Психология        21.10.2020   

Деминерализованная вода – что это такое. Дистиллированная вода и дистилляторы. Воздействие на слизистую оболочку кишечника, метаболизм и гомеостаз минеральных веществ, и другие функции организма

ВСЕМИРНАЯ ОРГАНИЗАЦИЯ ЗДРАВООХРАНЕНИЯ

Нутриенты в питьевой воде

Вода, санитария, охрана здоровья и окружающей среды

Женева

2005

Информация с сайта: http://waterts.blogspot.com/search/label/Нутриенты%20в%20питьевой%20воде

ПРЕДИСЛОВИЕ

В ноябре 2003 года в Риме (Европейский Центр Окружающей среды и Здоровья) собралась группа экспертов в области питания и медицины для работы над вопросами, касающимися состава питьевой воды и ее возможного вклада в общее поступление питательных веществ. Изначальной целью данной встречи было внесение вклада в развитие Руководства по здоровому и экологически безопасному опреснению вод, введенного Восточным Средиземноморским Региональным Офисом ВОЗ и предназначенного для подготовки 4-го издания Руководства по качеству питьевой воды ВОЗ (РКПВ). Всего было приглашено 18 экспертов из Канады, Чили, Республики Чехия, Германии, Ирландии, Италии, Молдовы, Сингапура, Швеции, Объединенного Королевства и США. Дополнительно были представлены доклады экспертов, которые не смогли приехать лично. Задачей встречи было оценить возможные последствия для здоровья человека длительного употребления «кондиционированной» или «модифицированной», т.е. обработанной воды, с измененным минеральным составом, искусственно очищенной, или наоборот, обогащенной минералами.

В частности, встал вопрос о последствиях длительного употребления воды, прошедшей деминерализацию: о морской воде и солоноватой воде, подвергнутой обессоливанию, о пресной воде, прошедшей обработку в мембранной системе, а также о воссоздании их минерального состава.

На встрече обсуждались следующие основные вопросы:

Каков вклад питьевой воды в общее поступление питательных веществ в организм?

Каково среднесуточное потребление человеком питьевой воды? Как оно меняется в зависимости от климата, образа жизни, возраста и других факторов?

Какие из обнаруженных в воде веществ могут существенно повлиять на состояние здоровья и самочувствие?

При каких условиях питьевая вода может стать существенным источником некоторыхважных для человека веществ?

Какие выводы могут быть сделаны о связи кальция, магния и других элементов в воде со смертностью от сердечно-сосудистых заболеваний?

Для каких веществ в обработанной воде могут быть разработаны рекомендации по обогащению минерального состава с точки зрения полезности?

Какова роль фтора в улучшении здоровья зубов, а также в развитии флюорозов зубов и костей?

Как правило, питьевая вода перед подачей потребителю подвергается одному или нескольким видам обработки для достижения соответствующих показателей безопасности иулучшения эстетических свойств. Пресные воды обычно подвергают коагуляции, седиментации, фильтрации через гранулированные материалы, адсорбции, ионному обмену, мембранной фильтрации, медленной фильтрации через песок, дезинфекции, иногда умягчению. Получение питьевой воды из сильносоленых вод типа морских и солоноватых посредством обессоливания широко практикуется в регионах, испытывающих ее острую нехватку. Такая технология в условиях постоянно растущего потребления воды становится все более привлекательной с экономической точки зрения. Ежедневно в мире производится более 6 биллионов галлонов обессоленной воды. Реминерализация такой воды обязательна: она агрессивна по отношению к распределительным системам. Если реминерализация обессоленной воды - обязательное условие, возникает логичный вопрос: существуют ли методики обработки воды, способные восстанавливать содержание некоторых важных минеральных веществ?

Природные воды существенно различаются по своему составу вследствие геологического и географического происхождения, а также обработки, которой они подверглись. Например, дождевые и поверхностные воды, пополняющиеся в основном за счет осадков, имеют очень низкую соленость и минерализацию, в то время как подземные воды характеризуются очень высокой и даже чрезмерной минерализацией.Если реминерализация обработанной воды нужна по гигиеническим причинам, то возникает другой закономерный вопрос: являются ли природные воды, содержащие «правильные» количества важных минеральных веществ, более полезными для здоровья?

Во время встречи экспертами был сделан следующий вывод: только некоторые минеральные вещества в природной воде находятся в количествах, достаточных для того, чтобы учитывать их вклад в общее поступление. Магний и, возможно, кальций – два элемента, поступающих в организм человека из воды в существенных количествах (при условии потребления жесткой воды). Данное заключение сделано на основе 80 эпидемиологических исследований, посвященных связи между употреблением жесткой воды и снижением частоты сердечно-сосудистых заболеваний населения. Исследования охватывают 50-летний период. Несмотря на то, что исследования в основном имели экологический характер и были выполнены на разных уровнях, эксперты признали, что гипотеза о связи потребления жесткой воды с частотой сердечно-сосудистых заболеваний верна, а важнейшей полезной составляющей следует считать магний. Этот вывод был подтвержден как контрольными, так и клиническими исследованиями. В составе воды есть и другие элементы, оказывающее положительное влияние на здоровье, однако имеющихся данных было недостаточно для обсуждения вопроса.

На встрече также было решено, что ВОЗ должна дать более детальную оценку биологической правдоподобности гипотезы. Только после этого Руководство будет сформировано окончательно. Последующие симпозиум и встреча с обсуждением данной рекомендации планируются на 2006 г.

Что касается фтора, экспертами сделан вывод о том, что оптимальное потребление фтора с питьевой водой – важный фактор здоровья зубов. Было также отмечено, что потребление фтора в количестве больше оптимального может привести к флюорозу зубов, а еще большие концентрации – к флюорозу скелета. Дозировки фтора при обогащении деминерализованной воды фтором необходимо рассчитывать исходя из следующих факторов: концентрация фтора в исходной воде, объем водопотребления, факторы риска заболеваний зубов, методы гигиены полости рта, уровень развития гигиены и санитарии в обществе, а также наличие альтернативных средств гигиены полости рта и доступность фтора для населения.

«Вода должна быть источником необходимых для организма человека макро- имикроэлементов....»

Н.К.Кольцов, выдающийся российский химик-биолог

Понятие физиологической полноценности для питьевой воды Н.К.Кольцов предложил использовать еще в 1912 году, объединив этим термином набор анионов и катионов, необходимых организму человека и содержащихся в природной воде. Более поздние исследования подтвердили важность минерального состава питьевой воды и нашли свое отражение во многих научных трудах. В частности, в докладе Франтишека Козишека (Национальный Институт общественного здоровья, Республика Чехия) "Последствия для здоровья, возникающие при употреблении деминерализованной питьевой воды", представленном на встрече экспертов ВОЗ в 2003 году говорится:

Искусственно обработанная деминерализованная вода, которую изначально получали методом дистилляции, а затем методом обратного осмоса, должна использоваться для промышленных, технических и лабораторных целей.

Эпидемиологические исследования, проводившиеся в разных странах в течение последних 50 лет, показали, что существует связь между возросшим количеством сердечно-сосудистых заболеваний с последующим летальным исходом и потреблением мягкой воды. При сравнении мягкой воды с жесткой и богатой магнием, закономерность прослеживается очень четко.

Последние исследования показали, что потребление мягкой воды, например, бедной кальцием, может привести к повышенному риску переломов у детей (16), нейродегенеративным изменениям (17), преждевременным родам и сниженному весу новорожденных детей (18) и некоторым видам рака (19,20). Кроме возрастания риска внезапной смертности (21-23), с употреблением воды, бедной магнием, связаны случаи нарушения работы сердечной мышцы (24), поздний токсикоз беременных (т.н. преэклампсия) (25), и некоторые виды рака (26-29).

Даже в развитых странах продукты питания не могут компенсировать дефицит кальция и, особенно, магния, если питьевая вода бедна этими элементами.

Современные технологии приготовления продуктов питания не позволяют большинству людей получать достаточное количество минералов и микроэлементов. В случае острого дефицита какого-либо элемента, даже относительно малое количество его в воде может сыграть значительную защитную роль. Вещества в воде растворены и находятся в виде ионов, что позволяет им значительно легче адсорбироваться в организме человека, чем из продуктов питания, где они связаны в различные соединения.

Питьевая вода, полученная с помощью деминерализации, обогащается минеральными веществами, однако это не касается воды, обработанной в домашних условиях.

Возможно, ни один из способов искусственного обогащения воды минеральными веществами не является оптимальным, поскольку насыщения всеми важными минеральными веществами не происходит.

БЛАГОДАРНОСТЬ

ВОЗ выражает благодарность:

Хусейну Абусаиду, Координатору Восточного Средиземноморского Регионального Офиса ВОЗ - за идею и работу по созданию Руководства по обессоленной воде

Роджеру Аэртгиртсу, Европейскому Региональному Консультанту по воде и санитарии и Хелене Шкарубо, Римский Центр ВОЗ - за обработку материалов встречи

Джозефу Контруво, США и Джону Фаэуэллу, Великобритания – за организацию встречи

Профессору Чун Нам Онгу, Сингапур – за ведение встречи Гюнтеру Крауну, США – за вклад в издание документов и обзор комментариев

Отдельную благодарность ВОЗ выражает экспертам, без которых написание данной работы вряд ли было бы возможным: Ребекка Калдерон, Джералд Комс, Жан Экстренд, Флойд Фрост, Энн Гранджиан, Сьюзанн Харрис, Франтишек Колизек, Майкл Леннон, Сильвано Монарка, Мануэль Оливарес, Дэннис О"Муллан, Соуле Семалулу, Ион Шалару и Эрика Сиверс.

ВОЗ также представляет спонсоров, благодаря которым состоялась встреча. Среди них: Международный институт Наук о Жизни, Отдел Науки и Технологии Агентства по Защите Окружающей среды США (Вашингтон), Отдел Исследований и Развития (Исследовательский «Треугольный» Парк, Северная Каролина), Американский Объединенный Исследовательский Рабочий Фонд по Воде, Центр Питания Человека в Университете штата Небраска (Омаха), и Канадское Бюро по Качеству Воды и Здоровью (Оттава, Онтарио).

12. Последствия для здоровья, возникающие при употреблении деминерализованной питьевой воды

Франтишек Козишек

Национальный Институт общественного здоровья

Республика Чехия

I. Введение

Минеральный состав вод может широко варьироваться в зависимости от геологических условий данной местности. Ни подземные, ни поверхностные воды нельзя представить как чистое вещество, состав которого выражается формулой Н2О. Кроме того, природные воды содержат небольшое количество растворенных газов, минеральных и органических веществ натурального происхождения. Общие концентрации веществ, растворенных в воде высокого качества, могут достигать сотен мг/л. Благодаря непрерывному развитию микробиологии и химии с 19 века, множество возбудителей инфекций, передающихся с водой, может быть идентифицировано. Сведения о том, что вода может содержать нежелательные компоненты, являются отправной точкой для создания руководства и норм по качеству питьевой воды. Международные нормы, регламентирующиепредельно допустимые концентрации органических и неорганических веществ, а также микроорганизмов, существуют во многих странах мира. Эти нормы являются гарантией безопасности питьевой воды. Последствия, возможные при употреблении полностью деминерализованной воды, не рассматриваются, в связи с тем, что в природе такая вода фактически не встречается, кроме, возможно, дождевой воды и природного льда. Однако дождевая вода и лед не используются в системах водоснабжения развитых стран, в которых существуют определенные нормы качества питьевой воды. Как правило, пользование такой водой – это частный случай. Многие натуральные воды небогаты минералами, имеют невысокую жесткость (недостаток двухвалентных ионов), а жесткие воды часто умягчают искусственно.

Знания о том, как важны минеральные вещества и другие составляющие в питьевой воде, насчитывают тысячи лет и упоминаются уже в древнеиндийских Ведах. В книге Ригведа свойства хорошей питьевой воды описываются следующим образом: «Шиитам (прохладная), Сушихи (чистая), Сивам (должна быть биологически ценной, содержать минералы, а также следовые количества многих элементов), Истхам (прозрачная), Вималам лаху Шадгунам (показатель рН должен быть в пределах нормы)» (1).

Искусственно обработанная деминерализованная вода, которую изначально получали методом дистилляции, а затем методом обратного осмоса, должна использоваться для промышленных, технических и лабораторных целей. Технологии обработки воды начали широко применяться в 60-е годы прошлого века в прибрежных и внутренних районах. Это связано с нехваткой природных запасов воды и возрастающим потреблением воды, обусловленным демографическим ростом, более высокими стандартами качества жизни, развитием промышленности и массовым туризмом. Деминерализация воды нужна в том случае, когда доступные водные ресурсы представлены высокоминерализованной солоноватой или морской водой. Всегда актуальной была и проблема питьевой воды на океанских лайнерах и космических кораблях. Перечисленные методы обработки ранее применялись для обеспечения водой исключительно этих объектов из-за технической сложности и дороговизны.

В этой главе под деминерализованной водой понимается вода полностью или почти полностью освобожденная от растворенных минералов методами дистилляции, деионизации, мембранной фильтрации (обратный осмос или нанофильтрация), электродиализа и др. Состав растворенных веществ в такой воде может варьироваться, но их суммарное содержание должно быть не более 1 мг/л. Электропроводность – меньше 2 мС/м3 *и даже меньше (<0,1 мС/м3). Начало применения таких технологий – 1960-е годы, в то время деминерализация не была широко распространена. Тем не менее, уже в то время в некоторых странах изучались гигиенические аспекты использования такой воды. В основном это касается бывшего Советского Союза, где планировалась применять обессоливание для обеспечения питьевой водой городов Средней Азии. Изначально было понятно, что обработанная вода не годна для употребления без дополнительного обогащения минеральными веществами:

Деминерализованная вода очень агрессивна, ее необходимо нейтрализовать; в противном случае подача ее в распределительную систему, прохождение через трубы и накопительные баки невозможна. Агрессивная вода разрушает трубы и вымывает из них металлы и другие материалы;

Дистиллированная вода имеет «бедные» вкусовые характеристики;

Было доказано, что некоторые вещества, присутствующие в питьевой воде, важны для организма человека. Например, опыт искусственного обогащения воды фтором показал, что количество заболеваний полости рта снизилось, а эпидемиологические исследования, проведенные в 1960-е годы, показали, что жители регионов с жесткой питьевой водой меньше страдают сердечно-сосудистыми заболеваниями.

В итоге исследователи сосредоточили внимание на двух вопросах: 1) какие неблагоприятные последствия для здоровья человека могут возникнуть при употреблении деминерализованной воды и 2) каким должно быть минимальное, а также оптимальное содержание важных для человека элементов (например, минералов) в питьевой воде для того, чтобы качество воды удовлетворяло как технологическим, так и санитарным нормам. Традиционно принятая методика оценки качества воды, основанная на анализе рисков, возникающих при высоких концентрациях токсичных веществ, сейчас пересмотрена: в расчет принимаются и возможные неблагоприятные последствиядефицита в воде определенных компонентов.

