замечать космические камни, которые теоретически могут столкнуться с Землей в будущем.


Фото: LSST

Гигантский Магелланов телескоп

Телескоп, строительство которого планируют завершить к 2022 году, будет находиться в обсерватории Лас-Кампанас в Чили. Ученые полагают, что телескоп в четыре раза превысит способность собирать свет по сравнению с существующими на данный момент оптическими приборами. С его помощью астрономы смогут открывать экзопланеты (планеты, находящиеся за пределами Солнечной системы) и изучать свойства тёмной материи.


Фото: Википедия

Тридцатиметровый телескоп

Тридцатиметровый телескоп будет расположен на Гавайях, рядом с обсерваторией Кека. Планируется, что его начнут эксплуатировать в 2025-2030 годах. Диафрагма прибора способна обеспечить разрешение в 12 раз выше, чем у космического телескопа Хаббла.


Фото: Википедия

Радиотелескоп SKA

Антенны SKA будут размещены в ЮАР и Австралии. Сейчас проект находится еще на стадии строительства. Но первые наблюдения запланированы уже на 2020 год. Чувствительность SKA будет в 50 раз превышать чувствительность любого когда-либо созданного радиотелескопа. С его помощью астрономы смогут исследовать сигналы из более молодой вселенной - времени, когда происходило формирование первых звезд и галактик.


Фото: Википедия

Чрезвычайно большой телескоп (ELT)

Телескоп будет расположен на горе Серро-Амазоне в Чили. Планируется, что он начнет работать только в 2025 году. Тем не менее, он уже прославился огромным зеркалом, которое будет состоять из 798 шестиугольных сегментов диаметром 1,4 метра каждый. Технические характеристики ELT позволят ему изучать состав атмосфер внесолнечных планет.


Фото: Википедия

Первые телескопы диаметром чуть более 20 мм и скромным увеличением менее 10x, появившиеся в начале XVII столетия, совершили настоящую революцию в знаниях об окружающем нас космосе. Сегодня астрономы готовятся ввести в строй гигантские оптические инструменты диаметром в тысячи раз больше.

26 мая 2015 года стало настоящим праздником для астрономов всего мира. В этот день губернатор штата Гавайи Дэвид Игей разрешил начать нулевой цикл строительства вблизи вершины потухшего вулкана Мауна-Кеа гигантского приборного комплекса, который через несколько лет станет одним из крупнейших оптических телескопов в мире.


Три самых крупных телескопа первой половины XXI века будут использовать разные оптические схемы. TMT построен по схеме Ричи-Кретьена с вогнутым главным зеркалом и выпуклым вторичным (оба гиперболические). E-ELT имеет вогнутое главное зеркало (эллиптическое) и выпуклое вторичное (гиперболическое). GMT использует оптическую схему Грегори с вогнутыми зеркалами: главным (параболическим) и вторичным (эллиптическим).

Гиганты на арене

Новый телескоп получил название Тридцатиметровый телескоп (Thirty Meter Telescope, TMT), поскольку его апертура (диаметр) составит 30 м. Если все пойдет по плану, TMT увидит первый свет в 2022 году, а спустя еще год начнутся регулярные наблюдения. Сооружение будет действительно исполинским — высотой 56 и шириной 66 м. Главное зеркало будет составлено из 492 шестиугольных сегментов общей площадью 664 м². По этому показателю TMT на 80% превзойдет Гигантский Магелланов телескоп (Giant Magellan Telescope, GMT) с апертурой 24,5 м, который в 2021 году вступит в строй в чилийской обсерватории Лас-Кампанас, принадлежащей Институту Карнеги.


Тридцатиметровый телескоп TMT построен по схеме Ричи-Кретьена, которая используется во многих ныне действующих крупных телескопах, в том числе и в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м. На первом этапе TMT будет оснащен тремя ИК- и оптическими спектрометрами, а в будущем планируется добавить к ним еще несколько научных приборов.

