Сказки        13.03.2024   

Элементарная классическая теория электропроводности металлов. Классическая теория электропроводности металлов Основные положения электронной проводимости металлов

План лекции

5.1. Классическая теория электропроводности металлов.

5.2. Вывод закона Ома и закона Джоуля - Ленца.

5.3. Недостатки классической теории электропроводности металлов.

Классическая теория электропроводности металлов

Любая теория считается законченной, только если в ней прослежен путь от элементарного механизма явления до найденных в ней макросоотношений, использующихся в технической практике. В данном случае неодолимо было связать особенности упорядоченного движения свободных зарядов в проводнике (электропроводимость) с основными законами электрического тока. Прежде всего необходимо было выяснить природу носителей тока в металлах. Основополагающими в этом смысле явились опыты Рикке 1 , в которых в течение длительного времени (год) ток пропускался через три последовательно соединенных металлических цилиндра (Сu, А1, Сu ) одинакового сечения с тщательно отшлифованными притертыми торцами. Через эту цепь протек огромный заряд (≈ 3,5·10 6 Кл). Несмотря на это, не было обнаружено никаких (даже микроскопических) следов переноса вещества из цилиндра в цилиндр (что подтверждалось тщательным взвешиванием). Отсюда был сделан вывод, что в металлах в процессе переноса электрического заряда участвуют какие-то частицы, общие (одинаковые) для всех металлов.

Природу таких частиц можно было определить по знаку и величине удельного заряда (отношения заряда носителя к его массе) - параметру индивидуальному для любой из известных сегодня микрочастиц. Идея такого эксперимента заключается в следующем: при резком торможении металлического проводника слабо связанные с решеткой носители тока должны по инерции смещаться вперед. Результатом такого смещения является импульс тока, а по направлению тока можно определить знак носителей и, зная размеры и сопротивление проводника, можно вычислить и удельный заряд носителей. Такие эксперименты дали значения отношения , что совпало с удельным зарядом электронов. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны. При образовании кристаллической решетки металла (при сближении изолированных атомов) слабо связанные с ядрами валентные электроны отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны.

Основоположники классической теории электропроводности металлов Друде 2 и Лоренц 3 впервые показали, что любое множество невзаимодействующих микрочас-


Рикке Карл Виктор Эдуард (1845 – 1915), немецкий физик

2 Друде Пауль Карл Людвиг (1863 – 1906), немецкий физик

3 Лоренц Хендрик Антон (1853 – 1928), нидерландский физик-теоретик

тиц (в том числе свободные электроны в металле) можно рассматривать как идеальный газ, то есть к свободным электронам в металле применимы все выводы молекулярно-кинетической теории.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между идеальным газом свободных электронов и решеткой. Среднюю скорость свободных электронов можно найти в соответствии с выражением для средней арифметической скорости хаотического теплового движения молекул идеального газа (см. формулу (8.26) в лекции 8, часть I):

которая при комнатных температурах (Т ≈ 300 К) дает <u > = 1,1·10 5 м/с.

При наложении внешнего электрического поля на проводник кроме теплового движения электронов возникает и их упорядоченное движение, то есть электрический ток. Среднюю скорость упорядоченного движения электронов - <v > можно определить согласно (4.4). При максимально допустимой плотности тока в реальных проводниках (≈ 10 7 А/м 2) количественная оценка дает <v > ≈ 10 3 -10 4 м/с. Таким образом, даже в предельных случаях средняя скорость упорядоченного движения электронов (обуславливающего электрический ток) значительно меньше их скорости хаотического теплового движения (<v > << <u >). Поэтому при вычислениях результирующей скорости можно считать, что (<v > + <u >) ≈ <u >. Выше уже отмечалось, что конечной целью классической теории электропроводности металлов является вывод основных закономерностей электрического тока, исходя из рассмотренного элементарного механизма движения носителей тока. В качестве примера, рассмотрим, как это было сделано, при выводе закона Ома в дифференциальной форме.