На одной из рабочих встреч по подготовке руководства по качеству питьевой воды Всемирная Организация Здравоохранения (ВОЗ) рассмотрела вопрос о том, каким должен быть оптимальный минеральный состав деминерализованной питьевой воды. Эксперты сделали акцент на возможных неблагоприятных последствиях употребления воды, из которой удалены некоторые вещества, всегда присутствующие в натуральной питьевой воде (2). В конце 70-х годов ВОЗ стала спонсором исследований, которые могли бы дать основополагающую информацию для выпуска руководства по качеству обессоленной воды. Данное исследование проводилось группой ученых из Института общественного здоровья имени А.Н. Сысина и Академией Медицинских Наук СССР под руководством проф. Сидоренко и доктора мед. наук Рахманина. В 1980 году был опубликован итоговый отчет в виде внутреннего рабочего документа (3). Он содержал следующий вывод: «Деминерализованная (дистиллированная) вода имеет не только неудовлетворительные органолептические показатели, но и оказывает неблагоприятное влияние на организм человека и животных». После оценки гигиенических, органолептических свойств и другой информации, ученые дали рекомендации по составу деминерализованной воды:

1) мин. минерализация 100 мг/л; содержание гидрокарбонат-ионов 30 мг/л; кальций 30 мг/л; 2)оптимальный сухой остаток (250-500 мг/л для хлоридно-сульфатных вод и 250-500 мл для гидрокарбонатных вод); 3) максимальный уровень щелочности (6,5 мэкв/л), натрий (200 мг/л), бор (0,5 мг/л) и бромид-ион (0,01 мг/л). Некоторые из рекомендуемых величин рассмотрены в этой главе более подробно.

* - мС/м3 – миллисименс на метр кубический, единица электропроводности

За последние три десятилетия деминерализация получила широкое распространение как метод обеспечения питьевой водой. В мире существует свыше 11 тысяч предприятий, производящих деминерализованную воду; суммарный выпуск готовой продукции - 6 биллионов галлонов деминерализованной воды в день (Контруво). В некоторых регионах, таких как Средневосточная и Западная Азия, этим способом производится более половины всей питьевой воды. Как правило, деминерализованная вода подвергается дальнейшей обработке: в нее добавляют различные соли, например, карбонат кальция или известняк; перемешивают с малыми объемами сильноминерализованной воды для улучшения вкусовых характеристик и уменьшения агрессивности по отношению к распределительным сетям и сантехническому оборудованию. Тем не менее, деминерализованные воды могут сильно различаться по своему составу, например по минимальному содержанию минеральных солей.

Многие разведанные водные ресурсы не соответствуют по составу единому руководству по качеству питьевой воды.

Потенциальная возможность неблагоприятного воздействия деминерализованной воды на здоровье заинтересовала не только те страны, в которых ощущается нехватка питьевой воды, но и те, где популярны домашние системы обработки воды, а также употребляется бутилированная вода. Некоторые природные питьевые воды, в частности, ледниковые, небогаты минеральными веществами (менее 50 мг/л), а в ряде стран в питьевых целях используется дистиллированная питьевая вода. Некоторые марки бутилированной питьевой воды представляют собой деминерализованную воду, обогащенную впоследствии минеральными веществами для придания ей благоприятных вкусовых характеристик. Люди, употребляющие такую воду, могут недополучать минеральные вещества, присутствующие в более высокоминерализованной воде. Следовательно, при расчете уровня потребления минеральных веществ и рисков необходимо анализировать ситуацию не только на уровне общества, но и на уровне семьи, каждого человека в отдельности.

II. Риск для здоровья от употребления деминерализованной или слабоминерализованной воды

Сведения о воздействии деминерализованной воды на состояние организма основаны на экспериментальных данных и наблюдениях. Экспериментыпроводились на лабораторных животных и людях-добровольцах, наблюдения - за большими группами людей, потребляющих деминерализованную воду, а также отдельными людьми, заказывающими воду, обработанную методом обратного осмоса и детьми, для которых детское питание было приготовлено на дистиллированной воде. Поскольку информация, полученная за период проведения этих исследований, ограничена, мы также должны учитывать результаты эпидемиологических исследований, где сравнивался эффект воздействия слабоминерализованной (более мягкой) и сильноминерализованной воды на здоровье. Деминерализованная вода, которая не была впоследствии обогащена минеральными веществами – крайний случай. Она содержит растворенные вещества, такие как кальций и магний, вносящие основной вклад в жесткость, в очень малых количествах.

Возможные последствия потребления воды, бедной минеральными веществами, делятся на следующие категории:

Прямое воздействие на слизистую оболочку кишечника, метаболизм и гомеостаз минеральных веществ, и другие функции организма;

Малое поступление/отсутствие поступления кальция и магния;

Малое поступление других макро- и микроэлементов;

Потери кальция, магния и других макроэлементов в процессе приготовления пищи;

Возможный рост поступления в организм токсичных металлов.

1. Прямое воздействие на слизистую оболочку кишечника, метаболизм и гомеостаз минеральных веществ, и другие функции организма

Дистиллированная и слабоминерализованная вода (общая минерализация < 50 мг/л) может быть неприятной на вкус, однако с течением времени потребитель к этому привыкает. Такая вода плохо утоляет жажду (3). Конечно, эти факты еще не говорят о каком-либо влиянии на здоровье, однако их нужно учитывать, принимая решение о пригодности использования слабоминерализованной воды для нужд питьевого водоснабжения. Низкая способность утолять жажду и неприятный вкус могут повлиять на объемы употребления воды или заставить людей искать новые источники воды, зачастую не лучшего качества.

Виллиамс (4) показал в своем отчете, что дистиллированная вода может вызвать патологические изменения эпителиальных клеток в кишечнике крыс, возможно из-за осмотического шока. Тем не менее, Шуман (5), позднее проводивший 14-дневный опыт с крысами, не получил таких результатов. Гистологические исследования не выявили никаких признаков эрозии, язвы или воспаления пищевода, желудка и тонкой кишки. Наблюдались изменения в секреторной функции животных (повышенная секреция и кислотность желудочного сока) и изменения мышечного тонуса желудка; эти данные приведены в докладе ВОЗ (3), но имеющиеся данные не позволяют однозначно доказать прямое негативное влияние воды с малой минерализацией на слизистую оболочку желудочно-кишечного тракта.

На сегодняшний день доказано, что потребление воды, бедной минеральными веществами, оказывает негативное влияние на механизмы гомеостаза, обмен минеральных веществ и воды в организме: усиливается выделение жидкости (диурез). Это связано с вымыванием внутри- и внеклеточных ионов из биологических жидкостей, их отрицательным балансом. Кроме того, изменяется общее содержание воды в организме и функциональная активность некоторых гормонов, тесно связанных с регуляцией водного обмена. Эксперименты на животных (в основном, крысы), длившиеся около года, помогли установить, что употребление дистиллированной воды, или воды с общей минерализацией до 75 мг/л приводит к:

1) увеличению потребления воды, диуреза, объема внеклеточной жидкости, концентрации натрия и хлорид-иона в сыворотке и их повышенного выделения из организма; приводя в итоге к общему отрицательному балансу, 2) уменьшается число красных кровяных телец, гематокритный индекс; 3) группа ученых под руководством Рахманина, изучая возможное мутагенное и гонадотоксическое действие дистиллированной воды, выяснила, что таким действием дистиллированная вода не обладает.

Однако было отмечено снижение синтеза гормонов трийодтиранина и альдостерона, повышенная секреция кортизола, морфологические изменения в почках, включая выраженную атрофию клубочков и разбухание слоя клеток, выстилающих сосуды изнутри, препятствующее току крови. Недостаточное окостенение скелета было обнаружено у зародышей крыс, родители которых употребляли дистиллированную воду (1-годичный эксперимент). Очевидно, что недостаток минеральных веществ не восполнялся в организме крыс даже за счет питания, когда животные получали свой стандартный рацион с необходимой энергетической ценностью, питательными веществами и солевым составом.

Результаты эксперимента, проведенного учеными ВОЗ на людях-добровольцах, показали сходную картину (3), что позволило обрисовать основной механизм воздействия воды с минерализацией до 100 мг/л на обмен воды и минеральных веществ:

1) повышенные диурез (на 20 % по сравнению с нормой), уровень жидкости в организме, концентрация натрия в сыворотке; 2) пониженная концентрация калия в сыворотке; 3) повышенное выведение ионов натрия, калия, хлоридов, кальция и магния из организма.

Предположительно, вода с низкой минерализацией воздействует на осмотические рецепторы ЖКТ, вызывая усиленное выделение ионов натрия в кишечник и незначительное снижение осмотического давления в системе воротной вены с последующим активным выделением ионов натрия в кровь в качестве ответной реакции. Такие осмотические изменения в плазме крови приводят к перераспределению жидкости в организме. Увеличивается общий объем внеклеточной жидкости, происходит перемещение воды из эритроцитов и тканевой жидкости в плазму, а также распределение ее между внутриклеточной и тканевой жидкостями. Вследствие изменения объема плазмы в кровяном русле активируются рецепторы, чувствительные к объему и давлению. Они препятствуют выделению альдостерона и, как следствие, усиливается выделение натрия. Реакция рецепторов объема в сосудах может привести к снижению выделения антидиуретического гормона и повышенному диурезу. Немецкое Общество Питания пришло к подобным выводам и рекомендовало воздержаться от употребления дистиллированной воды (7). Сообщение было опубликовано в ответе немецкому изданию «Шокирующая Правда о Воде» (8), авторы которого рекомендовали употреблять дистиллированную воду вместо обычной питьевой воды. Общество в своем докладе (7) поясняет, что жидкости человеческого организма всегда содержат электролиты (калий и натрий), концентрация которых находится под контролем самого организма. Всасывание воды эпителием кишечника происходит при участии ионов натрия. Если человек выпивает дистиллированную воду, кишечник вынужден «добавлять» ионы натрия к этой воде, извлекая их из организма. Жидкость никогда не выделяется из организма в виде чистой воды, параллельно человек теряет и электролиты, вот почему необходимо пополнять их запас из пищи и воды.

Неправильное распределение жидкости в организме может повлиять даже на функции жизненно важных органов. Первые сигналы – утомляемость, слабость и головная боль; более серьезные – мышечные судороги и нарушение сердечного ритма.

Дополнительные сведения были собраны при проведении экспериментов с животными, клинических наблюдениях в некоторых странах. У животных, которых поили водой, обогащенной цинком и магнием, наблюдалась гораздо более высокая концентрация этих элементов в сыворотке крови, чем у тех, которые питались обогащенными кормами и пили слабоминерализованную воду. Интересен тот факт, что при обогащении в корма было добавлено существенно больше цинка и магния, чем в воду. Основываясь на результатах экспериментов и клинических наблюдениях пациентов с дефицитом минеральных веществ, больных, получавших внутривенное питание на дистиллированной воде, Роббинс и Слай (9) предположили, что потребление слабоминерализованной воды, было причиной усиленного вывода минералов из организма.

Постоянное употребление слабоминерализованной воды может вызвать описанные выше изменения, однако симптомы могут не проявляться, а могут проявиться и через много лет. Однако, серьезные повреждения, например, т.н. водная интоксикация или бред, могут быть следствием интенсивной физической работы и употребления некоторого количества дистиллированной воды (10). Так называемая водная интоксикация (гипонатриемический шок) может возникнуть не только как следствие потребления дистиллированной воды, но и питьевой воды вообще. Риск такой «интоксикации» возрастает с уменьшением минерализации воды. Серьезные проблемы со здоровьем возникали у альпинистов, употреблявших пищу, приготовленную на талом льду. Такая вода не содержит анионов и катионов, необходимых человеку. У детей, которые употребляют напитки, приготовленные на дистиллированной или слабоминерализованной воде, возникали такие заболевания, как отек мозга, конвульсии и ацидоз (11).

2. Малое поступление/отсутствие поступления кальция и магния

Кальций и магний очень важны для человека. Кальций – важная составляющая костей и зубов. Он является регулятором нервно-мышечной возбудимости, участвует в работе проводящей системы сердца, сокращении сердца и мышц, передаче информации внутри клетки. Кальций – элемент, ответственный за свертываемость крови. Магний является кофактором и активатором более чем 300 ферментативных реакций, включая гликолиз, синтез АТФ, транспорт минералов, таких как натрий, калий и кальций через мембраны, синтез белков и нуклеиновых кислот, нервно-мышечная возбудимость и мышечные сокращения.

Если оценить процентный вклад питьевой воды в общее потребление кальция и магния, станет понятно, что вода не является основным их источником. Тем не менее, значение этого источника минералов трудно переоценить. Даже в развитых странах продукты питания не могут компенсировать дефицит кальция и, особенно, магния, если питьевая вода бедна этими элементами.

Эпидемиологические исследования, проводившиеся в разных странах в течение последних 50 лет, показали, что существует связь между возросшим количеством сердечно-сосудистых заболеваний с последующим летальным исходом и потреблением мягкой воды. При сравнении мягкой воды с жесткой и богатой магнием, закономерность прослеживается очень четко. Обзор исследований сопровождается недавно опубликованными статьями (12-15), итоги подведены в других главах этой монографии (Кальдерон и Краун, Монарка). Последние исследования показали, что потребление мягкой воды, например, бедной кальцием, может привести к повышенному риску переломов у детей (16), нейродегенеративным изменениям (17), преждевременным родам и сниженному весу новорожденных детей (18) и некоторым видам рака (19,20). Кроме возрастания риска внезапной смертности (21-23), с употреблением воды, бедной магнием,связаны случаи нарушения работы сердечной мышцы (24), поздний токсикоз беременных (т.н. преэклампсия) (25), и некоторые виды рака (26-29).

Специфические сведения об изменениях в метаболизме кальция у людей,вынужденных употреблять обессоленную воду (к примеру, дистиллированную, профильтрованную через известняк) с низким содержанием кальция и минерализацией, были получены в советском городе

Шевченко (3, 30, 31). У местного населения наблюдались пониженные активность щелочной фосфатазы и концентрации кальция и фосфора в плазме и выраженная декальцификация костной ткани. Ярче всего изменения были выражены у женщин (особенно беременных) и зависели от длительности проживания в городе Шевченко. Важность достаточного содержания кальция в воде установлена в вышеописанном эксперименте с крысами, получавшими полноценное питание, насыщенное питательными веществами и солями и обессоленную воду, искусственно обогащенную минеральными веществами (400 мг/л) и кальцием (5 мг/л, 25 мг/л, 50 мг/л) (3, 32). У животных, которые пили воду, содержавшую 5 мг/л кальция, было отмечено снижение функций щитовидной железы и ряда других функций организма по сравнению с животными, которым доза кальция была удвоена.