Однако мировым чемпионом TMT пробудет недолго. На 2024 год запланировано открытие Чрезвычайно большого европейского телескопа (European Extremely Large Telescope, E-ELT) с рекордным диаметром 39,3 м, который станет флагманским инструментом Европейской южной обсерватории (ESO). Его сооружение уже началось на трехкилометровой высоте на горе Серро-Армазонес в чилийской пустыне Атакама. Главное зеркало этого исполина, составленное из 798 сегментов, будет собирать свет с площади 978 м².

Эта великолепная триада составит группу оптических супертелескопов нового поколения, у которых долго не будет конкурентов.


Анатомия супертелескопов

Оптическая схема TMT восходит к системе, которую сотню лет назад независимо предложили американский астроном Джордж Виллис Ричи и француз Анри Кретьен. В основе ее лежит комбинация из главного вогнутого зеркала и соосного с ним выпуклого зеркала меньшего диаметра, причем оба они имеют форму гиперболоида вращения. Лучи, отраженные от вторичного зеркала, направляются в отверстие в центре основного рефлектора и фокусируются позади него. Использование второго зеркала в этой позиции делает телескоп более компактным и увеличивает его фокусное расстояние. Эта конструкция реализована во многих действующих телескопах, в частности в крупнейшем на настоящий момент Gran Telescopio Canarias с главным зеркалом диаметром 10,4 м, в десятиметровых телескопах-близнецах гавайской Обсерватории Кека и в четверке 8,2-метровых телескопов обсерватории Серро-Параналь, принадлежащей ESO.

Оптическая система E-ELT также содержит вогнутое главное зеркало и выпуклое вторичное, но при этом имеет ряд уникальных особенностей. Она состоит из пяти зеркал, причем главное из них представляет собой не гиперболоид, как у TMT, а эллипсоид.

GMT сконструирован совершенно иначе. Его главное зеркало состоит из семи одинаковых монолитных зеркал диаметром 8,4 м (шесть составляют кольцо, седьмое находится в центре). Вторичное зеркало — не выпуклый гиперболоид, как в схеме Ричи-Кретьена, а вогнутый эллипсоид, расположенный перед фокусом основного зеркала. В середине XVII века такую конфигурацию предложил шотландский математик Джеймс Грегори, а на практике впервые воплотил Роберт Гук в 1673 году. По грегорианской схеме построены Большой бинокулярный телескоп (Large Binocular Telescope, LBT) в международной обсерватории на горе Грэм в штате Аризона (оба его «глаза» оснащены такими же главными зеркалами, как и зеркала GMT) и два одинаковых Магеллановых телескопа с апертурой 6,5 м, которые с начала 2000-х годов работают в обсерватории Лас-Кампанас.


Сила — в приборах

Любой телескоп сам по себе — просто очень большая зрительная труба. Для превращения в астрономическую обсерваторию его необходимо снабдить высокочувствительными спектрографами и видеокамерами.

TMT, который рассчитан на срок службы более чем в 50 лет, в первую очередь оснастят тремя измерительными инструментами, смонтированными на общей платформе — IRIS, IRMS и WFOS. IRIS (InfraRed Imaging Spectrometer) представляет собой комплекс из видеокамеры очень высокого разрешения, обеспечивающей обзор в поле 34 х 34 угловых секунды, и спектрометра инфракрасного излучения. IRMS — это многощелевой инфракрасный спектрометр, а WFOS — широкоугольный спектрометр, который может одновременно отслеживать до 200 объектов на площади не менее 25 квадратных угловых минут. В конструкции телескопа предусмотрено плоско-поворотное зеркало, направляющее свет на нужные в данный момент приборы, причем для переключения нужно меньше десяти минут. В дальнейшем телескоп оборудуют еще четырьмя спектрометрами и камерой для наблюдения экзопланет. Согласно нынешним планам, по одному дополнительному комплексу будет добавляться каждые два с половиной года. GMT и E-ELT также будут иметь чрезвычайно богатую приборную начинку.


Супергигант E-ELT станет самым большим в мире телескопом с главным зеркалом диаметром 39,3 м. Он будет оснащен суперсовременной системой адаптивной оптики (АО) с тремя деформируемыми зеркалами, способными устранить искажения, возникающие на различных высотах, и сенсорами волнового фронта для анализа света от трех природных опорных звезд и четырех-шести искусственных (порожденных в атмосфере с помощью лазеров). Благодаря этой системе разрешающая способность телескопа в ближней инфракрасной зоне при оптимальном состоянии атмосферы достигнет шести угловых миллисекунд и вплотную приблизится к дифракционному пределу, обусловленному волновой природой света.

