Экономика        09.06.2020   

Геометрический смысл производной связан с. Что такое производная?Определение и смысл производной функции. I. Организационный момент

Произво́дная (функции в точке) - основное понятие дифференциального исчисления , характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю , если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Процесс вычисления производной называется дифференци́рованием . Обратный процесс - нахождение первообразной - интегрирование .

Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой - вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.

4.Производная сложной и обратной функции.

Пусть теперь задана сложная функция , т.е. переменная есть функция переменной , а переменная есть, в свою очередь, функция от независимой переменной .

Теорема . Если и дифференцируемые функции своих аргументов, то сложная функция является дифференцируемой функцией и ее производная равна произведению производной данной функции по промежуточному аргументу и производной промежуточного аргумента по независимой переменной:

.

Утверждение легко получается из очевидного равенства (справедливого при и ) предельным переходом при (что в силу непрерывности дифференцируемой функции влечет ).

Перейдем к рассмотрению производной обратной функции .

Пусть на множестве дифференцируемая функция имеет множество значений и на множестве существует обратная функция .

Теорема . Если в точке производная , то производная обратной функции в точке существует и равна обратной величине производной данной функции : , или

Эта формула легко получается из геометрических соображений.

Так как есть тангенс угла наклона касательной линии к оси , то есть тангенс угла наклона той же касательной (той же линии ) в той же точке к оси .

Если и острые, то , а если тупые, то .

В обоих случаях . Этому равенству и равносильно равенство

5.Геометрический и физический смысл производной.

1) Физический смысл производной.

Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная– скорость изменения переменной y относительно переменной x в точке. Например, если S = S(t) – расстояние, проходимое точкой за время t, то ее производная– скорость в момент времени. Если q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t, то– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая,– точка на кривой.

Любая прямая, пересекающая не менее чем в двух точках называется секущей.

Касательной к кривой в точкеназывается предельное положение секущей, если точкастремится к, двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую y = f(x) (т.е. график функции y = f(x)). Пусть в точке он имеет невертикальную касательную. Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент k).

По определению углового коэффициента , где– угол наклона прямойк оси.

Пусть– угол наклона секущейк оси, где. Так как– касательная, то при

Следовательно,

Таким образом, получили, что– угловой коэффициент касательной к графику функции y = f(x) в точке(геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой y = f(x) в точкеможно записать в виде

Определение производной. Ее физический смысл. Определение дифференцируемой функции. Сформулировать теорему о связи между дифференцируемостью и непрерывностью функции.

Производная - основное понятие дифференциального исчесления, характеризующее скорость изменения функции.

Производная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.

Функцию, имеющую конечную производную, называют дифференцируемой.
Процесс вычисления производной называется дифференцированием

Если положение точки при её движении по числовой прямой задаётся функцией S = f (t ), где t – время движения, то производная функции S – мгновенная скорость движения в момент времени t . По аналогии с этой моделью вообще говорят о том, что производная функции у = f (x ) – скорость изменения функции в точке х .

Теорема (необходимое условие дифференцируемости функции). Если функция дифференцируема в точке, то она непрерывна в этой точке.

Доказательство. Пусть функция у=f(x) дифференцируема в точке х 0 . Дадим в этой точке аргументу приращение . Функция получит приращение . Найдем .

Следовательно, у=f(x) непрерывна в точке х 0 .

Следствие. Если х 0 – точка разрыва функции, то в ней функция не дифференцируема.

Утверждение, обратное теореме, не верно. Из непрерывности не следует дифференцируемость.

Пример. у=|х| , х 0 = 0.

Dх> 0, ;

Dх< 0, .

В точке х 0 = 0функция непрерывна, но производной не существует.

Геометрический смысл производной. Уравнения касательной и нормали

Геометрический смысл производной. Рассмотрим график функции y = f (x ):

Из рис.1 видно, что для любых двух точек A и B графика функции:

Где - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точкуB, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.



Уравнение касательной. Выведем уравнение касательной к графику функции в точке A (x 0 , f (x 0)). В общем случае уравнение прямой с угловым коэффициентом f ’(x 0) имеет вид:

y = f ’(x 0) · x + b .

Чтобы найти b ,воспользуемся тем, что касательная проходит через точку A:

f (x 0) = f ’(x 0) · x 0 + b ,

отсюда, b = f (x 0) – f ’(x 0) · x 0 , и подставляя это выражение вместо b , мы получим уравнение касательной :

y = f (x 0) + f ’(x 0) · (x – x 0) .

Нормалью к графику функции y = f (x ) в точке A (x 0 ; y 0) называется прямая, проходящая через точку A и перпендикулярная касательной к этой точке. Она задается уравнением

что следует из свойства угловых коэффициентов перпендикулярных друг другу прямых.