Иногда последствия недостаточного поступления в организм некоторых веществ видны лишь спустя долгие годы, но сердечно-сосудистая система, испытывающая нехватку кальция и магния, реагирует гораздо быстрее. Несколько месяцев употребления воды, бедной кальцием и/или магнием – достаточный срок (33). Показательный пример – население Чехии и Словакии в 2000-2002 годы, когда в системе централизованного водоснабжения стали использовать метод обратного осмоса.

В течение нескольких недель или месяцев было отмечено много претензий, связанных с острой нехваткой магния (и возможно кальция) (34).

Жалобы населения касались сердечно-сосудистых заболеваний, усталости, слабости, мышечных судорог и фактически совпадали с симптомами, перечисленными в сообщении Немецкого Общества Питания (7).

3. Малое поступление других макро- и микроэлементов

Несмотря на то, что питьевая вода, за редким исключением, не является значительным источником важных элементов, вклад ее по некоторым причинам очень важен. Современные технологии приготовления продуктов питания не позволяют большинству людей получать достаточное количество минералов и микроэлементов. В случае острого дефицита какого-либо элемента, даже относительно малое количество его в воде может сыграть значительную защитную роль. Вещества в воде растворены и находятся в виде ионов, что позволяет им значительно легче адсорбироваться в организме человека, чем из продуктов питания, где они связаны в различные соединения.

Опыты на животных также показали важность присутствия в воде микроколичеств некоторых веществ. Например, Кондратюк (35) в отчете показал, что разница в получении микроэлементов приводила к шестикратному различию их концентраций в мышечной ткани животных. Эксперимент проводился в течение 6 месяцев; крысы были поделены на 4 группы и употребляли разную воду: а) водопроводная; б) слабоминерализованная; в) слабоминерализованная, обогащенная йодом, кобальтом, медью, марганцем, молибденом, цинком и фтором в обычных концентрациях; г) слабоминерализованная, обогащенная теми же элементами, но в 10-кратно больших количествах. Кроме того, было обнаружено, что необогащенная деминерализованная вода отрицательно влияет на процессы кроветворения. У животных, получавших необогащенную микроэлементами воду со слабой минерализацией, число красных кровяных клеток было на 19 % ниже, чем у особей, получавших обычную водопроводную воду. Разница в содержании гемоглобина была еще больше при сравнении с животными, получавшими обогащенную воду.

Последние исследования экологической ситуации в России показали, что население, потребляющее воду с малым содержанием минеральных веществ подвержено риску многих заболеваний. Это гипертензия (высокое артериальное давление) и изменения в коронарных сосудах, язва желудка и двенадцатиперстной кишки, хронический гастрит, зоб, осложнения у беременных, новорожденных и грудных детей, такие как желтуха, анемия, переломы и проблемы роста (36). Тем не менее, не до конца ясно, связаны ли все эти заболевания именно с нехваткой кальция, магния и других важных элементов или с иными факторами.

Лютай (37) провел многочисленные исследования в Усть-Илимской регионе России.

Объектом исследований стали 7658 взрослых людей, 562 ребенка и 1582 беременных женщин и их новорожденных детей; изучались заболеваемость и физическое развитие. Все эти люди делятся на 2 группы: они проживают в 2-х районах, где вода имеет разную минерализацию. В первом из выбранных районов вода характеризуется более низкой минерализацией 134 мг/л, содержание кальция и магния – 18,7 и 4,9 соответственно, гидрокарбонат иона – 86,4 мг/л. Во втором районе – более высокоминерализованная вода 385 мг/л, содержание кальция и магния – 29,5 и 8,3 соответственно, гидрокарбонат иона – 243,7 мг/л. В образцах воды из двух районов было также определено содержание сульфатов, хлоридов, натрия, калия, меди, цинка, марганца и молибдена. Культура питания, качество воздуха, социальные условия и время проживания в данном регионе у жителей двух районов были одинаковыми. Жители района с более низкой минерализацией воды чаще страдали от зоба, гипертензии, ишемической болезни сердца, язвы желудка и двенадцатиперстной кишки, хронического гастрита, холецистита и нефрита. Дети медленнее развивались и страдали некоторыми отклонениями в росте, беременные женщины – отеками и анемией, новорожденные чаще болели.

Более низкий уровень заболеваемости был отмечен там, где содержание кальция в воде составляло 30-90 мг/л, магния – 17-35 мг/л, а общая минерализация – около 400 мг/л (для воды содержащей гидрокарбонаты). Автор пришел к выводу, что такая вода близка к физиологической норме для человека.

4. Потери кальция, магния и других макроэлементов в процессе приготовления пищи

Стало известно, что в процессе приготовления пищи на мягкой воде из продуктов (овощи, мясо, злаки) теряются важные элементы. Потери кальция и магния могут достигать 60 %, других микроэлементов – даже больше (медь-66 %, марганец-70 %, кобальт-86 %). Напротив, во время приготовления пищи на жесткой воде, потери минералов заметно ниже, а содержание кальция в готовом блюде может даже повыситься (38-41).

Хотя большинство питательных веществ поступает с продуктами питания, приготовление пищи на слабоминерализованной воде может заметно снизить общее поступление некоторых элементов. Причем эта нехватка гораздо серьезнее, чем при использовании такой воды только в питьевых целях. Современная диета большинства людей не в состоянии удовлетворить потребностей организма во всех необходимых веществах и, следовательно, любой фактор, способствующий потере минеральных веществ в процессе кулинарной обработки, может сыграть негативную роль.

5. Возможный рост поступления в организм токсичных металлов

Возросший риск поступления токсичных металлов может быть следствием двух причин: 1) более интенсивное выделение металлов из материалов, контактирующих с водой, приводящее к повышенной концентрации металлов в питьевой воде; 2) низкие защитные (антитоксические) свойства воды, бедной кальцием и магнием.

Вода с малой минерализацией нестабильна и как следствие проявляет высокую агрессивность по отношению к материалам, с которыми вступает в контакт. Эта вода легче растворяет металлы и некоторые органические компоненты труб, накопительных танков и емкостей, шлангов и фитингов, не будучи при этом способной образовывать комплексные соединения с токсичными металлами, снижая этим их негативное влияние.

В 1993-1994 гг. в США было зарегистрировано 8 вспышек химических отравлений питьевой водой, среди них – 3 случая отравления грудных детей свинцом. Анализ крови этих детей показал

содержание свинца 15 мкг/100 мл, 37 мкг/100 мл и 42 мкг/100 мл при том, что 10 мкг/100 мл – уже небезопасный уровень. Во всех трех случаях свинец попал в воду из медных труб и спаянных свинцом швов накопительных танков. Во всех трех системах водоснабжения использовалась вода с малой минерализацией, что привело к более активному выделению токсичных материалов (42). Первые полученные пробы воды из водопроводных кранов показали содержание свинца 495 и 1050 мкг/л свинца; соответственно у детей, которые пили эту воду, в крови было обнаружено самое высокое содержание свинца. В семье ребенка, который получил меньшую дозу, концентрация свинца в водопроводной воде составляла 66 мкг/л (43).

Кальций и, в меньшей степени, магний в воде и продуктах питания являются защитными факторами, которые нивелируют воздействие токсичных элементов. Они могут предотвратить абсорбцию некоторых токсичных элементов (свинец, кадмий) из кишечника в кровь как путем прямой реакции связывания токсинов в нерастворимые комплексы, так и за счет конкуренции при всасывании (44-50). Невзирая на то, что этот эффект ограничен, его нужно всегда учитывать. Население, употребляющее воду, бедную минеральными веществами, всегда больше подвержено риску воздействия токсичных веществ, чем то, которое пьет воду средней жесткости и минерализации.

6. Возможное бактериальное загрязнение воды с малой минерализацией

В целом вода склонна к бактериальному загрязнению при отсутствии следовых количеств дезинфектанта как в самом источнике, так и вследствие повторного микробного роста в распределительной системе уже после обработки. Повторный рост может также начаться в деминерализованной воде.

Бактериальному росту в распределительной системе может способствовать изначально высокая температура воды, повышение температуры по причине жаркого климата, отсутствие дезинфектанта и, возможно, бóльшая доступность некоторых питательных веществ (агрессивная по своей природе вода легко разъедает материалы, из которых сделаны трубы).

Несмотря на то, что неповрежденная мембрана очистки воды должна в идеале удалять все бактерии, но она может и не быть абсолютно эффективной (из-за течей). Свидетельство – вспышка брюшного тифа в Саудовской Аравии в 1992 г. вызванная водой прошедшей обработку в системе обратного осмоса (51). В наше время фактически вся вода перед попаданием к потребителю проходит дезинфекцию. Повторный рост непатогенных микроорганизмов в воде обработанной с помощью различных домашних систем очистки описан в работах групп Гельдрейха (52), Пэймента (53, 54) и многих других. Чешский Национальный институт Общественного Здоровья в Праге (34) протестировал ряд изделий, предназначенных для контакта с питьевой водой и обнаружил, что емкости под давлением для обратного осмоса предрасположены к повторному росту бактерий: внутри танка находится резиновая груша, которая является благоприятной для бактерий средой.

III. Оптимальный минеральный состав деминерализованной питьевой воды

Коррозионные свойства и потенциальная опасность деминерализованной воды для здоровья, распространение и употребление воды с малой минерализацией привело к созданию рекомендаций по минимальным и оптимальным концентрациям минералов впитьевой воде. Дополнительно в некоторых странах разработаны обязательные нормы, включенные в соответствующую законодательную или техническую документацию по качеству питьевой воды. Органолептические свойства и способность воды утолять жажду были также учтены в рекомендациях. Например, исследования, в которых принимали участие добровольцы, показали, что оптимальной можно считать температуру водыот 15 до 35 °С. Вода с температурой ниже 15 °С или выше 35 °С употреблялась испытуемыми в меньших объемах. Вода с содержанием растворенных солей 25-50 мг/л была признана безвкусной (3).

1. ОтчетВОЗ 1980 года

Употребление питьевой воды с низкой минерализацией способствует вымыванию солей из организма. Изменения водно-солевого баланса в организме были отмечены не только при употреблении деминерализованной воды, но и воды с минерализацией от 50 до 75 мг/л. Поэтому группа исследователей ВОЗ, которая подготовила отчет за 1980 г. (3), рекомендует употреблять в питьевых целях воду с минерализацией не менее 100 мг/л. Также учеными сделан вывод: оптимальная минерализация составляет 200-400 мг/л для хлоридно-сульфатных вод и 250-500 мг/л для гидрокарбонатных вод (1980 г., ВОЗ). Рекомендации основаны на экспериментальных данных, участие в которых принимали крысы, собаки и люди-добровольцы. Были отобраны пробы: из водопроводной сети г. Москвы, деминерализованной воды с минерализацией около 10 мг/л и образцов, подготовленных в лаборатории (минерализация 50, 100, 250, 300, 500, 750, 1000 и 1500 мг/л) с использованием следующих ионов: Cl- (40 %), HCO3 - (32 %), SO4 2- (28 %), Na+ (50 %), Ca2+ (38 %), Mg2+ (12 %).

Были изучены многие показатели: динамика массы тела, основной метаболизм и метаболизм азота, ферментная активность, вводно-солевой обмен и его регуляторная функция, содержание минеральных веществ в тканях и жидкостях организма, гематокритное число и активность антидиуретического гормона. При оптимальном содержании минеральных солей негативные изменения не были отмечены ни у крыс, ни у собак, ни у людей, такая вода, имеет высокие органолептические показатели, хорошо удаляет жажду, ее коррозионная активность невысока.

Кроме выводов об оптимальной минерализации воды отчет (3) дополнен рекомендациями по содержанию кальция (не менее 30 мг/л). Этому есть объяснение: при меньших концентрациях кальция изменяется обмен кальция и фосфора в организме и наблюдается пониженное содержание минералов в костной ткани. Также, когда концентрация кальция в воде достигает 30 мг/л, ее коррозионная активность снижается и вода становится более стабильной (3). В отчете (3) также есть указания по концентрации гидрокарбонат-иона в 30 мг/л для достижения приемлемых органолептических характеристик, снижения коррозионной активности и достижения равновесия с ионом кальция.

Современные исследования дали дополнительную информацию о минимальном и оптимальном уровнях содержания минералов, которые должны присутствовать в деминерализованной воде. Например, влияние воды с различной жесткостью на состояние здоровья женщин в возрасте от 20 до 49 лет было предметом 2-х серий эпидемиологических исследований (460 и 511 женщин) в 4 городах Южной Сибири (55,56). Вода в городе А содержит самое малое количество кальция и магния (3,0 мг/л кальция и 2,4 мг/л магния). Вода в городе Б насыщена солями немного больше (18,0 мг/л кальция и 5,0 мг/л магния). Самая высокая насыщенность воды солями наблюдалась в городах В (22,0 мг/л кальция и 11,3 мг/л магния) и Г (45,0 мг/л кальция и 26,2 мг/л магния). У жительниц городов А и Б по сравнению с женщинами из В и Г чаще наблюдались изменения сердечно-сосудистой системы (по результатам ЭКГ), высокое артериальное давление, соматические дисфункции, головная боль и головокружение, остеопороз (рентгеновская абсорбциометрия).

Эти результаты подтверждают предположение о том, что содержание магния в питьевой воде должно составлять не менее 10 мг/л, кальция – 20 мг/л, а не 30 мг/л, как указано в отчете ВОЗ за 1980 г.

Основываясь на доступных данных, исследователи рекомендовали следующие концентрации кальция, магния и величину жесткости питьевой воды:

Для магния: минимум 10 мг/л (33,56), оптимальное содержание 20-30 мг/л (49, 57);

Для кальция: минимум 20 мг/л (56), оптимальное содержание около 50 (40-80) мг/л (57, 58);

Общая жесткость воды, суммарное содержание солей кальция и магния 2-4 ммоль/л (37, 50, 59, 60).

При соответствии состава питьевой воды этим рекомендациям негативных изменений в состоянии здоровья не наблюдалось или почти не наблюдалось. Максимальное защитное действие или позитивное влияние отмечено у питьевой воды с предположительно оптимальными концентрациями минеральных веществ. Наблюдения за состоянием сердечно-сосудистой системы позволили определить оптимальные уровни содержания магния в питьевой воде, изменения в метаболизме кальция и процессах окостенения стали основой для рекомендаций по содержанию кальция.

Верхний предел оптимального интервала жесткости был определен исходя из того, что при употреблении воды жесткостью свыше 5 ммоль/л возникает риск образования камней в желчном пузыре, почках, мочевом пузыре, а также артрозов и артропатии у населения.