Европейский гигант

Супертелескопы следующего десятилетия обойдутся недешево. Точная сумма пока неизвестна, но уже ясно, что их общая стоимость превысит $3 млрд. Что же эти исполинские инструменты дадут науке о Вселенной?

«E-ELT будет использован для астрономических наблюдений самых разных масштабов — от Солнечной системы до сверхдальнего космоса. И на каждой масштабной шкале от него ожидают исключительно богатой информации, значительную часть которой не могут выдать другие супертелескопы, — рассказал «Популярной механике» член научной команды европейского гиганта Йохан Лиске, который занимается внегалактической астрономией и обсервационной космологией. — На это есть две причины: во‑первых, E-ELT сможет собирать много больше света по сравнению со своими конкурентами, и во-вторых, его разрешающая способность будет гораздо выше. Возьмем, скажем, внесолнечные планеты. Их список быстро растет, к концу первой половины нынешнего года он содержал около 2000 названий. Сейчас главная задача состоит не в умножении числа открытых экзопланет, а в сборе конкретных данных об их природе. Именно этим и будет заниматься E-ELT. В частности, его спектроскопическая аппаратура позволит изучать атмосферы каменных землеподобных планет с полнотой и точностью, совершенно недоступной для ныне действующих телескопов. Эта исследовательская программа предусматривает поиск паров воды, кислорода и органических молекул, которые могут быть продуктами жизнедеятельности организмов земного типа. Нет сомнения, что E-ELT увеличит количество претендентов на роль обитаемых экзопланет».


Новый телескоп обещает и другие прорывы в астрономии, астрофизике и космологии. Как известно, существуют немалые основания для предположения, что Вселенная уже несколько миллиардов лет расширяется с ускорением, обусловленным темной энергией. Величину этого ускорения можно определить по изменениям в динамике красного смещения света далеких галактик. Согласно нынешним оценкам, этот сдвиг соответствует 10 см/с за десятилетие. Эта величина чрезвычайно мала для измерения с помощью ныне действующих телескопов, но для E-ELT такая задача вполне по силам. Его сверхчувствительные спектрографы позволят также получить более надежные данные для ответа на вопрос, постоянны ли фундаментальные физические константы или они меняются со временем.

E-ELT обещает подлинную революцию во внегалактической астрономии, которая занимается объектами, расположенными за пределами Млечного Пути. Нынешние телескопы позволяют наблюдать отдельные звезды в ближайших галактиках, но на больших дистанциях они пасуют. Европейский супертелескоп предоставит возможность увидеть самые яркие звезды в галактиках, отдаленных от Солнца на миллионы и десятки миллионов световых лет. С другой стороны, он будет способен принять свет и от самых ранних галактик, о которых еще практически ничего не известно. Он также сможет наблюдать за звездами вблизи сверхмассивной черной дыры в центре нашей Галактики — не только измерять их скорости с точностью до 1 км/с, но и открывать неизвестные ныне звезды в непосредственной близости от дыры, где их орбитальные скорости приближаются к 10% скорости света. И это, как говорит Йохан Лиске, далеко не полный перечень уникальных возможностей телескопа.


Магелланов телескоп

Сооружает гигантский Магелланов телескоп интернациональный консорциум, объединяющий более десятка различных университетов и исследовательских институтов США, Австралии и Южной Кореи. Как объяснил «ПМ» профессор астрономии Аризонского университета и заместитель директора Стюартовской обсерватории Деннис Заритски, грегорианская оптика была выбрана по той причине, что она повышает качество изображений в широком поле зрения. Такая оптическая схема в последние годы хорошо зарекомендовала себя на нескольких оптических телескопах 6−8-метрового диапазона, а еще раньше ее применяли на крупных радиотелескопах.