5.2. Вывод закона Ома и закона Джоуля – Ленца

Пусть в металлическом проводнике существует электрическое поле с напряженностью . Со стороны поля электрон испытывает действие кулоновской силы F = eE и приобретает ускорение . Согласно теории Друде в конце длины свободного пробега <l > электрон, сталкивается с ионом решетки, отдает накопленную при движении в поле энергию (скорость его упорядоченного движения становится равной нулю). Двигаясь равноускоренно электрон, приобретает к концу свободного пробега скорость , где - среднее время между двумя последовательными столкновениями электрона с ионами решетки. Средняя скорость направленного движения электрона равна

Так как (<v > + <u >) ≈ <u >, то и (5.1) принимает вид . Таким образом, плотность тока, согласно (4.4), можно представить как

. (5.2)

Сравнивая это выражение с законом Ома в дифференциальной форме, можно увидеть, что эти выражения тождественны при условии, что удельная проводимость

Таким образом, в рамках классической теории электропроводности металлов и был выведен закон Ома в дифференциальной форме.

Аналогично был выведен и закон Джоуля - Ленца, получена количественная связь между удельной проводимостью и теплопроводностью с учетом того, что в металлах перенос электричества и теплоты осуществляется одними и теми же частицами (свободными электронами) и ряд других соотношений.

Опыты, проведенные Рикке в 1901 г., Мандельштамом и Папалекси в 1913 г., Толменом и Стюартом в 1916 г. показали, что носителями тока в металлах являются электроны. Ток в металлах можно вызвать крайне малой разностью потенциалов. Это даёт основание считать, что электроны перемещаются по металлу практически свободно. Появление этих свободных электронов объясняется тем, что при образовании кристаллической решётки от атомов металлов легко отрываются слабее всего связанные валентные электроны. Можно показать, что концентрация их достигает электронов в . При такой высокой концентрации электронов средняя сила, действующая на электрон со стороны всех остальных электронов и ионов, равна нулю и, следовательно, электроны можно считать свободными частицами и их взаимодействие с ионами можно рассматривать как ряд последовательных соударений.

В этом приближении система электронов может анализироваться как система одноатомных молекул идеального газа. Исходя из этого, Друде и позднее Лоренц распространили результаты кинетической теории газов (см лекции 1,2) на свободные электроны - на так называемый электронный газ и получили законы Ома, Джоуля-Ленца в дифференциальной форме.

В позапрошлом семестре изучались эти законы [см. конспект лекций, ч. II, формулы (16), (38) в лекциях 6,7].

Плотность тока проводимости равна произведению удельной электрической проводимости проводника на напряжённость электрического поля в проводнике , т.е.

Закон Ома в дифференциальной форме. (1)

Удельная тепловая мощность тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряжённости электрического поля в проводнике , т. е.

Закон Джоуля-Ленца в дифференциальной форме, (2)

где в (1) и (2) g - удельная электропроводность (g = 1/r).

Друде и Лоренц показали, что для металлических проводников

где n - концентрация свободных электронов, e и m - заряд и масса электрона, ál ñ -средняя длина свободного пробега электрона, ávñ - средняя скорость теплового движения электрона. Согласно формуле (30) в лекции 1,2 ávñ и при Т = 300 К, (масса электрона ), .

Скорость же направленного движения (скорость дрейфа электрона), возникающего благодаря электрическому полю . Для , (заряд электрона ), v др = = 0,78 мм/с, т. е. много меньше скорости теплового движения электрона.

Итак, классическая теория объяснила законы Ома, Джоуля-Ленца, Видемана-Франца. Вместе с тем она имеет ряд недостатков.

Строгий анализ с использованием квантовой теории показал, что не все валентные электроны свободно движутся по решётке с тепловыми скоростями, а лишь малая их часть. Подавляющее число валентных электронов в электропроводимости (как и в теплоёмкости) не участвуют. Это приводит к расхождениям между классической теорией и практикой. Например, из (3) следует, что ~ ~ , а на практике в большом диапазоне изменения температур g ~ 1/Т.


Эти и другие расхождения объясняет квантовая теория.

Теория Друде была разработана в 1900 году, через три года после открытия электрона. Затем теория была доработана Лоренцом, и сейчас она является классической и актуальной теорией проводимости металлов.

Электронная теория Друде-Лоренца

Согласно теории, носителями тока в металлах являются свободные электроны.