В работе над определением оптимальных концентраций прогнозы строились на долговременном употреблении воды. При кратковременном употреблении воды для разработки терапевтических рекомендаций необходимо рассматривать более высокие концентрации.

IV. Руководства и директивы по кальцию, магнию и жесткости питьевой воды

Во втором издании Руководства по качеству питьевой воды (61) ВОЗ оценивает кальций и магний с точки зрения жесткости воды, но не дает отдельных рекомендаций по минимальному или максимальному содержанию кальция, магния, величине жесткости. Первая Европейская Директива (62) установила требования к минимальной жесткости для умягченной и обессоленной воды (не менее 60 мг/л кальция или эквивалентного катиона). Это требование стало обязательным в соответствии с национальным законодательством всех стран-членов ЕС, однако в декабре 2003 г. истек срок действия данной директивы, и она была заменена на новую (63). Новая Директива не включает требований к содержанию кальция, магния и величине жесткости.

С другой стороны, ничто не препятствует введению таких требований в национальное законодательство стран-членов. Только некоторые страны, вступившие в ЕС (например, Нидерланды) установили требования к содержанию кальция, магния и жесткости воды на уровне обязательных государственных норм.

Некоторые члены ЕС (Австрия, Германия) включили эти показатели в техническую документацию в качестве необязательных норм (методики снижения коррозионной активности воды).Все четыре европейские страны, вошедшие в ЕС в мае 2004 г., включили эти требования в соответствующие нормативные документы, однако строгость этих требований различна:

Чехия (2004): для умягченной воды: не менее 30 мг/л кальция и не менее 1- мг/л магния; требования Руководства: 40-80 мг/л кальция и 20-30 мг/л магния (жесткость как

Σ Ca + Mg = 2,0-3,5 ммоль/л);

Венгрия (2001): жесткость 50-350 мг/л (по CaO); минимальная требуемая концентрация для бутилированной воды, новых источников воды, умягченной и обессоленной воды 50 мг/л;

Польша (2000): жесткость 60-500 (по CaCO3);

Словакия (2002): требования по кальцию совпадают с указанными в Руководстве

> 30 мг/л, по магнию 10-30 мг/л.

Российский стандарт по среде обитания в пилотируемых космических кораблях – общие медицинские и технические требования (64) - определяет требования к соотношению минералов в питьевой воде, прошедшей повторную обработку. Среди прочих требований указывается минерализация в пределах от 100 до 1000 мг/л; минимальные уровни фтора, кальция и магния устанавливаются специальной комиссией каждого космофлота отдельно. Акцент сделан на проблеме обогащения повторно используемой воды концентратом минеральных веществ для придания ей физиологической ценности (65).

V.Выводы

Питьевая вода должна содержать хотя бы минимальные количества важнейших минералов (и некоторых других компонентов, например, карбонатов). К сожалению, в последние два десятилетия исследователи почти не уделяли внимания благоприятному влиянию воды и ее защитным свойствам, так как были поглощены проблемой токсичных веществ-загрязнителей. Тем не менее, были предприняты попытки определения минимального содержания важных минеральных веществ или минерализации питьевой воды, а некоторые страны включили в свое законодательство требования Руководства по отдельным компонентам.

Данный вопрос актуален не только для деминерализованной питьевой воды, которая не была обогащена комплексом минеральных веществ, но и для воды, в которой содержание минеральных веществ снижено вследствие домашней или централизованной обработки, а также для слабоминерализованной бутилированной воды.

Питьевая вода, полученная с помощью деминерализации, обогащается минеральными веществами, однако это не касается воды, обработанной в домашних условиях. Даже после стабилизации минерального состава вода может не оказывать благоприятного воздействия на здоровье. Обычно воду обогащают минеральными веществами, пропуская через известняк или другие карбонат-содержащие минералы. Вода при этом насыщается в основном кальцием, а дефицит магния и других микроэлементов, например, фтора и калия ничем не восполняется. Кроме того, количество вносимого кальция регулируется скорее техническими (снижение агрессивности воды), нежели гигиеническими соображениями. Возможно, ни один из способов искусственного обогащения воды минеральными веществами не является оптимальным, поскольку насыщения всеми важными минеральными веществами не происходит. Как правило, методики стабилизации минерального состава воды разрабатываются с целью снижения коррозионной активности деминерализованной воды.

Необогащенная деминерализованная вода или вода с низким содержанием минеральных веществ – в свете нехватки или отсутствия в ней важных минеральных веществ – далеко не идеальный продукт, следовательно, ее регулярное потребление не дает адекватного вклада в общее потребление некоторых значимых нутриентов. В этой главе обосновано данное утверждение. Подтверждение экспериментальных данных и открытий, полученных на людях-добровольцах при исследовании сильно деминерализованной воды можно найти в более ранних документах, не всегда соответствующих современным методологическим требованиям. Однако не стоит пренебрегать данными этих исследований: некоторые из них уникальны. Ранние исследования, как опыты на животных, так и клинические наблюдения влияния деминерализованной воды на здоровье, дали сопоставимые результаты. Это подтверждается современными исследованиями.

Собрано достаточно данных для того, чтобы подтвердить: дефицит кальция и магния в воде не проходит без последствий. Есть доказательства, что более высокое содержание магния в воде приводит к снижению риска сердечно-сосудистых заболеваний и внезапной смерти. Эта связь была описана во многих работах независимо друг от друга. При этом исследования были построены различным образом и касались различных регионов, населения и периодов времени. Последовательные результаты были получены при вскрытии, клинических наблюдениях и опытах с животными.

Биологическое правдоподобие защитного действия магния не вызывает сомнений, однако специфичность менее очевидна из-за разнообразной этиологии сердечно-сосудистых заболеваний. Кроме повышенного риска смерти от сердечно-сосудистых заболеваний, низкое содержание магния в воде связано с возможными заболеваниями двигательных нервов, осложнениями беременности (т.н. преэклампсия), внезапная смерть маленьких детей и некоторые виды рака. Современные исследователи предлагают версию, что употребление мягкой воды с низким содержанием кальция может приводить к переломам у детей, нейродегенеративным изменениям, преждевременным родам, низкой массе тела новорожденных и некоторым видам рака. Нельзя исключать роль водного кальция в развитии сердечно-сосудистых заболеваний.

Международные и национальные организации, ответственные за качество питьевой воды, должны рассматривать руководство по обработке деминерализованной воды, обязательно определяя минимальные значения важных показателей, включая кальций, магний и минерализацию. При необходимости полномочные организации обязаны поддерживать и продвигать целевые исследования в этой области для улучшения состояния здоровья населения. Если руководство по качеству разрабатывается по отдельным веществам, обязательным в деминерализованной воде, полномочные организации должны быть уверены, что документ применим для потребителей домашних систем очистки воды и бутилированной воды.

14. Фтор

Майкл А. Леннон

Школа клинической стоматологии

Университета Шэффилда, Объединенное Королевство

Хелен Уэлтон

Дэннис О"Муллан

Исследовательский центр проблем полости рта

Колледж Университета, Корк, Республика Ирландия

Жан Экстранд

Каролинский Институт

Стокгольм, Швеция

I. Введение

Фтор оказывает как позитивное так и негативное влияние на здоровье человека. С точки зрения здоровья полости рта, частота стоматологических заболеваний обратно пропорциональна концентрации фтора в питьевой воде; существует также связь между концентрацией фтора в воде и флюорозом (1). С точки зрения здоровья вообще в регионах, где концентрации фтора высоки и в воде и в пищевых продуктах, случаи скелетного флюороза и переломы костей – распространенное явление. Тем не менее, есть и другие источники фтора. Обессоливание и обработка воды с помощью мембран и анионообменных смол удаляют из воды практически весь фтор. Использование такой воды в питьевых целях, значение для здоровья общества сильно зависит от конкретных обстоятельств. Основное задача – усилить положительный эффект присутствия фтора в питьевой воде (защита от кариеса), при этом снизив до минимума нежелательные проблемы полости рта и здоровья в целом.

Этиология заболеваний полости рта включает взаимодействие бактерий и простых сахаров (например, сахароза) на поверхности зуба. В отсутствии таких сахаров в продуктах питания и напитках кариес перестанет быть значимой проблемой. Однако проблема будет существовать при высоком потреблении сахара до тех пор, пока не будет сделан верный ход в ее решении. Удаление фтора из питьевой воды может потенциально обострить существующую или развивающуюся проблему заболеваний полости рта.

II. Поступление фтора в организм человека

Фтор достаточно широко распространен в литосфере; часто встречается в виде плавикового шпата, фторапатита и криолита и занимает 13-е место по распространенности на земном шаре. Фтор присутствует в морской воде в концентрации 1,2-1,4 мг/л, в грунтовых водах – до 67 мг/л и в поверхностных водах – 0,1 мг/л (2). Также фтор обнаружен в продуктах питания, в частности, в рыбе и чае (3).

В то время, как большинство пищевых продуктов содержит следы фтора, вода и немолочные напитки являются основными источниками поглощаемого фтора, обеспечивая от 66 до 80 % поступления у взрослых жителей США в зависимости от содержания фтора в питьевой воде.

Дополнительными источниками фтора являются зубная паста (особенно это касается маленьких детей, которые заглатывают большую часть пасты), чай – в тех регионах, где чаепитие является устоявшейся традицией, уголь (при вдыхании) в некоторых регионах Китая, где дома топят углем с очень высоким содержанием фтора. Абсорбция заглатываемого фтора происходит в желудке и тонком кишечнике (3).

По большей части фтор, изначально содержащийся в воде или добавленный, содержится там в виде свободного фторид-иона (3). Жесткость воды 0-500 мг/л (в пересчете на СаСО3) влияет на ионную диссоциацию, что в свою очередь незначительно изменяет биодоступность фтора (4). Абсорбция обычной дозы фтора меняется от 100 % (на пустой желудок) до 60 % (завтрак, богатый кальцием).

III. Влияние фтора, поступающего с продуктами питания и напитками на состояние полости рта

Влияние фтора, естественно присутствующего в питьевой воде, на состояние полости рта рассматривалось в 30-40-е годы Трендли Дином и его коллегами из службы Общественного здоровья США. Был проведен ряд исследований на всей территории США; исследования показали, что при росте содержания естественного фтора в воде повышалась вероятность заболеваний флюорозом и понижалась – кариесом (5). Кроме того, на основе полученных Дином результатов можно было предположить, что при концентрации 1 мг/л частота, серьезность и косметический эффект флюороза не являются социально значимой проблемой, а сопротивляемость кариесу возрастает существенно.

При анализе этих фактов возникает закономерный вопрос: позволит ли искусственное фторирование питьевой воды повторить эффект? Первое исследование на эту тему проводилось в Гранд Рапидс под руководством USPHS в 1945 г. Результаты, полученные за 6 лет фторирования воды, были опубликованы в 1953 г. Дополнительные исследования были проведены в 1945-46 гг. в Иллинойсе (США) и Онтарио (Канада).

Также этой проблемой занимались ученые в Нидерландах (1953), Новой Зеландии (1954), Объединенном Королевстве (1955-1956) и Восточной Германии (1959). Результаты оказались сходными: было отмечено снижение числа случаев заболеваний кариесом (5). После опубликования результатов фторирование воды стало распространенной мерой укрепления здоровья на общественном уровне. Сведения о некоторых странах, вовлеченных в проект и численности их населения, употребляющего искусственно обогащенную фтором воду, приведены в таблице 1. Оптимальная концентрация фтора, в зависимости от климатических условий, составляет 0,5-1,0 мг/л. Приблизительно 355 млн. человек во всем мире пьют искусственно фторированную воду. Дополнительно около 50 млн. человек употребляют воду, содержащую натуральный фтор в концентрации около

1 мг/л. В таблице 2 перечислены страны, где население численностью 1 млн. человек или более употребляет воду, богатую естественным фтором (содержание 1 мг/л). В некоторых странах, в частности в отдельных районах Индии, Африки и Китая вода может содержать естественный фтор в довольно высоких концентрациях, выше 1,5 мг/л, нормы, установленной Руководством по качеству питьевой воды ВОЗ.

Многие страны, которые ввели искусственное обогащение воды фтором, продолжают следить за частотой возникновения кариеса и флюорозов, используя поперечную случайную выборку детей от 5 до 15 лет. Замечательным примером мониторинга может служить недавно опубликованный отчет о состоянии полости рта у детей в Ирландии (в основном фторированная вода) и севера Ирландии (нефторированная) (7). (см. таблицу 3).

IV. Употребляемый фтор и здоровье

Влияние поглощаемого фтора на здоровье рассматривалось Мултоном в 1942 г., что предшествовало исследованию, проведенному Гранд Рапидс; с тех пор проблемой постоянно занимается ряд организаций и отдельных ученых.Позднее IPCS (3) провела детальный обзор по фтору и его влиянию на здоровье. Исследования и обзоры были сконцентрированы на переломах костей, флюорозах скелета, онкологических заболеваниях и отклонениях у новорожденных, однако затрагивали и другие отклонения, возможно вызванные или усугубленные фторированием (1, 9, 10, 11, 12, 13, 14). Никаких подтверждений и неблагоприятных эффектов при употреблении воды, содержащей естественный или добавленный фтор в концентрациях

0,5 – 1 мг/л обнаружено не было, кроме случаев флюорозов полости рта, описанных выше. Кроме того, исследования в тех районах США, где содержание естественного фтора достигает 8 мг/л, не показали каких-либо неблагоприятных последствий употребления такой воды. При этом есть данные из Индии и Китая, где повышенный риск переломов костей является результатом долгосрочного употребления большого количества фтора (суммарное поступление 14 мг/день) и предположение, что риск переломов возникает уже при поступлении свыше 6 мг/день (3).

Институт медицины Национальной Академии наук США (15) дает рекомендуемую суммарную дозу употребления фтора (из всех источников) 0,05 мг/кг массы тела человека, аргументируя это тем, что прием такого количества фтора максимально снижает риск заболеваний кариесом у населения, при этом не провоцируя побочных отрицательных эффектов (например, флюороз). Агентство по защите окружающей среды США (EPA) максимально допустимой концентрацией (не вызывающей скелетных флюорозов) считает 4 мг/л, а величину 2 мг/л -не вызывающей флюорозов полости рта. Руководство по качеству питьевой воды ВОЗ рекомендует 1,5 мг/л (16). ВОЗ подчеркивает, что при разработке национальных стандартов нужно учитывать климатические условия, объем потребления, поступление фтора из других источников (вода, воздух). ВОЗ (16) отмечает, что в регионах с естественно высоким содержанием фтора трудно достигнуть соответствия потребляемого населением количества рекомендуемой величине

Фтор не является элементом, связанным в костных тканях необратимо. В период роста скелета относительно большая часть фтора, поступающего в организм, накапливается в костной ткани. «Баланс» фтора в организме, т.е. разница между поступающим и выделяющимся количеством может быть положительным или отрицательным. При поступлении фтора из материнского и коровьего молока содержание его в биологических жидкостях очень низкое (0,005 мг/л), а выделение с мочой превышает поступление в организм, при этом наблюдается отрицательный баланс. Фтор попадает в организм грудных детей в очень малых количествах, поэтому из костной ткани он выделяется во внеклеточные жидкости и покидает организм с мочой, что приводит к отрицательному балансу. Ситуация со взрослым населением противоположна – около 50 % фтора, поступающего в организм, депонируется в костной ткани, оставшееся количество покидает организм через систему выделения. Так, фтор может выделяться из костной ткани медленно, но на протяжении длительного периода. Такое соотношение возможно благодаря тому, что кость не является застывшей структурой, а формируется постоянно из питательных веществ, поступающих в организм (17,18).