Несмотря на то что по диаметру и, соответственно, площади светособирающей поверхности GMT уступает TMT и E-ELT, у него есть немало серьезных преимуществ. Его аппаратура сможет одновременно измерять спектры большого числа объектов, что чрезвычайно важно для обзорных наблюдений. Кроме того, оптика GMT обеспечивает очень высокую контрастность и возможность забраться далеко в инфракрасный диапазон. Диаметр его поля зрения, как и у TMT, составит 20 угловых минут.


По словам профессора Заритски, GMT займет достойное место в триаде будущих супертелескопов. Например, с его помощью можно будет получать информацию о темной материи — главном компоненте многих галактик. О ее распределении в пространстве можно судить по движению звезд. Однако большинство галактик, где она доминирует, содержат сравнительно мало звезд, к тому же довольно тусклых. Аппаратура GMT будет в состоянии отслеживать движения много большего числа таких звезд, чем приборы любого из ныне действующих телескопов. Поэтому GMT позволит точнее составить карту темной материи, и это, в свою очередь, даст возможность выбрать наиболее правдоподобную модель ее частиц. Такая перспектива приобретает особую ценность, если учесть, что до сих пор темную материю не удавалось ни обнаружить путем пассивного детектирования, ни получить на ускорителе. На GMT также будут выполнять и другие исследовательские программы: поиск экзопланет, включая планеты земного типа, наблюдение самых древних галактик и исследование межзвездного вещества.

На земле и в небесах

В октябре 2018 года планируется вывести в космос телескоп James Webb (JWST). Он будет работать только в оранжевой и красной зонах видимого спектра, но зато сможет вести наблюдения почти во всем среднем инфракрасном диапазоне вплоть до волн длиной 28 мкм (инфракрасные лучи с длинами волн свыше 20 мкм практически полностью поглощаются в нижнем слое атмосферы молекулами углекислого газа и воды, так что наземные телескопы их не замечают). Поскольку он будет защищен от тепловых помех земной атмосферы, его спектрометрические приборы будут гораздо чувствительнее наземных спектрографов. Однако диаметр его главного зеркала — 6,5 м, и поэтому благодаря адаптивной оптике угловое разрешение наземных телескопов будет в несколько раз выше. Так что, по словам Майкла Болте, наблюдения на JWST и на наземных супертелескопах будут идеально дополнять друг друга. Что касается перспектив 100-метрового телескопа, то профессор Болте весьма осторожен в оценках: «По моему мнению, в ближайшие 20−25 лет просто не удастся создать системы адаптивной оптики, способные эффективно работать в паре со стометровым зеркалом. Возможно, это произойдет где-то лет через сорок, во второй половине столетия».

Гавайский проект

«TMT — единственный из трех будущих супертелескопов, место для которого выбрано в Северном полушарии, — говорит член совета директоров гавайского проекта, профессор астрономии и астрофизики Калифорнийского университета в Санта-Крус Майкл Болте. — Однако его смонтируют не очень далеко от экватора, на 19-м градусе северной широты. Поэтому он, как и прочие телескопы обсерватории Мауна-Кеа, сможет обозревать небосвод обоих полушарий, тем более что по части условий наблюдения эта обсерватория — одно из лучших мест на планете. Кроме того, TMT будет работать в связке с группой расположенных по соседству телескопов: двух 10-метровых близнецов Keck I и Keck II (которые можно считать прототипами TMT), а также 8-метровых Subaru и Gemini-North. Система Ричи-Кретьена вовсе не случайно задействована в конструкции многих крупных телескопов. Она обеспечивает хорошее поле зрения и весьма эффективно защищает и от сферической, и от коматической аберрации, искажающей изображения объектов, не лежащих на оптической оси телескопа. К тому же для TMT запланирована поистине великолепная адаптивная оптика. Понятно, что астрономы с полным основанием ожидают, что наблюдения на TMT принесут немало замечательных открытий».


По мнению профессора Болте, и TMT, и другие супертелескопы будут способствовать прогрессу астрономии и астрофизики прежде всего тем, что в очередной раз отодвинут границы известной науке Вселенной и в пространстве, и во времени. Еще 35−40 лет назад наблюдаемый космос в основном был ограничен объектами не старше 6 млрд лет. Сейчас удается надежно наблюдать галактики возрастом около 13 млрд лет, чей свет был испущен через 700 млн лет после Большого взрыва. Имеются кандидаты в галактики с возрастом 13,4 млрд лет, однако это пока не подтверждено. Можно ожидать, что приборы TMT смогут регистрировать источники света возрастом лишь чуть меньше (на 100 млн лет) самой Вселенной.