Друде предположил, что электроны в металле подчиняются и могут быть описаны уравнениями молекулярно-кинетической теории. Другими словами, свободные электроны в металле подчиняются законам МКТ и образуют "электронный газ".

Двигаясь в металле, электроны соударяются между собой и с кристаллической решеткой (это и есть проявление электрического сопротивления проводника). Между соударениями электроны, по аналогии с длиной свободного пробега молекул идеального газа, успевают преодолеть средний путь λ .

Без действия электрического поля, ускоряющего электроны, кристаллическая решетка и электронный газ стремятся к состоянию теплового равновесия.

Приведем основные положения теории Друде:

  1. Взаимодействие электрона с другими электронами и ионами не учитывается между столкновениями.
  2. Столкновения являются мгновенными событиями, внезапно меняющими скорость электрона.
  3. Вероятность для электрона испытать столкновение за единицу времени равна 1 τ .
  4. Состояние термодинамического равновесия достигается благодаря столкновениям.
Важно.

Несмотря на множество допущений, теория Друде-Лорецна хорошо объясняет эффект Холла, явление удельной проводимости и теплопроводность металлов. Именно поэтому она актуальна по сей день, хотя ответы на многие вопросы (например, почему в металле существуют свободные ионы и электроны) смогла дать только квантовая теория твердого тела.

В рамках теории Друде объясняется сопротивление металлов. Оно обусловлено соударениями электронов с узлами кристаллической решетки.

Выделение тепла, согласно закону Джоуля-Ленца, также происходит по причине соударения электронов с ионами решетки.

Теплопередача в металлах также осуществляется электронами, а не кристаллической решеткой.

Терия Друде не объясняет многих явлений, как например сверхпроводимость, и не применима в сильных магнитных полях, в слабых магнитных полях может терять применимость из-за квантовых явлений.

Среднюю скорость электронов можно вычислить по формуле для идеального газа:

Здесь k - постоянная Больцмана, T - температура металла, m - масса электрона.

При включении внешнего электрического поля, на хаотичное движение частиц "электронного газа" накладывается упорядоченное движение электронов под действием сил поля, когда электроны начинают упорядоченно двигаться со средней скоростью u . Величину этой скорости можно оценить из соотношения:

где j - плотность тока, n - концентрация свободных электронов, q - заряд электрона.

При больших плотностях тока рассчеты дают следующий результат: средняя скорость хаотичного движения электронов во много раз (≈ 10 8) больше скорости упорядоченного движения под действием поля. При вычислении суммарной скорости полагают, что

u → + v → ≈ v →

Формула Друде

Формула Друде выводится из кинетического уравнения Больцмана и имеет вид:

σ = n q 2 τ m *

Здесь m * - эффективная масса электрона, τ - время релаксации, то есть время, за которое электрон "забывает" о том, в какую сторону двигался после соударения.

Друде вывел закон Ома для токов в металле:

Опыт Толмена и Стюарта

В 1916 году опыт Толмена и Стюарта дал прямое доказательство тому, что носителями тока в металлах являются электроны.

Суть опыта была в следующем.

Опыт Толмена и Стюарта

Проводящая катушка с проводом длиной L вращалась вокруг своей оси с большой скоростью, а ее концы были замкнуты на гальванометр. Когда катушку резко тормозили, свободные электроны в металле продолжали двигаться по инерции, и гальванометр регистрировал импульс тока.

Считая, что свободные электроны подчиняются законам механики Ньютона, можно записать, что при остановке проводника электрон приобретает ускорение v " (в катушке направлено вдоль проводов). При этом на электрон действует сила, направленная противоположно ускорению.

Под воздействием этой силы электрон ведет себя так, как если бы на него действовало поле E = - m v " q . Эдс, возникающую в катушке при торможении можно записать, как:

ε = ∫ L E d l = - m v " q ∫ L d l = - m v " q L

Считая, что ускорение одинаково в каждом витке, можно записать закон Ома для катушки, а затем вычислить заряд, проходящий в ней за время d t:

I R = - m v " q L

d q = I d t = - m L d v q R d t d t = - m L d v q R

Заряд, прошедший от момента начала торможения до остановки:

q = - m L q R ∫ v 0 0 d v = - m L v 0 q R

Опыт Толмена и Стюарта получил хорошее согласование с теорией, полученное экспериментально отношение q m соответствовало отношению заряда электрона к его массе.