V. Значение обессоливания

Обессоливание удаляет фактически весь фтор из морской воды, поэтому если воду на выходе не подвергнуть реминерализации, она будет содержать явно недостаточное количество фтора и других минералов. Многие натуральные питьевые воды изначально бедны минеральными веществами, в том числе фтором. Значение этого факта для здоровья общества определяется балансом пользы и риска.

При сравнении жителей разных континентов и внутри континента видна существенная разница заболеваемости. ВОЗ рекомендовала ввести индекс DMFT, который определяется у детей 12-летнего возраста (сюда включено количество пораженных, отсутствующих и залеченных зубов) в качестве наиболее подходящего индикатора; в базе данных ВОЗ по состоянию полости рта имеется расширенная информация (19). Этиология кариеса включает фактор взаимодействия бактерий и простых сахаров (например, сахарозы), поступающих с продуктами питания. При отсутствии сахара в напитках и продуктах питания эта проблема стала бы незначительной. При данных обстоятельствах задачей здравоохранения является предотвращение вредного воздействия избыточных концентраций фтора в воде.

Тем не менее, когда риск заболеваний кариесом высок, эффект удаления фтора из централизованной системы питьевого водоснабжения будет комплексным. В Скандинавских странах, где гигиена полости рта находится на высоком уровне и широко используются альтернативные источники фтора (например, зубная паста), практика безвозвратного удаления фтора из питьевой воды может не иметь особых последствий. С другой стороны, в некоторых развивающихся странах, где гигиена полости рта находится на достаточно низком уровне, фторирование воды в количестве 0,5-1 мг/л остается важной задачей общественного значения. Есть также страны, где наблюдается смешанная ситуация. В частности, на юге Англии заболеваемость находится под контролем и без искусственного фторирования воды; в других регионах, на северо-западе Англии, уровень заболеваемости выше и фторирование воды является важной мерой.

VI. Выводы

Значение использования деминерализованной воды, необогащенной впоследствии фтором, зависит от:

Концентрации фтора в питьевой воде конкретного источника;

Климатических условий и объема потребляемой воды;

Риска заболеваний кариесом (например, употребление сахара);

Уровня знаний о проблемах полости рта в обществе и доступности альтернативных источников фтора для населения конкретного региона.

Тем не менее, необходимо решить вопрос общего поступления из других источникови установления разумной нижней границы употребления фтора для предотвращения его потери костной тканью.

1. М . МакДонах, П. Уайтинг, М. Брэдли, А.Саттон, И. Честнут, К. Миссо, П. Уилсон, Е. Трэжер, Дж. Клейнен. Систематический обзор фторирования воды в централизованных системах водоснабжения. Йорк: Университет Йорка, Центр обзора и распространения информации, 2000.

2. Ф.А. Смит, Дж. Экстранд. Происхождение и химия фтора. Опубликовано в: О. Фейрсков, Дж. Экстранд, Б.А. Бурт и др. Фтор в стоматологии, 2-е издание. Копенгаген: Munksgaard, 1996: 20-21.

3. IPCS. Экологические критерии здоровья: фтор. Женева: ВОЗ, 2002.

4. П. Джексон, П. Харви, В. Янг. Химия и биодоступность фтора в питьевой воде. Марлоу, Букингемшир: WRc-NSF, 2002.

5. Дж.Дж. Мюррей, А.Дж. Рагг-Ган, Дж.Н. Дженкинс. Фтор в профилактике кариеса. 3-е издание, Оксфорд: Райт, 1991: 7-37.

6. Экспертный комитет ВОЗ по здоровью и использованию фтора. Фтор и здоровье полости рта. Серия технических отчетов ВОЗ № 846. Женева: ВОЗ, 1994.

7. Х. Вэлтон, Е. Кроули, Д. О"Муллан, М. Кронин, В. Келлехер. Здоровье полости рта у детей в Ирландии: предварительные результаты. Дублин: Ирландский Государственный Департамент здоровья детей, 2003.

8. Ф. Мултон. Фтор и здоровье полости рта. Вашингтон ДС: Американская Ассоциация научных достижений, 1942.

9. Л . Демос, Х Казда, Ф. Циккутини, М. Синклер, С. Фэйрили. Фторирование воды, остеопороз, переломы – последние открытия. Австрийский стоматологический журнал 2001; 46: 80-87.

10. под ред. Ф. Фоттрелла. Ирландский форум по фторированию. Дублин, 2002.

11. Е.Г. Кнокс. Фторирование воды и рак: обзор эпидемиологического подтверждения. Лондон: HMSO, 1985.

12. Медицинский исследовательский совет.Отчет рабочей группы: фторирование воды и здоровье. Лондон, MRC, 2002.

13. Комитет токсикологии Национального исследовательского советаНациональной Академии Наук. Вашингтон ДС: национальное академическое издательство, 1993.

14. Королевский медицинский колледж. Фтор и здоровье зубов. Лондон: Pitman Medical, 1976.

15. Институт медицины. Справочные данные поступления кальция, фосфора, магния, витамина D и фтора в организм. Вашингтон ДС: национальное академическое издательство, 1997.

16. ВОЗ, Руководство по качеству питьевой воды. Том 1, Рекомендации. 2-е издание. Женева: ВОЗ, 1993.

17. Дж. Экстранд. Метаболизм фтора. Опубликовано в: О. Фейрсков, Дж. Экстранд, Б.А. Бурт и др. Фтор в стоматологии, 2-е издание. Копенгаген, Munksgaard, 1996: 55-68.

18. Дж. Экстранд, Е.Е. Зиглер, С.Е. Нельсон, С.Дж. Фомон. Абсорбция и накопление фтора из питания и дополнительного прикорма организмом грудного ребенка. Достижения стоматологических исследований 1994; 8: 175-180.

19. База данных ВОЗ по здоровью полости рта. В Интернете: http://www.whocollab.od.mah.se/countriesalphab.html

Таблица 1. Страны, в которых применяется фторирование воды с населением 1 млн. и выше

Cсылки

1. П. Садгир, А. Ваманрао. Вода в ведической литературе. Протоколы 3-й международной конференции Водной Исторической Ассоциации (http:/www.iwha.net/a_abstract.htm), Александрия, 2003

2. Отчет рабочей группы (Брюссель, 20-23 марта 1978). Влияние очистки воды от веществ, присутствующих в природной воде, особенности деминерализованной и обессоленной воды. Евро Отчеты и Исследования 16. Копенгаген, ВОЗ, 1979.

3. Руководство по гигиеническим аспектам обессоливания воды. ETS/80.4. Женева, ВОЗ, 1980.

4. А.У. Вильямс. Исследования посредством электронного микроскопа адсорбции воды в тонком кишечнике. Gut 1964; 4: 1-7.

5. К. Шуман, Б. Эльсенханс, Ф. Рейчл и др. Вызывает ли употребление сильноочищенной воды повреждение ЖКТ у крыс? Vet Hum Toxicol 1993; 35: 28-31.

6. Ю.А. Рахманин, Р.И. Михайлова, А.В. Филлипова и др. Некоторые аспекты биологического влияния дистиллированной воды (на русском). Гигиена и санитария 1989; 3: 92-93.

7. Немецкое общество питания. Пить ли дистиллированную воду? (на немецком). Медицинская фармакология, 1993; 16: 146.

8. П.С. Брэгг. Р. Брэгг. Шокирующая правда о воде. 27-е издание, Санта-Барбара, Калифорния, Наука о Здоровье, 1993.

9. Д.Дж. Роббинс, М.Р. Слай. Цинк в сыворотке крови и деминерализованная вода. Американский журнал клинической нутрициологии1981; 34: 962-963.

10. Б. Баснаят, Дж. Слэггс, М. Сьюзерс Спрингер: последствия чрезмерного употребления воды. Уайлдернесс Эколоджикал Медсин 2000; 11: 69-70.

11. Приступы гипонатриемии у детей, употребляющих бутилированную питьевую воду

12. М .-П. Савант, Д. Пепин. Питьевая вода и сердечно-сосудистые заболевания. Пищевая и химическая токсикология 2002; 40: 1311-1325.

13. Ф. Донато, С. Монарка, С. Преми, У. Гелатти. Жесткость питьевой воды и хронические дегенеративные изменения. Часть III. Опухоли, мочекаменная болезнь, пороки внутриутробного развития, ухудшение функции памяти у пожилых людей и атоническая экзема (на итальянском). Ежегодный гигиенический журнал – профилактическая медицина в обществе 2003; 15: 57-70.

14. С. Монарка, И. Дзербини, Ц. Симонатти, У. Гелатти. Жесткость питьевой воды и хронические дегенеративные изменения. Часть II. Сердечно-сосудистые заболевания (на итальянском). Ежегодный гигиенический журнал – профилактическая медицина в обществе 2003; 15: 41-56.

15. Дж. Нарди, Ф. Донато, С. Монарка, У. Гелатти. Жесткость питьевой воды и хронические дегенеративные изменения. Часть I. Анализ эпидемиологических исследований (на итальянском).

Ежегодный гигиенический журнал – профилактическая медицина в обществе 2003; 15: 35-40.

16. С. Верд Валлеспир, Дж.Санчес Домингос, М. Квинталь Гонсалес и др. Связь между содержанием кальция в питьевой воде и переломами у детей (на испанском). Педиатрия в Испании 1992; 37: 461-465.

17. Х. Джескмин, Д. Комменгес, Л. Летенневр и др. Компоненты питьевой воды и ухудшение функции памяти у пожилых людей. Американский эпидемиологический журнал 1994; 139: 48-57.

18. Си.Уай. Янг, Х.Ф. Чиу, Ц. Чанг и др. Связь между очень низким весом новорожденных и содержанием кальция в питьевой воде. Исследования окружающей среды 2002; Секция А, 89:189-194.

19. Си. Уай. Янг, Х.Ф. Чиу, Дж.Ф. Чиу и др. Кальций и магний в питьевой воде и риск смертности от рака прямой кишки. Японский журнал исследования рака 1997; 88: 928-933.

20. Си.Уай. Янг, М.Ф. Ченг, С.С. Цай и др. Кальций, магний и нитраты в питьевой воде и смертность от рака желудка. Японский журнал исследования рака 1998; 89: 124-130.

21. М .Дж. Эйсенберг. Дефицит магния и внезапная смерть. Американский кардиологический журнал 1992; 124: 544-549.

22. Д. Бернарди, Ф.Л. Дини, А. Аззарелли и др. Уровень внезапной смертности по причине заболеваний сердца в регионах с частыми заболеваниями коронарных сосудов и малой жесткостью питьевой воды. Ангиология 1995; 46: 145-149.

23. П. Гарзон, М.Дж. Эйсенберг. Различие в минеральном составе бутилированных питьевых вод промышленного производства: шаг к здоровью или болезни. Американский медицинский журнал 1998; 105: 125-130.

24. О. Ивами, Т. Ватанабе, Ц.С. Мун и др. Нейромоторные заболевания в Кии Пенинсула в Японии: избыточное потребление марганца в сочетании с недостатком магния в питьевой воде как фактор риска. Общий научный журнал об окружающей среде 1994; 149: 121-135.

25. З. Меллес,С.А. Кисс. Влияние содержания магния в питьевой воде и магниевой терапиив случае обессоленной воды. Magnes Res 1992; 5: 277-279.

26. Си.Уай. Янг, Х.Ф. Чиу, М.Ф. Ченг и др. Смертность от рака желудка и уровни жесткости питьевой воды в Тайване. Исследование окружающей среды 1999; 81: 302-308.

27. Си.Уай. Янг, Х.Ф. Чиу, М.Ф. Ченг и др. Смертность от рака поджелудочной железы и уровни жесткости питьевой воды в Тайване. Журнал токсикология, здоровье, окружающая среда 1999; 56: 361-369.

28. Си.Уай. Янг, С.С. Цай, Т.Си. Лай и др. Смертность от рака прямой кишки и уровни жесткости питьевой воды в Тайване. Исследование окружающей среды 1999; 80: 311-316.

29. Си.Уай. Янг, Х.Ф. Чиу, М.Ф. Ченг и др.Кальций и магний в питьевой воде и риск смертности от рака груди. Журнал токсикология, здоровье, окружающая среда 2000; 60: 231-241.

30. Ю.Н. Прибытков. Статус фосфорно-кальциевого обмена (оборота) у жителей города Шевченко, использующих обессоленную питьевую воду (на русском). Гигиена и санитария 1972; 1:103-105.

31. Ю.А. Рахманин, Т.Д. Личникова, Р.И. Михайлова. Гигиена воды и общественная защита водных ресурсов (на русском). Москва: Академия медицинских наук, СССР, 1973: 44-51.

32. Ю.А. Рахманин, Т.И. Бонашевская, А.П. Лестровой. Гигиенические аспекты охраны окружающей среды (на русском). Москва: Академия медицинских наук, СССР, 1976 (fasc 3),68-71.

33. Е. Рубенович, И. Молин, Дж. Аксельссон, Р. Риландер. Магний в питьевой воде: связь с инфарктом миокарда, заболеваемостью и смертностью. Эпидемиология 2000; 11: 416-421.

34. Национальный институт общественного здоровья. Внутренние данные. Прага: 2003.

35. В.А. Кондратюк. Микроэлементы: значимость для здоровья в питьевой воде малой минерализации. Гигиена и санитария 1989; 2: 81-82.

36. И.В. Мудрый. Влияние минерального состава питьевой воды на здоровье населения (обзор). (На русском). Гигиена и санитария 1999; 1: 15-18.

37. Г .Ф. Лютай. Влияние минерального состава питьевой воды на здоровье населения. (На русском). Гигиена и санитария 1992; 1: 13-15.

38. Ультрамикроэлементы в воде: вклад в здоровье. Хроники ВОЗ 1978;32: 382-385.

39. Б.С.А. Хэйрин, В.Ван Дельфт. Изменения в минеральном составе продуктов питания как результат приготовления на жесткой и мягкой воде. Arch Environmental Health 1981; 36: 33-35.