TMT предоставит астрономии и множество других возможностей. Результаты, которые будут на нем получены, позволят уточнить динамику химической эволюции Вселенной, лучше понять процессы формирования звезд и планет, углубить знания о структуре нашей Галактики и ее ближайших соседей и, в частности, о галактическом гало. Но главное в том, что TMT, так же как GMT и E-ELT, скорее всего, позволит исследователям ответить на вопросы фундаментальной важности, которые сейчас нельзя не только корректно сформулировать, но и даже вообразить. В этом, по мнению Майкла Болте, и состоит основная ценность проектов супертелескопов.

Мне в комментариях сразу же напомнили, что нужно обязательно написать и про БТА-6. Выполняю пожелания:-)

В течении многих лет самый большой в мире телескоп БТА (Большой Телескоп Азимутальный) принадлежал именно нашей стране, причем сконструирован и построен он был полностью с использованием отечественных технологий, продемонстрировав лидерство страны в области создания оптических инструментов. В начале 60-х советские учёные получили от правительства «особое задание» - создать телескоп больше чем у американцев (телескоп Хейла - 5 м.). Посчитали, что на метр больше будет достаточно, так как американцы вообще считали бессмысленным создание цельных зеркал размером более 5 метров из-за деформации под собственным весом.

Какова же история создания этого уникального научного объекта?

Сейчас мы узнаем …

Кстати, первое фото из очень , посмотрите его обязательно тоже.

Фото 3.

М. В. Келдыш, Л. А. Арцимович, И. М. Копылов и другие на стройплощадке БТА. 1966 г.

История Большого телескопа азимутального (БТА, Карачаево-Черкесия) началась 25 марта 1960 года, когда по предложению АН СССР и Государственного комитета по оборонной технике Совет министров СССР принял постановление о создании комплекса с телескопом-рефлектором, имеющим главное зеркало диаметром 6 метров.

Его назначение – «исследование структуры, физической природы и эволюции внегалактических объектов, детальное изучение физических характеристик и химического состава нестационарных и магнитных звезд». Головным исполнителем был назначен Государственный оптико-механический завод им. ОГПУ (ГОМЗ), на базе которого вскоре было образовано ЛОМО, а главным конструктором – Баграт Константинович Иоаннисиани. БТА являлся новейшей для своего времени астрономической техникой, содержавшей в себе много поистине революционных решений. С тех пор монтировка всех больших телескопов мира осуществляется по блестяще оправдавшей себя альт-азимутальной схеме, впервые в мировой практике примененной нашими учеными в БТА. Над его созданием трудились специалисты самого высокого класса, что обеспечило высокое качество гигантского прибора. Вот уже более 30 лет БТА несет свою звездную вахту. Этот телескоп способен различать астрономические объекты 27-ой величины. Представьте, что земля плоская; и тогда, если в Японии кто-нибудь прикуривал бы сигарету, при помощи телескопа это можно было бы ясно увидеть.

Фото 4.

Очистка дна котлована. Февраль 1966 г

После анализа всех данных, площадкой для телескопа БТА стало место на высоте 2100 метров возле горы Пастухова, недалеко от станицы Зеленчукская, которая расположена в Карачаево-Черкессии — Нижний Архыз.

По проекту был выбран азимутальный тип монтировки телескопа. Полный наружный диаметр зеркала составлял 6.05 метра при толщине 65 см, равномерной по всей площади.

Сборка конструкции телескопа производилась в помещении ЛОМО. Специально для этого был построен корпус высотой свыше 50 метров. Внутри корпуса были установлены подъемные краны грузоподъемностью 150 и 30 тонн. Перед началом сборки был изготовлен специальный фундамент. Сама сборка началась в январе 1966 года и продолжалась более полутора лет, до сентября 1967 года.

Фото 5.

Строительство фундаментов телескопа и башни. Апрель 1966 г.