В случае бесконечной производной касательная в точке x 0 становится вертикальной и задается уравнением x = x 0 , а нормаль – горизонтальной: y = y 0 .

Производная функции.

1. Определение производной, её геометрический смысл.

2.Производная сложной функции.

3. Производная обратной функции.

4. Производные высших порядков.

5. Параметрически заданные функции и неявно.

6. Дифференцирование функций, заданных параметрически и неявно.

Введение.

Источником дифференциального исчисления были два вопроса, выдвинутые запросами науки и техники в 17 веке.

1) Вопрос о вычислении скорости при произвольно заданном законе движения.

2) Вопрос о нахождении (с помощью вычислений) касательной к кривой произвольно заданной.

Задачу проведения касательной к некоторым кривым решил ещё древнегреческий учёный Архимед (287-212 г.г. до н.э.), пользуясь методом вычерчивания.

Но только в 17 и 18 веках в связи с прогрессом естествознания и техники эти вопросы получили должное развитие.

Одним из важных вопросов при изучении любого физического явления обычно является вопрос о скорости, быстроте происходящего явления.

Скорость с которой движется самолёт или автомобиль, всегда служит важнейшим показателем его работы. Быстрота прироста населения того или иного государства является одной из основных характеристик его общественного развития.

Первоначальная идея скорости ясна каждому. Однако для решения большинства практических задач этой общей идеи недостаточно. Необходимо иметь такое количественное определение этой величины, которую мы называем скоростью. Потребность в таком точном количественном определении исторически послужила одним из основных побудителей к созданию математического анализаю. Целый раздел математического анализа посвящен решению этой основной задачи и выводам из этого решения. К изучению этого раздела мы и переходим.

Определение производной, её геометрический смысл.

Пусть дана функция определённая в некотором интервале (а,в) и непрерывная в нём.

1. Дадим аргументу х приращение , тогда функция получит

приращение :

2. Составим отношение .

3. Переходя к пределу в при и, предполагая, что предел

существует, получим величину , которую называют

производной функции по аргументу х .

Определение. Производной функции в точке называется предел отношения приращения функции к приращению аргумента , когда →0.

Значение производной очевидно зависит от точки х , в которой оно найдено, поэтому производная функции есть в свою очередь некоторая функция от х . Обозначается .

По определению имеем

или (3)

Пример. Найти производную функции .

1. ;

Цели урока:

Учащиеся должны знать:

  • что называется угловым коэффициентом прямой;
  • углом между прямой и осью Ох;
  • в чем состоит геометрический смысл производной;
  • уравнение касательной к графику функции;
  • способ построения касательной к параболе;
  • уметь применять теоретические знания на практике.

Задачи урока:

Образовательные: создать условия для овладения учащимися системы знаний, умений и навыков с понятиями механический и геометрический смысл производной.

Воспитательные: формировать у учащихся научное мировоззрение.

Развивающие: развивать у учащихся познавательный интерес, творческие способности, волю, память, речь, внимание, воображение, восприятие.

Методы организации учебно-познавательной деятельности:

  • наглядные;
  • практические;
  • по мыслительной деятельности: индуктивный;
  • по усвоению материала: частично-поисковый, репродуктивный;
  • по степени самостоятельности: лабораторная работа;
  • стимулирующие: поощрения;
  • контроля: устный фронтальный опрос.

План урока

  1. Устные упражнения (найти производную)
  2. Сообщение ученика на тему “Причины появления математического анализа”.
  3. Изучение нового материала
  4. Физ. Минутка.
  5. Решение заданий.
  6. Лабораторная работа.
  7. Подведение итогов урока.
  8. Комментирование домашнего задания.

Оборудование: мультимедийный проектор (презентация), карточки (лабораторная работа).

Ход урока

“Человек лишь там чего – то добивается, где он верит в свои силы”

Л. Фейербах

I. Организационный момент.

Организация класса в течение всего урока, готовность учащихся к уроку, порядок и дисциплина.

Постановка целей учения перед учащимися, как на весь урок, так и на отдельные его этапы.

Определить значимость изучаемого материала как в данной теме, так и во все курсе.

Устный счет

1. Найдите производные:

" , ()" , (4sin x)", (cos2x)", (tg x)", "

2. Логический тест.

а) Вставить пропущенное выражение.