40. Си.К. Ох, П.В. Люкер, Н. Ветсельсбергер и др. Определение магния, кальция, натрия и калия в различных продуктах питания с анализом потери электролитов после разных видов кулинарной обработки. Mag Bull 1986; 8:297-302.

41. Дж. Дурлах (1988) Важное значение магния в воде. Магний в клинической практике, Дж. Дурлах. Лондон: изд. Джон Либби и компания, 1988: 221-222.

42. М .Х. Крамер, Б.Л. Нервальдт, Дж.Ф. Краун и др. Надзор за вспышками инфекционных заболеваний, передающихся с водой. США, 1993-1994. MMWR 1996; 45 (No SS-1): 1-33.

43. Эпидемиологические заметки и доклады о загрязнении свинцом питьевой воды, хранящейся в накопительных емкостях. Аризона, Калифорния, 1993. MMWR 1994; 43 (41): 751; 757-758.

44.Д. Дж. Томпсон. Ультрамикроэлементы в питании животных. 3-е издание, Иллинойс: Международное Общество по Минеральным и Химическим Веществам, 1970.

45. О.А. Левандер. Факторы питания по отношению к токсичным загрязнителям – тяжелым металлам. Fed Proc 1977; 36: 1783-1687.

46. Ф.В. Оехм, изд. Токсичность тяжелых металлов в окружающей среде. Часть 1. Нью-Йорк: М. Деккер, 1979.

47. Х.Си. Хоппс, Дж.Л. Федер. Химические свойства воды, благотворно влияющей на здоровье. Общий научный журнал об окружающей среде 1986; 54: 207-216.

48. В.Г. Надеенко, В.Г. Ленченко, Г.Н. Красовский. Эффект комбинированного воздействия металлов при их попадании в организм с питьевой водой (на русском). Гигиена и санитария 1987; 12: 9-12.

49. Дж. Дурлах, М. Бара, А. Гуэт-Бара. Концентрация магния в питьевой воде и его значение в оценке риска сердечно-сосудистых заболеваний. У. Итокава, Дж. Дурлах. Болезни и здоровье: роль магния. Лондон: Дж. Либби и компания, 1989: 173-182.

50. С.И. Плитман, Ю.В. Новиков. Н.В. Тулакина и др. К вопросу коррекции стандартов по деминерализованной воде с учетом жесткости питьевой воды (на русском). Гигиена и санитария 1989; 7: 7-10.

51. С.Н. Аль-Кварави, Х.Е. Эль Бушра, Р.Е. Фонтэйн. Передача возбудителя брюшного тифа через систему обратного осмоса воды. Эпидемиология 1995; 114: 41-50.

52. Е.Е. Гельдрейх, Р.Х. Тейлор, Дж. С. Блэннон и др. Рост бактерий в устройствах обработки воды, предназначенных к использованию в месте подключения. Рабочий журнал Водной Ассоциации Америки 1985; 77: 72-80.

53. П. Пэймент. Рост бактерий в обратноосмотических устройствах фильтрования воды.

54. П. Пэймент, Е. Франко, Л. Ричардсон и др. Связь между состоянием ЖКТ и употреблением питьевой воды, обработанной домашними системами обратного осмоса, работающими в месте подключения. Прикладная микробиология окружающей среды 1991; 57: 945-948.

55. А.И. Левин, Ж.В. Новиков, С.И. Плитман и др. Влияние воды с различной степенью жесткости на сердечно-сосудистую систему (на русском). Гигиена и санитария 1981; 10: 16-19.

56. Ж.В. Новиков, С.И. Плитман, А.И. Левин и др. Гигиенические нормы минимального содержания магния в питьевой воде (на русском). Гигиена и санитария 1983; 9: 7-11.

57. Ф. Козичек. Биогенная ценность питьевой воды (на чешском). Тезисы диссертации на степень кандидата наук. Прага: Национальный Институт Общественного Здоровья, 1992.

58. Ю.А. Рахманин, А.В. Филлипова, Р.И. Михайлова. Гигиеническая оценка известняковых материалов, применяемых для коррекции минерального состава воды с низкой минерализацией (на русском). Гигиена и санитария 1990; 8: 4-8.

59. Л .С. Музалевская, А.Г. Лобковский, Н.И. Кукарина. Связь …и мочекаменной болезни, остеоартроза и солевой артропатии с жесткостью питьевой воды. (на русском). Гигиена и санитария 1993; 12: 17-20.

60. И.М. Голубев, В.П. Зимин. В соответствии со стандартом общей жесткости в питьевой воде (на русском). Гигиена и санитария 1994; 3: 22-23.

61. Руководство по качеству питьевой воды. 2-е издание, 2-й том, Критерии Безопасности для здоровья и другая сопутствующая информация. Женева: ВОЗ, 1996: 237-240.

62. Европейская Директива 80/778/EEC от 15 июля 1980 г. по качеству питьевой воды,предназначенной для употребления человеком. Из Журнала Европейского Сообщества 1980 г.; L229: 11-29.

63. Европейская Директива 98/83/EC от 3 ноября 1998 по качеству питьевой воды,предназначенной для употребления человеком. Из Журнала Европейского Сообщества 1998; L330; 32-54.

64. ГОСТ Р 50804-95. Среда обитания в пилотируемых космических кораблях – общие медицинские и технические требования (на русском). Москва: Госстандарт России, 1995.

65. Е.Ф. Скляр, М.С. Амигаров, С.В. Березкин, М.Г. Курочкин,

В.М. Скуратов. Технология минерализации повторно используемой воды. Авиакосмическая Экология и Медицина 2001; 35 (5): 55-59.


Предназначена прежде всего для нормальной и экономичной работы систем и установок, использующих особо чистую воду. Деминерализованная вода -это вода из которой удалены практически все соли. Обессоленная вода широко используется в промышленности, медицине, при эксплуатации различных приборов, устройств и оборудования, для хозяйственно-бытовых нужд и других целей.

Цены на воду приведены с учётом стоимости ее доставки в Екатеринбурге.
При первом заказе воды дополнительно выкупается многооборотная тара.

В ряде случаев присутствующие в воде соли даже в небольших количествах могут создавать определённые проблемы при использовании воды в производстве или быту. Целью получения деминерализованной, т.е.обессоленной воды является максимально возможное при разумных затратах извлечение из исходной воды, содержащихся в ней минеральных веществ.

Широкое распространение получили способы уменьшения содержания в воде солей жёсткости с помощью ионообменных установок и снижения общего солесодержания методом дистилляции. Умягчённая вода в первом случае и дистиллированная - во втором широко применяются в частности в теплоэнергетике и медицине. Первый способ относительно дёшев и производителен,но убирая соли кальция и магния он оставляет остальные и даже увеличивает их концентрацию. Дистиллированная вода очень чистая, практически обессоленная,но дорогая.Высокая трудоёмкость и себестоимость ограничивают её широкое использование.

Деминерализованная вода может быть получена также путем многостадийной глубокой очистки. Это достигается путем использования на заключительных её этапах наиболее эффективных мембранных установок обратного осмоса. Суммарное содержание минеральных веществ при этом снижается по сравнению с исходным в сотни раз. В этой связи очистка воды методом обратного осмоса может оказаться наиболее рентабельным способом её деминерализации, лишённым к тому же недостатков как ионнообменных, так и дистилляционных технологий.

Деминерализованная посредством обратного осмоса (обратноосмотическая) вода «Кристальная-деминерализованная» производится компанией ООО «Питьевая вода» в соответствии с утверждёнными техническими условиями (ТУ 0132-003-44640835-10) путём глубокой доочистки на промышленных обратноосмотических мембранных установках предварительно подготовленной воды из подземного источника (скв. 1р Института геофизики УрО РАН). Подготовка воды включает её предварительную механическую очистку (фильтрацию) и ультрафиолетовую бактерицидную обработку (обеззараживание).

Вода «Кристальная-деминерализованная» по физико-химическим показателям должна соответствовать приведенным в таблице требованиям, установленным ТУ 0132-003-44640835-10

Наименование показателя

Величина допустимого уровня

НД на методы исследования

1. Массовая концентрация остатка после выпаривания, мг/дм3 , не более

ГОСТ 6709-72

2. Массовая концентрация нитратов (NО3) , мг/дм3 , не более

ГОСТ 6709-72

3. Массовая концентрация сульфатов (SO4), мг/дм3, не более

ГОСТ 6709-72

4. Массовая концентрация хлоридов (Сl), мг/дм3, не более

ГОСТ 6709-72

5. Массовая концентрация алюминия (Аl), мг/дм3, не более

ГОСТ 6709-72

6. Массовая концентрация железа (Fe), мг/дм3, не более

ГОСТ 6709-72

7. Массовая концентрация кальция (Сa), мг/дм3, не более

ГОСТ 6709-72<

8. Массовая концентрация меди (Сu), мг/дм3, не более

ГОСТ 6709-72

9. Массовая концентрация свинца (Рb), мг/дм3, не более

ГОСТ 6709-72

10. Массовая концентрация цинка (Zn), мг/дм3, не более

ГОСТ 6709-72

11. Массовая концентрация веществ, восстанавливающих КМnО4, мг/дм3, не более

ГОСТ 6709-72

12. рН воды

ГОСТ 6709-72

13. Удельная электрическая проводимость при 20 °С, См/м, не более

ГОСТ 6709-72

14. Гидрокарбонаты, мг/дм3, не более

РД 52.24.493-2006

15. Щёлочность, мг-экв/дм3

РД 52.24.493-2006

16. Жёсткость общая, град.Ж, не более

ГОСТ Р 52407-2005

17. Натрий, мг/дм3, не более

ГОСТ Р 51309-99

18.Магний, мг/дм3, не более

ГОСТ Р 51309-99

Вследствие крайне низкого солесодержания вода «Кристальная-деминерализованная» не пригодна для употребления в питьевых целях. Она предназначена прежде всего для нормальной и экономичной работы систем и установок, связанных с нагревом и испарением воды и использующих особо чистую воду.

Наибольшее применение деминерализованная вода находит в различных технических, медицинских и других установках, а также в хозяйственно-бытовых целях. Деминерализованная (обессоленная) вода рекомендуется для офисных и домашних увлажнителей воздуха, парогенераторов и утюгов, пароконвекторов, пароварок, кофемашин и прочих установок и устройств. Она используется для разбавления теплоносителей в системах отопления, при приготовлении незамерзающих, охлаждающих и других жидкостей,для заливки в аккумуляторы и пр.

Вследствие высокой растворяющей способности эта вода применяется при чистовой мойке стекол и стеклопакетов, зеркал, ювелирных и иных изделий, подготовки металлических и других поверхностей при порошковом окрашивании. Деминерализованная вода используется в парфюмерии и медицине при приготовлении различных гелей и растворов, во многих установках для смазывания и охлаждения трущихся деталей и частей (в частности, стоматологических),при паровой стерилизации инструментов в автоклавах, в приборах ультразвуковой терапии (например, ингаляторах.

В ряде производств деминерализованная вода используется для охлаждения и отмывки изделий (производства литьевых изделий - дроби, гальванические производства, цеха нанесения покрытий),для заполнения охлаждающих и промывных контуров обессоленной водой и поддержания заданного качества циркулируемой воды с помощью подпитки (т.е.добавления) новых порций деминерализованной воды.

Деминерализованная вода применяется при восстановлении струйных картриджей, когда возникают неприятные случаи сгорания контактных групп и печатающего элемента. Одной их главных причин при этом является использования водопроводной или недостаточно очищенной воды для промывки внутренностей струйного картриджа и печатающей головки.

Вода с солями, является хорошим проводником, что не очень хорошо для контактных групп струйного картриджа. С другой стороны,как отмечают специалисты, примеси металлов содержащиеся в обычной воде вступают в реакцию с танталовыми спиралями печатающей головки, тем самым возрастает вероятность выхода из строя самого печатающего элемента в целом. При изготовлении стеклопакетов, если стёкла перед упаковкой отмывать обычной водой, на стекле после высыхания воды остаются разводы соли,которые после упаковки в пакет никак не убрать. Поэтому необходимо отмывать стекло с помощью горячей деминерализованной воды. Обессоленная вода не оставляет соли после высыхания на стекле. Соответственно, в результате в пакете стеклопакет будет прозрачным и без солевых потёков.

Конкретный минерально- солевой состав любой воды (натуральной, в т.ч. артезианской и родниковой, очищенной, водопроводной, кондиционированной различными искусственными добавками,например, йодом и фтором и т.д.) в известной степени определяет вкус и послевкусие приготовленных на этих видах воды пищи и напитков. В то же время содержание солей и других примесей, определяющих вкус и другие потребительские свойства природной и водопроводной воды, непрерывно изменяется в пространстве и времени. Это обстоятельство затрудняет управление качеством и сравнительную оценку производимой из этой воды пищи и напитков.Необходимость поддержания стабильного состава и вкуса многих напитков (и не только дорогого алкоголя или дешёвого пива!) вынуждает их производителей максимально снижать минерализацию исходной питьевой воды.

Именно поэтому обессоленная деминерализованная вода, обладающая к тому же высокой экстрагирующей способностью, может использоваться в кулинарии при приготовлении высококачественных и диетических блюд, для заваривания элитных сортов чая и кофе, приготовления настоев и отваров целебных трав с целью подчёркивания и сохранения их индивидуального природного аромата и полезных свойств.

При кипячении жесткой воды на ее поверхности образуется пленка, а сама вода приобретает характерный привкус. При заваривании чая или кофе в такой воде может выпадать бурый осадок. К тому же диетологами установлено, что в жесткой воде хуже разваривается мясо. Связано это с тем, что соли жесткости вступают в реакцию с животными белками, образуя нерастворимые соединения. Это приводит к снижению усвояемости белков. Замечено, что пища, приготовленная на деминерализованной воде выглядит аппетитнее, не теряет своей привлекательной формы, отличается более насыщенным и богатым вкусом. При приготовлении напитков и блюд из концентратов требуется меньшее (до 20%) количество сухого концентрата для получения готового продукта.

Деминерализованная вода, обладая повышенной проницаемостью, отлично удаляет грязевые, жировые пятна на тканях, посуде, ваннах, раковинах, позволяет экономить значительный объем моющих, чистящих средств (до 90%), время стирки и уборки квартиры снижается (до 15%), срок жизни белья увеличивается (на 15%).

Отложение накипи является причиной до 90% аварий водонагревателей. Накипь откладываясь на стенках водонагревательных устройств (бойлеров, колонок и т.п.), а также на стенках труб линии горячего водоснабжения, нарушает процесс теплообмена. Соответственно нагревательные элементы перегреваются, идет перерасход электроэнергии и газа.Исследования показали, что при использовании деминерализованной воды экономия на электрических водонагревателях или газовом оборудовании составляет 25-29%.