К моменту изготовления заготовки зеркала диаметром 6 м накопленный опыт обработки крупногабаритных оптических заготовок был невелик. Для обработки отливки 6-метрового диаметра, когда потребовалось снять с заготовки около 25 т стекла, имеющийся опыт оказался непригодным, как из-за низкой производительности труда, так и из-за наличия реальной опасности выхода заготовки из строя. Поэтому при обработке заготовки диаметром 6 м было принято решение о применении алмазного инструмента.

Многие из узлов телескопа являются уникальными для своего времени, такие как главный спектрограф телескопа, имеющий диаметр 2 метра, система гидирования, включающая в себя телескоп-гид и комплексную фото и телевизионную систему, а также специализированную ЭВМ для управления работой системы

Фото 6.

Лето 1968 г. Доставка деталей телескопа

БТА является телескопом мирового класса. Большая светособирающая способность телескопа дает возможность проводить исследование структуры, физической природы и эволюции внегалактических объектов, детальное изучение физических характеристик и химического состава пекулярных, нестационарных и магнитных звезд, исследование процессов звездообразования и эволюции звезд, изучение поверхностей и химического состава атмосфер планет, траекторные измерения искусственных небесных тел на больших расстояниях от Земли и многое другое.

С его помощью были проведены многочисленные уникальные исследования космического пространства: изучены самые далекие из наблюдавшихся когда-либо с Земли галактик, оценена масса местного объема Вселенной, разгадано множество других загадок космоса. Петербургский ученый Дмитрий Вышелович с помощью БТА искал ответ на вопрос, дрейфуют ли фундаментальные постоянные во Вселенной. По итогам наблюдений он сделал важнейшие открытия. Астрономы со всего мира записываются в очередь, чтобы провести наблюдения с помощью знаменитого русского телескопа. Отечественные телескопостроители и ученые накопили благодаря БТА огромный опыт, позволивший открыть пути к новым технологиям изучения Вселенной.

Фото 7.

Монтаж металлоконструкций купола. 1968 г

Разрешающая способность телескопа в 2000 раз большеразрешающей способности человеческого глаза, а его радиус «зрения» в 1,5 раза превышает аналогичный показа-тель крупнейшего на тот момент телескопа США в Маунт-Паломаре (8-9 млрд. световых лет против 5-6 соответственно). Не случайно БТА называют «Оком планеты». Его размеры поражают воображение: высота – 42 метра, вес – 850 тонн. Благодаря специальной конструкции гидравлических опор телескоп как бы «плавает» на тончайшей масляной подушке толщиной 0,1 мм, и человек в состоянии повернуть его вокруг своей оси без применения техники и дополнительных инструментов.

Постановлением Правительства от 25 марта 1960 г. Лыткаринский завод оптического стекла был утвержден головным исполнителем по разработке технологического процесса на отливку из стекла заготовки зеркала диаметром 6 м и по изготовлению заготовки зеркала. Специально для этого проекта было построено два новых производственных корпуса. Предстояло отлить заготовку стекла массой 70 т, отжечь ее и произвести сложную обработку всех поверхностей с изготовлением 60 посадочных глухих отверстий на тыльной стороне, центрального отверстия и др. Спустя три года с момента выхода Постановления Правительства был создан опытно-производственный цех. В задачу цеха входило монтаж и отладка оборудования, отработка промышленного техпроцесса и изготовление заготовки зеркала.

Фото 8.

Проведенный специалистами ЛЗОС комплекс поисковых работ по созданию оптимальных режимов обработки позволил разработать и реализовать технологию изготовления промышленной заготовки главного зеркала. Обработка заготовки велась в течение почти полутора лет. Для обработки зеркала Коломенским заводом тяжелого станкостроения в 1963 г. был создан специальный карусельный станок КУ-158. Параллельно проводилась большая научно-исследовательская работа по технологии и контролю этого уникального зеркала. В июне 1974 года зеркало было готово для проведения аттестации, которая была успешно выполнена. В июне 1974 г. начался ответственный этап транспортировки зеркала в обсерваторию. 30 декабря 1975 г. утвержден акт Государственной межведомственной комиссии по приемке в эксплуатацию Большого азимутального телескопа.