Пример

При T = 300 К вычислите среднюю скорость теплового движения свободных электронов.

Вычислим среднюю скорость, применяя формулу для идеального газа:

k = 1 , 38 · 10 - 23 Д ж К

m = 9 , 31 · 10 - 31 к г

Подставляем значения и вычисляем:

v = 8 · 1 , 38 · 10 - 23 · 3 · 10 2 3 , 14 · 9 , 31 · 10 - 31 ≈ 10 5 м с

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Классическая электронная теория металлов развита Друде, Томсоном и Лоренцем. Согласно этой теории электронный газ в металле рассматривается как идеальный газ, и к нему применяют законы классической механики и статистики. В отсутствие внешнего электрического поля свободные электроны в металле совершают хаотическое тепловое движение, не создающее направленного переноса электрического заряда. При наложении электрического поля Е на каждый электрон действует сила

направленная против поля и приводящая к возникновению электрического тока. Движение электрона в кристалле представляет собой сложное движение вследствие постоянного его столкновения с ионами в узлах кристаллической решетки. Между двумя актами столкновения электрон ускоряется. В конце длины свободного пробега λ под действием силы F электрон приобретает скорость направленного движения

где m – масса электрона; а - его ускорение; τ – время движения электрона между двумя столкновениями. τ называется временем свободного пробега . В результате столкновения с ионом скорость электрона обращается в нуль. Поэтому средняя скорость упорядоченного движения равна:

.

Так как ,

то ,

где - средняя скорость теплового движения электронов.

Величина называется подвижностью . Подвижность равна скорости, приобретаемой электроном в электрическом поле, напряженность которого равна Е=1 В/м.

В электрическом токе движение электрона является сложным движением, представляющим собой наложение хаотического теплового движения с упорядоченным движением со скоростью в электрическом поле. Электрическое сопротивление металла обусловлено столкновением электронов с узлами кристаллической решетки и выходом их из общего потока. Чем чаще электрон сталкивается с узлами, тем выше электрическое сопротивление металла.

При средней скорости упорядоченного движения через площадку в 1 м 2 , расположенную перпендикулярно к потоку, за 1 секунду пройдут все электроны, заключенные в параллелепипеде с ребром . Объем этого параллелепипеда равен , число электронов в нем - , n – концентрация электронов в металле. Эти электроны перенесут заряд, равный . Тогда плотность тока в проводнике будет равна

.

Для удельной проводимости имеем

Подставляя в формулу (1) значение u для проводимости металла получим выражение:

Таким образом, согласно классической теории проводимость металла определяется средней длиной свободного пробега электрона в кристалле и средней скоростью теплового движения. Средняя длина свободного пробега равна примерно межатомному расстоянию в решетке. Для выяснения справедливости такого предположения, оценим величину для серебра используя экспериментальные данные по проводимости. Среднюю скорость теплового движения электронов определим из соотношения:

Тогда для температуры Т~300 K получим . Эта величина на два порядка больше, чем межатомное расстояние для серебра. Следовательно, экспериментальные значения проводимости металлов могут быть объяснены, если предположить, что длина свободного пробега электрона намного превышает среднее расстояние между атомами. При своем движении электрон не так часто сталкивается с ионами в узлах кристаллической решетки, как предполагает классическая теория. Прежде чем испытать столкновение электрон пролетает достаточно большое расстояние, равное, примерно 100 межатомным расстояниям в кристалле. Этот факт классическая теория не в состоянии объяснить.

Следующее затруднение классической теории сводится к температурной зависимости электросопротивления. Согласно классической теории средняя длина свободного пробега не зависит от температуры и равна среднему межатомному расстоянию в кристалле. Поэтому, согласно формуле (2) температурная зависимость сопротивления определяется температурной зависимостью скорости теплового движения . Тогда удельное сопротивление согласно классической теории определяется выражением . Однако, экспериментальные данные показывают, что для металлов сопротивление в широком интервале растет линейно с ростом температуры .