Вода, содержащая железо, при непродолжительном контакте с кислородом приобретает желтовато-бурую окраску, а при содержании железа выше 0,3 мг/л вызывает появление ржавых потеков на сантехнике и пятен на белье при стирке. При использовании деминерализованной воды сантехника остаётся чистой. Деминерализованная вода не зашлаковывает водопроводные коммуникации, противостоит коррозии и, растворяя солевой налет, вымывает его, продлевая жизнь сантехнике почти вдвое.

Условия хранения:

Хранить в затемнённом месте при температуре от +5 о С до +20 о С и относительной влажности воздуха не более 75%.

Срок годности : 18 месяцев с даты розлива.

Изготовитель : ООО «Питьевая вода», Екатеринбург.

Природная вода всегда содержит различные примеси, от характера и концентрации которых зависит ее пригодность для тех или иных целей.

Питьевая вода, подаваемая централизованными хозяйственно-питьевыми системами водоснабжения и водопроводами, по ГОСТ 2874-73, может иметь общую жесткость до 10,0 мг-экв/л, а сухой остаток до 1500 мг/л.

Естественно, что подобная вода непригодна для приготовления титрованных растворов, для выполнения различных исследований в водной среде, для многих препаративных работ, связанных с применением водных растворов, для ополаскивания лабораторной посуды после мытья и т. п.

Дистиллированная вода

Метод деминерализации воды дистилляцией (перегонкой) основан на разности давлений паров воды и растворенных в ней солей. При не очень высокой температуре можно принять, что соли практически нелетучи и деминерализованная вода может быть получена испарением воды и последующей конденсацией ее паров. Этот конденсат принято называть дистиллированной водой.

Вода, очищенная методом дистилляции в перегонных аппаратах, используется в химических лабораториях в количествах больших, чем другие вещества.

По ГОСТ 6709-72, вода дистиллированная - прозрачная, бесцветная жидкость, не имеющая запаха, с pH = 5,44-6,6 и содержанием сухого остатка не более 5 мг/л.

По Государственной фармакопее, сухой остаток в дистиллированной воде не должен превышать 1,0 мг/л, а pH = 5,0 4-6,8. Вообще требования к чистоте дистиллированной воды по Государственной фармакопее выше, чем по ГОСТ 6709-72. Так, фармакопея допускает содержание растворенного аммиака не более 0,00002%, ГОСТ не более 0,00005%.

Дистиллированная вода не должна содержать восстанавливающих веществ (органические вещества и восстановители неорганической природы).

Наиболее четкий показатель чистоты воды - ее электропроводимость. По литературным данным, удельная электрическая проводимость идеально чистой воды при 18°С равна 4,4*10 в минус 10 См*м-1,

При небольшой потребности в дистиллированной воде перегонку воды молено осуществить при атмосферном давлении в обычных установках из стекла.

Однократно перегнанная вода обычно загрязнена СO2, NH3 и органическими веществами. Если требуется вода с очень низкой проводимостью, то необходимо полностью удалить СO2. Для этого через воду при 80-90 °С в течение 20-30 ч пропускают сильную струю очищенного от СO2 воздуха и затем воду перегоняют при очень медленном токе воздуха.

Для этой цели рекомендуется применять сжатый воздух из баллона или засасывать его извне, поскольку в химической лаборатории он весьма загрязнен. Воздух до подачи в воду пропускают сначала через промывную склянку с конц. H2SO4, затем через две промывные склянки с конц. КОН и, наконец, через склянку с дистиллированной водой. При этом следует избегать применения длинных резиновых трубок.

Большую часть СO2 и органических веществ можно удалить, если к 1 л перегоняемой воды добавлять около 3 г NaOH и 0,5 г KMnO4 и отбрасывать некоторое количество конденсата в начале перегонки. Кубовый остаток должен составлять не менее 10-15% загрузки. Если конденсат подвергнуть вторичной перегонке с добавлением 3 г KHSO4, 5 мл 20% Н3РО4 и 0,1-0,2 г KMnO4 на литр, то это гарантирует полное удаление NH3 и органических загрязнений.

Продолжительное хранение дистиллированной воды в стеклянной посуде всегда приводит к ее загрязнению продуктами выщелачивания стекла. Поэтому дистиллированную воду долго хранить нельзя.

Металлические дистилляторы

Дистилляторы с электронагревом. На рис. 59 изображен дистиллятор Д-4 (модель 737). Производительность 4 ±0,3 л/ч, потребляемая мощность 3,6 кВт, расход охлаждающей воды до 160 л/ч. Масса аппарата без воды 13,5 кг.

В камере испарения 1 вода нагревается электронагревателями 3 до кипения. Образующийся пар через патрубок 5 поступает в конденсационную камеру 7, вмонтированную в камеру 6, через которую непрерывно протекает водопроводная вода. Из конденсатора 8 дистиллят вытекает через ниппель 13.

В начале работы водопроводная вода, непрерывно поступающая через ниппель 12, заполняет водяную камеру 6 и по сливной трубке 9 через уравнитель 11 заполняет камеру испарения до установленного уровня.

В дальнейшем, по мере выкипания, вода будет поступать в камеру испарения только частично; основная же часть, проходя через конденсатор, точнее через его водяную камеру 6, будет сливаться по сливной трубке в уравнитель и далее через ниппель 10 в канализацию. Вытекающая горячая вода может быть использована для хозяйственных нужд.

Аппарат снабжен датчиком уровня 4, предохраняющим электронагреватели от перегорания в случае понижения уровня воды ниже допустимого.

Избыток пара из камеры испарения выходит через трубку, вмонтированную в стенку конденсатора.

Аппарат устанавливают на ровной горизонтальной поверхности и посредством болта заземления 14 присоединяют к общему контуру заземления, к которому также присоединяют электрощит.

При первоначальном пуске аппарата пользоваться дистиллированной водой по прямому назначению можно только после 48-часовой работы аппарата.

Периодически необходимо механически очищать от накипи электронагреватели и поплавок датчика уровня.

Аналогично устроен дистиллятор Д-25 (модель 784), производительность которого 25 ±1,5 л/ч, потребляемая мощность 18 кВт.

В этом аппарате девять электронагревателей - три группы по три нагревателя. Для нормальной и длительной работы аппарата достаточно, чтобы одновременно включались шесть нагревателей. Но для этого требуется периодически, в зависимости от жесткости питающей воды, производить механическую очистку от накипи трубки, по которой вода поступает в камеру испарения.

При первоначальном пуске дистиллятора Д-25 пользоваться дистиллированной водой по прямому назначению рекомендуется после 8-10 ч работы аппарата.

Значительный интерес представляет аппарат для получения апирогенной воды для инъекций А-10 (рис. 60). Производительность 10 ±0,5 л/ч, потребляемая мощность 7,8 кВт, расход охлаждающей воды 100-180 л/ч.

В этом аппарате в камеру испарения вместе с перегоняемой водой поступают реагенты для ее умягчения (алюмокалиевые квасцы Al2(SO4)3-K2SO4-24H2O) и для удаления NH3 и органических загрязнений (KMnO4 и Na2HPO4).

Раствор квасцов заливают в один стеклянный сосуд дозирующего устройства, а растворы KMnO4 и Na2HPO4 - в другой - из расчета на 1 л апирогенной воды квасцов 0,228 г, KMnO4 0,152 г, Na2НРO4 0,228 г.

При первоначальном пуске или при пуске аппарата после длительной консервации использовать получаемую апирогенную воду для лабораторных нужд можно только через 48 ч работы аппарата.

Перед эксплуатацией металлических дистилляторов с электронагревом следует проверить правильность включения всех проводов и наличие заземления. Категорически запрещается включать эти аппараты в электросеть, не заземлив. При любой неисправности дистилляторы должны быть отключены от сети.

Качество дистиллированной воды в известной степени зависит от длительности работы аппарата. Так, при пользовании старыми дистилляторами в воде могут содержаться хлорид-ионы.

Приемники должны быть из нейтрального стекла и, во избежание попадания СO2, соединены с атмосферой через хлоркальциевые трубки, наполненные гранулами натронной извести (смесь NaOH и Са(ОН)2).

Огневой дистиллятор. Дистиллятор ДТ-10 со встроенной топкой рассчитан на эксплуатацию в условиях отсутствия водопровода и электроэнергии и позволяет за 1 ч получать до 10 л дистиллированной воды. Представляет собой цилиндрической формы конструкцию из нержавеющей стали высотой около 1200 мм, смонтированную на основании длиной 670 мм и шириной 540 мм.

Дистиллятор состоит из встроенной топки с топочной фурнитурой, камеры испарения на 7,5 л, камеры охлаждения на 50 л и сборника дистиллированной воды на 40 л.

Вода в камеры испарения и охлаждения заливается вручную. По мере расхода воды в камере испарения она автоматически пополняется из камеры охлаждения.

Получение бидистиллята

Однократно перегнанная вода в металлических дистилляторах всегда содержит небольшие количества посторонних веществ. Для особо точных работ пользуются повторно перегнанной водой - бидистиллятом. Промышленность серийно выпускает аппараты для бидистилляции воды БД-2 и БД-4 производительностью 1,5-2,0 и 4-5 л/ч соответственно.

Первичная перегонка происходит в первой секции аппарата (рис. 61). В полученный дистиллят добавляют KMnO4 для разрушения органических примесей и переводят его во вторую колбу, где происходит вторичная перегонка, и бидистиллят собирают в приемную колбу. Нагревание осуществляется с помощью электрических нагревателей; стеклянные водяные холодильники охлаждаются водопроводной водой. Все стеклянные детали изготовляются из стекла пирекс.

Определение качественных показателей дистиллированной воды

Определение pH. Это испытание производят потенциометрическим методом со стеклянным электродом или - при отсутствии рН-метра - колориметрическим методом.

Пользуясь штативом для колориметрирования (штатив для пробирок, снабженный экраном), в четыре занумерованные одинаковые пробирки диаметром около 20 мм и вместимостью 25-30 мл, чистые, сухие, из бесцветного стекла помещают: в пробирки № 1 и 2 - по 10 мл испытуемой воды, в пробирку № 3 - 10 мл буферной смеси, отвечающей pH = 5,4, а в № 4 - 10 мл буферной смеси, отвечающей pH = 6,6. Затем в пробирки № 1 и 3 прибавляют по 0,1 мл 0,04% водноспиртового раствора метилового красного и перемешивают. В пробирки № 2 и 4 прибавляют по 0,1 мл 0,04% водноспиртового раствора бромтимолового синего и перемешивают. Воду считают соответствующей стандарту, если содержимое пробирки № 1 не краснее содержимого пробирки № 3 (pH = 5,4), а содержимое пробирки № 2 не синее содержимого пробирки № 4 (pH = 6,6).

Определение сухого остатка. В предварительно прокаленной и взвешенной платиновой чашке выпаривают на водяной бане досуха 500 мл испытуемой воды. Воду прибавляют в чашку порциями по мере испарения, а чашку защищают от загрязнения предохранительным колпачком. Затем чашку с сухим остатком выдерживают 1 ч в сушильном шкафу при 105-110 °С, охлаждают в эксикаторе и взвешивают на аналитических весах.

Воду считают соответствующей ГОСТ 6709-72, если масса сухого остатка будет не более 2,5 мг.

Определения содержания аммиака и аммонийных солей. В одну пробирку с притертой стеклянной пробкой вместимостью около 25 мл наливают 10 мл испытуемой воды, а в другую - 10 мл эталонного раствора, приготовленного следующим образом: 200 мл дистиллированной воды помещают в коническую колбу на 250-300 мл, прибавляют 3 мл 10% раствора NaOH и кипятят 30 мин, после чего раствор охлаждают. В пробирку с эталонным раствором прибавляют 0,5 мл раствора, содержащего 0,0005 мг NH4+. Затем в обе пробирки одновременно прибавляют по 1 мл реактива на аммиак (см. приложение 2) и перемешивают. Воду считают соответствующей стандарту, если наблюдаемая через 10 мин окраска содержимого пробирки будет не интенсивнее окраски эталонного раствора. Сравнение окраски производят по оси пробирок на белом фоне.

Проба на восстанавливающие вещества. 100 мл испытуемой воды доводят до кипения, прибавляют 1 мл 0,01 н. раствора KMnO4 и 2 мл разбавленной (1:5) H2SO4 и кипятят 10 мин. Розовая окраска испытуемой воды должна при этом сохраняться.

Деминерализация пресной воды ионообменным методом

При деионизации воды последовательно осуществляются процессы Н+ катионирования и ОН- анионирования, т. е. замещения содержащихся в воде катионов на ионы Н+ и анионов на ионы ОН-. Взаимодействуя друг с другом, ионы Н+ и ОН- образуют молекулу H2O.

Метод деионизации позволяет получать воду с более низким содержанием солей, чем обычная дистилляция, но при этом не удаляются неэлектролиты (органические загрязнения).

Выбор между дистилляцией и деионизацией зависит от жесткости исходной воды и расходов, связанных с ее очисткой. В отличие от дистилляции воды, при деионизации расход энергии пропорционален содержанию солей в очищаемой воде. Поэтому при высокой концентрации солей в исходной воде целесообразно вначале применять метод дистилляции, а затем доочистку осуществить деионизацией.

Иониты - твердые, практически нерастворимые в воде и органических растворителях вещества минерального или органического происхождения, природные и синтетические. Для целей деминерализации воды практическое значение имеют синтетические полимерные иониты - ионообменные смолы, отличающиеся высокой поглотительной способностью, механической прочностью и химической устойчивостью.

Деминерализацию воды можно осуществлять последовательным пропусканием водопроводной воды через колонку катионита в Н+ форме, затем через колонку анионита в ОН- форме. Фильтрат с катионита содержит при этом кислоты, соответствующие солям в исходной воде. Полнота удаления этих кислот анионитами зависит от их основности. Сильноосновные аниониты удаляют все кислоты почти полностью, слабоосновные не удаляют таких слабых кислот, как угольная, кремневая и борная.

Если эти кислотные группы допустимы в деминерализованной воде или их соли отсутствуют в исходной воде, то лучше применять слабоосновные аниониты, так как их последующая регенерация легче и дешевле, чем регенерация сильноосновных анионитов.

Для деминерализации воды в лабораторных условиях часто применяют катиониты марок КУ-1, КУ-2, КУ-2-8чС и аниониты марок ЭДЭ-10П, АН-1 и др. Иониты, поставляемые в сухом виде, измельчают и отсеивают зерна размером 0,2-0,4 мм при помощи набора сит. Затем их промывают дистиллированной водой декантацией, пока промывные воды не станут совершенно прозрачны. После этого иониты переносят в стеклянные колонки различных конструкций.