5х 3 -6х 15х 2 -6 30х
2sinx 2cosx
cos2x … …

II. Сообщение ученика на тему “Причины появления математического анализа”.

Общее направление развития науки, в конечном счете, обусловлено требованиями практики человеческой деятельности. Существование древних государств со сложной иерархической системой управления было бы невозможно без достаточного развития арифметики и алгебры, ибо сбор податей, организация снабжения армии, строительство дворцов и пирамид, создание оросительных систем требовали выполнения сложных расчетов. В эпоху Возрождения расширяются связи между различными частями средневекового мира, развиваются торговля и ремесла. Начинается быстрый подъем технического уровня производства, промышленное применение получают новые источники энергии, не связанные с мускульными усилиями человека или животных. В XI-XII столетии появляются сукновальные и ткацкие станки, а в середине XV - печатный станок. В связи с потребностью в быстром развитии общественного производства в этот период изменяется сущность естественных наук, носивших со времен древности описательный характер. Целью естествознания становится углубленное изучение естественных процессов, а не предметов. Описательному естествознанию древности соответствовала математика, оперировавшая постоянными величинами. Необходимо было создать математический аппарат, который давал бы описание не результата процесса, а характера его течения и свойственных ему закономерностей. В итоге к концу XII столетия, Ньютон в Англии и Лейбниц в Германии завершили первый этап создания математического анализа. Что же такое “математический анализ”? Как можно охарактеризовать, предсказать особенности протекания любого процесса? Использовать эти особенности? Глубже проникать в сущность того или иного явления?

III. Изучение нового материала.

Пойдем по пути Ньютона и Лейбница и посмотрим, каким способом можно анализировать процесс, рассматривая его как функцию времени.

Введем несколько понятий, которые помогут нам в дальнейшем.

Графиком линей ной функции y=kx+ b является прямая, число k называют угловым коэффициентом прямой. k=tg, где – угол прямой, то есть угол между этой прямой и положительным направлением оси Ох.

Рисунок 1

Рассмотрим график функции у=f(х). Проведем секущую через любые две точки, например, секущую АМ. (Рис.2)

Угловой коэффициент секущей k=tg. В прямоугольном треугольнике АМС <МАС = (объясните почему?). Тогда tg = = , что с точки зрения физики есть величина средней скорости протекания любого процесса на данном промежутке времени, например, скорости изменения расстояния в механике.

Рисунок 2

Рисунок 3

Сам термин “скорость” характеризует зависимость изменения одной величины от изменения другой, и последняя необязательно должна быть временем.

Итак, тангенс угла наклона секущей tg = .

Нас интересует зависимость изменения величин в более короткий промежуток времени. Устремим приращение аргумента к нулю. Тогда правая часть формулы – производная функции в точке А (объясните почему). Если х –> 0, то точка М движется по графику к точке А, значит прямая АМ приближается к некоторой прямой АВ, которая является касательной к графику функции у = f(х) в точке А . (Рис.3)

Угол наклона секущей стремится к углу наклона касательной.

Геометрический смысл производной состоит в том, что значение производной в точке равно угловому коэффициенту касательной к графику функции в точке.

Механический смысл производной.

Тангенс угла наклона касательной есть величина, показывающая мгновенную скорость изменения функции в данной точке, то есть новая характеристика изучаемого процесса. Эту величину Лейбниц назвал производной , а Ньютон говорил, что производной называется сама мгновенная скорость .

IV. Физкультминутка.

V. Решение заданий.

№91(1) стр 91 – показать на доске.

Угловой коэффициент касательной к кривой f(х) = х 3 в точке х 0 – 1 есть значение производной этой функции при х = 1. f’(1) = 3х 2 ; f’(1) = 3.

№91 (3,5) – под диктовку.

№92(1) – на доске по желанию.

№ 92 (3) – самостоятельно с устной проверкой.

№92 (5) – за доской.

Ответы: 45 0 , 135 0 , 1,5 е 2 .

VI. Лабораторная работа.

Цель: отработка понятия “механический смысл производной”.

Приложения производной к механике.

Задан закон прямолинейного движения точки х = х(t), t.

  1. Среднюю скорость движения на указанном отрезке времени;
  2. Скорость и ускорение в момент времени t 04
  3. Моменты остановки; продолжает ли точка после момента остановки двигаться в том же направлении или начинает двигаться в противоположном направлении;
  4. Наибольшую скорость движения на указанном отрезке времени.

Работа выполняется по 12 вариантам, задания дифференцированы по уровню сложности (первый вариант - наименьший уровень сложности).

Перед началом работы беседа по вопросам:

  1. Каков физический смысл производной перемещения? (Скорость).
  2. Можно ли найти производную скорости? Используется ли эта величина в физике? Как она называется? (Ускорение).
  3. Мгновенная скорость равна нулю. Что можно сказать о движении тела в это момент? (Это момент остановки).
  4. Каков физический смысл следующих высказываний: производная движения равна нулю в точке t 0; при переходе через точку t 0 производная меняет знак? (Тело останавливается; меняется направление движения на противоположное).