С позиций классической электронной теории высокая электропроводность металлов обусловлена наличием огромного числа свободных электронов, движение которых подчиняется законам классической механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а взаимодействие их с положительными ионами сводят только к соударениям. Иными словами, электроны проводимости рассматриваются как электронный газ, подобный одноатомному, идеальному газу. Такой электронный газ должен подчи­няться всем законам идеального газа. Следовательно, средняя кинетическая энергия теплового движения электрона будет равна , где - масса электрона, - его среднеквадратичная скорость, k - постоянная Больцмана, Т - термодинамическая температура. Отсюда при Т=300 К среднеквад­ратичная скорость теплового движения электронов »10 5 м/с.

Хаотичное тепловое движение электронов не может привести к возникнове­нию электрического тока, но под действием внешнего электрического поля в проводнике возникает упо­рядоченное движение электронов со скоростью . Оценить величину можно из ранее выведенного соотношения , где j - плотность тока, - концентрация электронов, e - заряд электрона. Как по­казывает расчет, »8×10 -4 м/с. Чрезвычайно малое значение величины по сравнению с величиной объясняется весьма частыми столкновениями электронов с ионами решетки. Каза­лось бы, полученный результат для противоречит тому факту, что передача электрического сигнала на очень большие расстояния происходит практически мгновенно. Но дело в том, что замыкание электрической цепи влечет за собой распро­странение электрического поля со скоростью 3×10 8 м/с (скорость света). Поэтому упорядоченное движение электронов со скоростью под действием поля возникнет практически сразу же на всем протяжении цепи, что и обеспечивает мгновенную передачу сиг­нала.

На базе классической электронной теории были выведены рассмотренные выше основные законы электрического тока - законы Ома и Джоуля-Ленца в диф­фе­ренциальной форме и . Кроме того, классическая теория дала качественное объяснение закону Видемана-Франца. В 1853 г. И.Видеман и Ф.Франц установили, что при определенной темпе­ра­туре отношение коэффициента теплопроводности l к удельной проводимости g оди­наково для всех металлов. Закон Видемана-Франца имеет вид , где b - постоянная, не зависящая от природы металла. Классическая электронная теория объясняет и эту закономерность. Электр­оны проводимости, перемещаясь в металле, переносят с собой не только электриче­ский заряд, но и кинетическую энергию беспорядочного теплового движения. Поэтому те метал­лы, кото­рые хорошо проводят электрический ток, являются хорошими проводни­ками тепла. Классическая электронная теория качественно объяснила природу электриче­с­кого сопротивления металлов. Во внешнем поле упорядоченное движение элек­тронов нарушается их соударениями с положительными ионами решетки. Между двумя столкновениями электрон движется ускоренно и приобретает энергию, кото­рую при последующем столкновении отдает иону. Можно считать, что движение электрона в металле происходит с трением, подобным внутреннему трению в газах. Это трение и создает сопротивление металла.


Вместе с тем классическая теория встретилась с су­щественными затруднениями. Перечислим некоторые из них:

1. Несоответствие теории и эксперимента возникло при расчете теплоемко­сти металлов. Согласно кинетической теории молярная теплоемкость металлов должна складываться из теплоемкости атомов и теплоемкости свободных электронов. Так как атомы в твердом теле совершают только колебательные движения, то их молярная теплоемкость равна С=3R (R=8.31 Дж/(моль×К) - молярная газовая постоянная); свободные электроны двигаются только поступательно и их молярная теплоемкость равна С=3/2R. Общая теплоемкость должна быть С»4.5R , но согласно опытным данным С=3R.

2. По расчетам электронной теории, сопротивление R должно быть пропор­цио­нальным , где Т - термодинамическая температура. Согласно опытным дан­ным, R~Т.

3. Полученные опытным путем значения электропроводности g дают для сред­ней длины свободного пробега электронов в металлах величину порядка сотен меж­доузельных расстояний. Это гораздо больше, чем по классической теории.

Расхождение теории с опытом объясняется тем, что движение электронов в ме­талле подчиняется не законам классической механики, а законам квантовой ме­ханики. Достоинством классической электронной теории являются простота, на­глядность и правильность многих качественных ее результатов.