Фото 9.

1989 г. Сборка 1-метрового телескопа Цейс-1000

Фото 10.

Транспортировка верхней части трубы БТА. Август 1970 г.

Сегодня существуют новые, более эффективные астрономические системы с более крупными, в том числе сегментными, зеркалами. Но по своим параметрам наш телескоп до сих пор считается одним из лучших в мире, поэтому он по сей день пользуется повышенным спросом у отечественных и зарубежных ученых. За прошедшие годы он проходил неоднократную модернизацию, совершенствовалась прежде всего система управления. Сегодня осуществлять наблюдения можно при помощи оптоволоконного соединения прямо из расположенного в долине городка астрономов.

Фото 11.

Советская оптическая промышленность тех времён не была рассчитана на решение таких задач, поэтому для создания 6-метрового зеркала был специально построен завод в подмосковном Лыткарино на базе небольшого цеха по изготовлению зеркальных отражателей.

Заготовка для такого зеркала весит 70 тонн, первые несколько были «запороты» из-за спешки, так как чтобы не треснуть должны были остывать очень долго. «Удачная» заготовка остывала 2 года и 19 дней. Затем при её шлифовке было выработано 15000 карат алмазного инструмента и «стёрто» почти 30 тонн стекла. Полностью готовое зеркало стало весить 42 тонны.

Доставка зеркала на Кавказ стоит отдельного упоминания.. Сначала к месту назначения был отправлен муляж такого же размера и веса, в маршрут были внесены некоторые коррективы - построены 2 новых речных порта, 4 новых моста и укреплено и расширено 6 уже существующих, проложено несколько сотен километров новых дорог с идеальным покрытием.

Механические детали телескопа были созданы на Ленинградском Оптико-Механическом заводе. Общая масса телескопа составила - 850 тонн.

Фото 12.

Но несмотря на все усилия, «переплюнуть» по качеству (то есть по разрешению) американский телескоп Хейла БТА-6 не удалось. Частично из-за дефектов главного зеркала (первый блин всё-таки комом), частично из-за худших климатических условий в месте его расположения.

Фото 13.

Установка в 1978 году нового, уже третьего по счёту зеркала, заметно улучшила ситуацию, но погодные условия остались прежними. К тому же, осложняет работу слишком большая чувствительность цельного зеркала к незначительным температурным колебаниям. «Не видит» - это конечно громко сказано, до 1993 года БТА-6 оставался крупнейшим в мире телескопом, а крупнейшим в Евразии он является и по сей день. С новым зеркалом удалось добиться разрешающей способности практически, как у «Хейла», а «проницающая сила», то есть способность видеть слабые объекты у БТА-6 даже больше (всё таки на целый метр больше диаметр).

Фото 14.

Фото 15.

Фото 16.

Фото 17.

Фото 18.

За 30-летний период эксплуатации телескопа его зеркало несколько раз перепокрывалось, что привело к существенному повреждению поверхностного слоя, его коррозии, и, вследствие чего было утрачено до 70% отражающей способности зеркала. И все же, БТА был и остается уникальным инструментов ученых-астрономов, как российских, так и зарубежных. Но для сохранения его работоспособности и повышения эффективности возникла необходимость в реконструкции и обновлении главного зеркала. В настоящее время технология формообразования и разгрузки зеркала, которой владеют специалисты ОАО ЛЗОС, позволяет троекратно улучшить его оптические характеристики, в том числе и по угловому разрешению.

Фото 19.


Сегодня технологический процесс формообразования поверхностей астрономических оптических деталей на Лыткаринском заводе оптического стекла выведен на новый уровень, достигаемое качество отклонений формы поверхностей от теоретической повысилось на порядок за счет автоматизации и модернизации производства и компьютерного управления. Существенно улучшилась и механическая база, и технология облегчения и разгрузки зеркал с использованием современного компьютерного оборудования. Станки для фрезерования, шлифования и полирования 6-метрового зеркала также модернизированы в соответствии с современными требованиями. Существенно улучшены и средства контроля оптики.