Образец выполнения работы учащимся.

х(t)= t 3 -2 t 2 +1, t 0 = 2.

Рисунок 4

В противоположном направлении.

Начертим схематично график скорости. Наибольшая скорость достигается в точке

t=10, v (10) =3· 10 2 -4· 10 =300-40=260

Рисунок 5

VII. Подведение итогов урока

1) В чем состоит геометрический смысл производной?
2) В чем состоит механический смысл производной?
3) Сделайте вывод о своей работе.

VIII. Комментирование домашнего задания.

Стр.90. №91(2,4,6), №92(2,4,6,), стр. 92 №112.

Используемая литература

  • Учебник Алгебра и начала анализа.
    Авторы: Ю.М. Колягин, М.В. Ткачева, Н.Е. Федорова, М.И. Шабунина.
    Под редакцией А. Б. Жижченко.
  • Алгебра 11 класс. Поурочные планы по учебнику Ш. А. Алимова, Ю. М. Колягина, Ю. В. Сидорова. Часть 1.
  • Интернет-ресурсы: http://orags.narod.ru/manuals/html/gre/12.jpg

Для выяснения геометрического значения производной рассмотрим график функции y = f(x). Возьмем произвольную точку М с координатами (x, y) и близкую к ней точку N (x + $\Delta $x, y + $\Delta $y). Проведем ординаты $\overline{M_{1} M}$ и $\overline{N_{1} N}$, а из точки М -- параллельную оси ОХ прямую.

Отношение $\frac{\Delta y}{\Delta x} $ является тангенсом угла $\alpha $1, образованного секущей MN с положительным направлением оси ОХ. При стремлении $\Delta $х к нулю точка N будет приближаться к M, а предельным положением секущей MN станет касательная MT к кривой в точке M. Таким образом, производная f`(x) равна тангенсу угла $\alpha $, образованного касательной к кривой в точке M (х, y) с положительным направлением к оси ОХ -- угловому коэффициенту касательной (рис.1).

Рисунок 1. График функции

Вычисляя значения по формулам (1), важно не ошибиться в знаках, т.к. приращение может быть и отрицательным.

Точка N, лежащая на кривой, может стремиться к M с любой стороны. Так, если на рисунке 1, касательной придать противоположное направление, угол $\alpha $ изменится на величину $\pi $, что существенно повлияет на тангенс угла и соответственно угловой коэффициент.

Вывод

Следует вывод, что существование производной связано с существованием касательной к кривой y = f(x), а угловой коэффициент -- tg $\alpha $ = f`(x) конечный. Поэтому касательная не должна быть параллельной оси OY, иначе $\alpha $ = $\pi $/2, а тангенс угла будет бесконечным.

В некоторых точках непрерывная кривая может не иметь касательной или иметь касательную параллельную оси OY (рис.2). Тогда в этих значениях функция не может иметь производную. Подобных точек может быть сколько угодно много на кривой функции.

Рисунок 2. Исключительные точки кривой

Рассмотрим рисунок 2. Пусть $\Delta $x стремится к нулю со стороны отрицательных или положительных значений:

\[\Delta x\to -0\begin{array}{cc} {} & {\Delta x\to +0} \end{array}\]

Если в данном случае отношения (1) имеют конечный придел, он обозначается как:

В первом случае -- производная слева, во втором -- производная справа.

Существование предела говорит о равносильности и равенстве левой и правой производной:

Если же левая и правая производные неравны, то в данной точке существуют касательные не параллельные OY (точка М1, рис.2). В точках М2, М3 отношения (1) стремятся к бесконечности.

Для точек N лежащих слева от M2, $\Delta $x $

Справа от $M_2$, $\Delta $x $>$ 0, но выражение также f(x + $\Delta $x) -- f(x) $

Для точки $M_3$ слева $\Delta $x $$ 0 и f(x + $\Delta $x) -- f(x) $>$ 0, т.е. выражения (1) и слева, и справа положительны и стремятся к +$\infty $ как при приближении $\Delta $x к -0, так и к +0.

Случай отсутствия производной в конкретных точках прямой (x = c) представлен на рисунке 3.

Рисунок 3. Отсутствие производных

Пример 1

На рисунке 4 изображен график функции и касательной к графику в точке с абсциссой $x_0$. Найти значение производной функции в абсциссе.

Решение. Производная в точке равна отношению~приращения функции к приращению аргумента. Выберем на касательной две точки с целочисленными координатами. Пусть, например, это будут точки F (-3,2) и C (-2.4).