На рис. 62 изображена малогабаритная колонка для деминерализации воды. В нижнюю часть колонки помещают стеклянные бусы и поверх них стеклянную вату. Чтобы между зернами ионитов не попали пузырьки воздуха, колонку заполняют смесью ионита с водой. Воду по мере ее накопления спускают, но не ниже уровня ионита. Сверху иониты покрывают слоем стеклянной ваты и бусами и оставляют под слоем воды на 12-24 ч. Спустив воду с катионита, колонку заполняют 2 н. раствором HCl, оставляют на 12-24 ч, спускают HCl и катионит промывают дистиллированной водой до нейтральной реакции по метиловому оранжевому. Катионит, переведенный в Н+ форму, сохраняют под слоем воды. Аналогично переводят анионит в ОН- форму, выдерживая его в колонке после набухания в 1 н. растворе NaOH. Промывку анионита дистиллированной водой проводят до нейтральной реакции по фенолфталеину.

Деминерализация относительно больших объемов воды с раздельным применением ионитных фильтров может быть осуществлена в более крупной установке. Материалом для двух колонок высотой 700 и диаметром 50 мм может служить стекло, кварц, прозрачный пластик. В колонки помещают по 550 г подготовленного ионита: в одну - катионит в Н+ форме, в другую анионит - в ОН- форме. Водопроводная вода со скоростью 400-450 мл/мин поступает в колонку с катионитом, а затем проходит через колонку с анионитом.

Поскольку иониты постепенно насыщаются, необходимо контролировать работу установки. В первых порциях фильтрата, прошедшего через катионит, определяют кислотность титрованием щелочью по фенолфталеину. После того, как через установку пропустят около 100 л воды, или она проработает непрерывно 3,5 ч, следует взять вновь пробу воды из катионитной колонки и определить кислотность фильтрата. Если наблюдается резкое уменьшение кислотности, пропускание воды следует прекратить и провести регенерацию ионитов.

Катионит высыпают из колонки в большую банку с 5% раствором HCl и оставляют на ночь. Затем кислоту сливают, катионит переносят на воронку Бюхнера и промывают дистиллированной водой до отрицательной реакции на ион Cl- с AgNO3. Промытый катионит снова вводят в колонку.

Анионит регенерируют 5% раствором NaOH, промывают водой до отрицательной реакции по фенолфталеину, после чего вновь заполняют им колонку.

В настоящее время деминерализацию воды большей частью осуществляют методом смешанного слоя. Исходную воду пропускают через смесь катионита в Н+ форме и сильно- или слабоосновного анионита в ОН- форме. Этот метод обеспечивает получение воды высокой степени чистоты, но последующая регенерация ионитов требует больших затрат труда.

Для деионизации воды с применением смешанных ионитных фильтров смесь катионита КУ-2-8чС и анионита ЭДЭ-10П в объемном соотношении 1,25:1 загружают в колонку диаметром 50 мм и высотой 600-700 мм. В качестве материала для колонки предпочтителен плексиглас, а для подводящей и сточной трубок - полиэтилен.

Один килограмм смеси ионита может очистить до 1000 л однократно перегнанной воды.

Регенерацию отработанных смешанных ионитов производят раздельно. Смесь ионитов из колонки переносят на воронку Бюхнера и отсасывают до получения воздушно-сухой массы. Затем иониты помещают в делительную воронку такой вместимости, чтобы смесь ионитов занимала 1/4 ее объема. После этого в воронку добавляют до 3/4 объема 30% раствор NaOH и энергично перемешивают. При этом смесь ионитов благодаря их разной плотности (катионит 1,1, анионит 1,4) разделяется на слои. После этого катионит и анионит отмывают водой и регенерируют как указано выше.

В лабораториях, где потребность в глубоко обессоленной воде превышает 500-600 л/сутки, может быть использован серийно выпускаемый аппарат Ц 1913. Расчетная производительность 200 л/ч. Пропускная способность деионизатора за межрегенерационный период 4000 л. Масса комплекта 275 кг.

Деминерализатор снабжен системой автоматического отключения подачи водопроводной воды при понижении ее электрического сопротивления ниже допустимого значения и поплавковыми клапанами, позволяющими автоматически удалять воздух из колонок. Регенерация ионообменных смол производится путем обработки их непосредственно в колонках раствором NaOH или HCl.

Вода – это жизнь. Все мы с детства знаем, что наш организм практически целиком состоит из воды. Мы пьем много воды, чтобы быть здоровыми, и всегда стараемся пить только чистую, безопасную воду. Но почему же тогда вода глубокой очистки вредна для организма ? Что такое деминерализованная вода и зачем она нужна?

Вода глубокой очистки

Деминерализованная или деионизированая вода – это вода глубокой очистки, в которой понижено содержание солей. От дистиллированной ее отличает, то, что неэлектролиты в ней присутствуют.

На сегодняшний день существует множество способов получения деионизированной воды. Для разных нужд необходима вода более или менее глубокой очистки, поэтому разные методы применяются для разных целей.

Выпаривание

Суть метода заключается в том, что загрязнённая вода выпаривается. При этом примеси остаются , а чистая вода конденсируется. Этот метод очень энергетически затратен, но позволяет удалить и неэлектролитические примеси.

Электролиз

Способ отчистки воды под действием электрического поля. Поле действует на свободные ионы, растворенные в воде, и притягивает их, а вода становится чище.

Обратный осмос

Принцип очистки заключается в том, что воду под большим давлением пропускают через полупроницаемую мембрану , мельчайшие поры которой, пропускают молекулы воды, но задерживают примеси. Этот метод в сочетании с остальными позволяет получить бидистиллированную воду, которая считается самой чистой на сегодняшний день.

Области применения

В любой воде содержатся минеральные соли , мы даже часто покупаем специальную минеральную воду с повышенным содержанием некоторых солей.

Но мы также знаем, что жесткая вода или вода с повышенным содержанием солей калия и кальция, малопригодна для бытовых нужд. При стирке она образует осадок, который выводит из строя стиральные машины, а на чайнике появляется в виде накипи.

Но если для быта нам необходимо лишь слегка уменьшить содержание солей, то для фармакологической и пищевой промышленности. Такая вода необходима на нефтехимических предприятиях и производствах, занимающихся обработкой металлов.

Еще одна группа, использующая деминерализованную воду – автомобилисты . Они доливают воду глубокой отчистки в антифриз. В охлаждающей жидкости содержится вода, но при смене погоды она может испаряться. Так же такая вода необходима для работы омывателя стекол

Лишь обессоленная вода может являться диэлектриком, так как ионы солей в растворе способны проводить электричество. Это открывает еще одно поле использования: в научно-исследовательских целях. Деминерализованная вода нашла свое применения в области энергетики .

Последнее время деионизированная вода более популярна, чем дистиллированная. Устройства для дистилляции быстрее изнашиваются из-за наличия солей в жидкости, в то время как деминерализация менее затратна.

Вред от потребления обессоленной воды

Если деминерализованная вода полезна для приборов и машин, то влияние на человека не так однозначно. Вода глубокой отчистки способна вымывать из организма соли, порой это бывает необходимо. Например, доказано положительное влияние умеренного потребления обессоленной воды при:

  • обнаружении отложений в печени;
  • нарушении работы почек;
  • диабете;
  • аллергии;
  • интоксикации и отравлениях.

Помимо вредных примесей в воде присутствуют также и полезные, но вода глубокой очистки лишена любых примесей, как часто выражаются врачи: это «мертвая» вода .

Некоторые примеси необходимы для нормальной работы организма, но деионизированная вода не содержит этих примесей и не поддерживает реакции. К тому же такая вода невкусная, она абсолютно пресная и не устраняет чувство жажды.

Регулярное употребление воды глубокой отчистки в пищу может привести к разрушению слизистой оболочки желудочно-кишечного тракта. Это показывают эксперименты на крысах.

Однозначно доказано пагубное влияние на процесс обмена минеральными веществами при употреблении обессоленной воды. Эта вода вымывает минеральные вещества из биологических жидкостей. Что влияет на гормональный фон и производство красных кровяных телец. В то же время, увеличивается выделение воды из организма.

При частом употреблении слабо минеральной воды уменьшается концентрация кальция и магния в организме. Кальций является строительным веществом многих костей и тканей организма, а магний необходим для протекания более чем трехсот биологических процессов.

Также было доказано, что при регулярном потреблении деминерализованной воды возрастает поступление токсичных металлов . «Мертвая» вода обладает слабыми защитными свойствами.

В последнее десятилетие значительно развилась техника деминерализации воды с помощью ионообменных смол (иониты). Ионообменные смолы делятся на две группы: 1) катиониты, представляющие собой смолы с кислой, карбоксильной или сульфоновой группой, обладающие способностью обменивать ионы водорода на ионы щелочных и щелочноземельных металлов; 2) аниониты - чаще всего продукты полимеризации аминов с формальдегидом, обменивающие свои гидроксильные группы на анионы.

Деминерализация воды проводится в специальных аппаратах-колонках, причем в принципе можно или пропускать воду вначале через колонку с катионитом, а затем с анионитом или в обратном порядке (так называемая конвенкционная система), или пропускать воду через одну колонку, содержащую одновременно и катионит, и анионит (смешанная колонка).

Приводим описание одной из отечественных промышленных обессоливающих установок производительностью 10 т/ч, работающей по схеме: механические фильтры - Н-катионирование - декарбонизация - ОН-анионирование (рис.79).

Вода из городского водопровода при помощи насосов / поступает в механический блок, состоящий из двух фильтров, загружаемых суль-фоуглем. Вода проходит фильтр сверху вниз и поступает на Н-катио-нирование 2. Эксплуатация механического фильтра предусматривает взрыхление (один раз в 3 дня), которое необходимо для предотвращения слеживания сульфоугля и вымывания грязи, образующейся за счет истирания сульфоугля. Взрыхление производят током воды снизу. Схемой предусмотрена также подача водопроводной воды на катиони-рование, минуя механические фильтры. Н-катионитовый блок состоит из трех фильтров и декарбонизатора 3, установленного после них. Ка-тионитовые фильтры загружаются смолой КУ-1, получаемой конденсацией фенолсульфокислоты и формальдегида, которая способна при определенных условиях поглощать из водных растворов различные катионы. Катионит КУ-1, как и остальные катиониты, характеризуется неодинаковой способностью к поглощению различных катионов.

Для большинства катионитов распределение активности поглощения различных катионов и соответствующая им емкость поглощения могут быть представлены следующим рядом:

Процесс катионного обмена протекает по схеме:

где К - органический анион катионита.

В дальнейшем в связи с различной способностью к обмену отдельных катионов ион натрия, обладающий наименьшей величиной подвижности, первым начнет вытесняться в фильтрат более подвижными катионами кальция и магния. Уменьшение в катионите количества водородных ионов, способных к обмену, повлечет за собой уменьшение кислотности на эквивалентную величину и увеличение в фильтрате ионов натрия.

Н-катионитовый фильтр представляет собой цилиндрический аппарат, снабженный верхним и нижним днищами, присоединенными к корпусу при помощи болтов. Поверхность фильтров гуммирована. На дно фильтра загружается кварцевый песок высотой слоя 300 мм, затем катионит высотой слоя 3 м. Наряду с кварцевым песком фильтру придаются верхние и нижние дренажные устройства, которые предотвращают вынос катионитовой смолы при эксплуатации фильтра.

Дренажные устройства состоят из гуммированных дисков, в которых на резьбе укреплены щелевые колпачки. Помимо сказанного, дренажные устройства предназначены для равномерного распределения по всей площади поперечного сечения фильтра проходящей через него воды как при катионировании, так и при взрыхлении и отмывке. Эксплуатация фильтра заключается в периодическом осуществлении четырех операций: 1) Н-катионирования; 2) взрыхления; 3) регенерации; 4) отмывки. Взрыхление катионита производят для устранения уплотнения, удаления грязи, нанесенной водой и раствором кислоты, и мелочи, образующейся за счет истирания катионита. Взрыхление производится исходной водой.

Регенерация Н-катионитовых фильтров производится 5% раствором хлористоводородной кислоты, приготовляемой в специальной емкости-

реакторе 10 с мешалкой 12. На приготовление раствора используется исходная вода; концентрированная хлористоводородная кислота подается из мерника 9, куда с помощью сжатого воздуха попадает из бака-хранилища 8. Приготовленный для регенерации раствор кислоты сохраняется в сборнике 11. Кислота после регенерации сбрасывается через слой мраморной крошки в канализацию.

После пропуска через фильтр необходимого количества кислоты сразу же производят отмывку фильтра исходной водой. Н-катиониро-ванная вода после разложения карбонатной жесткости содержит большое количество свободной углекислоты, которая удаляется в декарбо-низаторе 3 за счет десорбции, вследствие создания над поверхностью воды с помощью вентилятора 4 низкого парциального давления С0 2 . Десорбция возрастает с увеличением температуры среды, так как при этом снижается растворимость газа в воде. Декарбонизованная вода собирается в баке 5, откуда насосом 6 подается в анионитовый блок

Анионитовые фильтры загружены смолой ЭДЭ-10п, полученной конденсацией полиэтиленполиамидов и эпихлоргидрина, способной поглощать при определенных условиях различные анионы из водных растворов. ЭДЭ-10п, как и остальные аниониты, характеризуется неодинаковой способностью к поглощению различных анионов. Аниониты делятся на две группы: слабоосновные и сильноосновные. Слабоосновные аниониты способны поглощать анионы сильных кислот (SO 4 -2 CI - , NO 3 -), а анионы слабых кислот (HCO 3 - , HSiO 3 - др.) не удерживают их. Сильноосновные аниониты извлекают из водных растворов анионы как сильных, так и слабых кислот. Процесс анионного обмена протекает по схеме:

где А - органический катион анионита.

Анионитовый блок состоит из трех фильтров диаметром 800 мм и высотой 3,5 м. Устроены анионитовые фильтры аналогично катионито-вым. Эксплуатация анионитового фильтра заключается в периодическом осуществлении тех же четырех операций: 1) анионирования; 2) взрыхления; 3) регенерации; 4) отмывки.

Взрыхление анионитовых фильтров производится декарбонизирован-ной водой 5. Регенерация ОН-анионитовых фильтров осуществляется 3-4% раствором щелочи. Для приготовления регенерационного раствора щелочи необходимое количество концентрированного раствора, получаемого из твердого NaOH на обессоленной воде в реакторе с мешалкой 13, подается через мерник 14 в баки 15, куда для разбавления подведена обессоленная вода. Регенерационный раствор из баков 15 подается затем сжатым воздухом на фильтр 16 и далее на ОН-аниони-товый фильтр. Отмывка предназначена для удаления из фильтра избытка регенерационного раствора и продуктов регенерации и проводится де-карбонизированной водой. Отмывочные воды сбрасываются. С помощью ионитов можно получать деминерализованную воду, по своим качествам соответствующую фармакопейным нормам. В ряде случаев полезно сочетать деминерализацию воды с ее дистилляцией (для инъекционных растворов).