Главное зеркало доставлено на Лыткаринский завод оптического стекла. В настоящее время завершен этап фрезерования. С рабочей поверхности удален верхний слой толщиной около 8 мм. Зеркало транспортировано в термостабилизированный корпус и установлено на автоматизированный станок для шлифования и полирования рабочей поверхности. По словам технического директора – главного инженера предприятия С.П.Белоусова, это будет наиболее сложный и ответственный этап обработки зеркала, – необходимо получить форму поверхности с гораздо меньшими отклонениями от идеального параболоида, чем это было достигнуто в семидесятых годах. После этого зеркало телескопа с улучшенными на порядок разрешающей способностью и проницающей силой сможет прослужить российской и мировой науке еще не менее 30 лет.

Фото 20.

Среди специалистов, кто участвовал в изготовлении зеркала – механик Жихарев А.Г., оптик Каверин М.С., слесарь Панов В.Г., фрезеровщик Писаренко Н.И. – они работают и поныне, передают богатый опыт крупногабаритного оптического приборостроения молодежи. Совсем недавно ушли на заслуженный отдых оптик Бочманов Ю.К., фрезеровщик Егоров Е.В. (он выполнял повторную фрезеровку зеркала в прошлом и в этом году).

Подобную работу в России больше никто выполнить не сможет. В мире, кроме ЛЗОСа, есть всего лишь две фирмы, которые изготавливают крупногабаритные зеркала. Это Оптическая лаборатория обсерватории Стюарда (Аризона, США) и фирма SAGEM-REOSC (Франция) (диаметром 8 м) но и там башни для контроля зеркал короче, чем требуется, поскольку радиус зеркала БТА 48 метров.

БТА, или большой телескоп азимутальный – это тот самый телескоп с 6-метровым 40-тонным зеркалом, который долгое время был самым крупным в мире. Свою работу он начал в 1975 году, и благодаря ему было сделано немало открытий. Однако любое зеркало любого телескопа со временем требует обновления, случилось это и здесь.

Когда телескоп только строился, в мире вообще не существовало технологий создания цельного зеркала такого большого размера. Поэтому с первого раза сделать его не получилось. Первая заготовка треснула, когда остывала. Вторая попытка закончилась неудачно – на поверхности зеркала было слишком много крупных дефектов. Однако это зеркало все-таки было установлено и прослужило до 1978 года. И только с третьей попытки зеркало получилось хорошего качество, и его установили взамен дефектного в том же 1978 году. Однако со временем потребовалась его перешлифовка и нанесение нового отражающего покрытия — его отражающая способность снизилась до 70%.

Работа велась на Лыткаринском заводе оптического стекла, и заняла 10 лет. Только на снятие 8-миллиметрового верхнего слоя с 6-метрового зеркала ушло около года. Заметим, что точность поверхности главного зеркала телескопа составляет доли микрометра, и работа эта очень тонкая, тем более для такой огромной поверхности.

Все работы по подготовке зеркала завершились лишь 3 ноября 2017 года. Затем встала проблема его транспортировки к телескопу. Габариты контейнера составили 6.5 метров, а согласование маршрута заняло несколько месяцев (бюрократизм в действии). Масса тягача и зеркала составила в сумме 93 тонны, но за 8 дней зеркало было доставлено на обсерваторию.

Теперь зеркало будет храниться в герметичном контейнере до мая, после чего будет установлено на телескоп. За это время сотрудники подготовят сам телескоп, тем более, что масса обновленного зеркала теперь меньше благодаря прорезанным в нем камерам.

Однако и после установки главного зеркала наблюдения за небесными объектами не начнутся. Зеркало не имеет отражающего слоя, оно пока просто прозрачное. Все работы по алюминированию поверхности будут проведены уже после установки зеркала в телескоп. Это и упростит процесс, и позволит получить поверхность наилучшего качества. Если нанести отражающий слой сразу, то за время транспортировки и установки зеркала он мог получить немало царапин и других повреждений.

И еще – новое зеркало – это вовсе не то, которое верой и правдой прослужило столько лет. Это восстановленная первая заготовка. А то, которое стоит в телескопе сейчас, снимут и поместят в контейнер. Повторная полировка и алюминирование его – слишком дорогостоящий процесс, на который у обсерватории просто нет денег.