А. Гладкий        12.05.2021   

Характеристики положения и рассеяния. Вариационный ряд и его числовые характеристики: положения, рассеяния, формы. Качество поверхности, получаемое при обкатывании роликовым инструментом. Схема процесса, величина давления, кратность приложения деформирующ

Как ни важны средние характеристики, но не менее важной характеристикой массива числовых данных является поведение остальных членов массива по отношению к среднему показателю, на сколько они отличаются от средних показателей, как много членов массива значительно отличаются от среднего. На тренировках по стрельбе говорят о кучности результатов, в статистике исследуют характеристики рассеяния (разброса).

Отличие какого-либо значения х, от среднего значения х называют отклонением и вычисляют как разность х, - х. При этом отклонение может принимать как положительные значения, если число больше среднего, так и отрицательные значения, если число меньше среднего. Однако в статистике часто важно иметь возможность оперировать одним числом, характеризующим «кучность» всех числовых элементов массива данных. Любое суммирование всех отклонений членов массива приведет к нулю, так как положительные и отрицательные отклонения взаимно уничтожатся. Чтобы избежать обнуления, используют для характеристики рассеяния квадраты разностей, точнее, среднее арифметическое квадратов отклонений. Такую характеристику рассеяния называют выборочная дисперсия.

Чем больше дисперсия, тем больше рассеяние значений случайной величины. Для вычисления дисперсии используют приближенное значение выборочного среднего х с запасом на один разряд по отношению ко всем членам массива данных. В противном случае при суммировании большого количества приближенных значений будет накапливаться существенная ошибка. В связи с размерностью числовых значений следует отметить один недостаток такого показателя рассеяния, как выборочная дисперсия: единица измерения дисперсии D является квадратом единицы измерения значений х, характеристикой которых дисперсия является. Чтобы избавиться от этого недостатка, в статистике введена такая характеристика рассеяния, как выборочное среднее квадратичное отклонение , которое обозначается символом а (читается «сигма») и вычисляется по формуле

В норме более половины членов массива данных отличаются от среднего показателя меньше, чем на величину среднего квадратичного отклонения, т.е. принадлежат отрезку - а; х + а]. Иначе говорят: средний показатель с учетом разброса данных равен х ± а.

Введение еще одной характеристики рассеяния связано с размерностью членов массива данных. Все числовые характеристики в статистике вводятся с целью сравнения результатов исследования разных числовых массивов, характеризующих разные случайные величины. Однако сравнивать средние квадратичные отклонения от разных средних величин разных массивов данных не показательно, особенно если еще и размерность этих величин отличается. Например, если сравнивается длина и вес каких- либо объектов или рассеяния при изготовлении микро- и макроизделий. В связи с вышеизложенными соображениями вводится характеристика относительного рассеяния, которая называется коэффициентом вариации и вычисляется по формуле

Для подсчета числовых характеристик рассеяния значений случайной величины удобно использовать таблицу (табл. 6.9).

Таблица 6.9

Подсчет числовых характеристик рассеяния значений случайной величины

Xj - X

(Xj-X) 2 /

В процессе заполнения этой таблицы находится выборочное среднее х, которое в дальнейшем будет использоваться в двух видах. Как итоговая средняя характеристика (например, в третьем столбце таблицы) выборочное среднее х должно быть округлено до разряда, соответствующего наименьшему разряду какого-либо члена массива числовых данных х г Однако этот показатель используется в таблице при дальнейших вычислениях, и в этой ситуации, а именно при вычислениях в четвертом столбце таблицы, выборочное среднее х должно быть округлено с запасом на один разряд по отношению к наименьшему разряду какого-либо члена массива числовых данных х { .

Итогом вычислений при помощи таблицы типа табл. 6.9 будет получение значения выборочной дисперсии, а для записи ответа надо на основе значения выборочной дисперсии посчитать значение среднего квадратичного отклонения а.

В ответе указывается: а) средний результат с учетом разброса данных в виде х±о ; б) характеристика стабильности данных V. В ответе следует оценить качество коэффициента вариации: плохой или хороший.

Допустимым коэффициентом вариации как показателем однородности или стабильности результатов в спортивных исследованиях считается 10-15%. Коэффициент вариации V = 20% в любых исследованиях считается весьма большим показателем. Если объем выборки п > 25, то V > 32% - очень плохой показатель.

Например, для дискретного вариационного ряда 1; 5; 4; 4; 5; 3; 3; 1; 1; 1; 1; 1; 1; 3; 3; 5; 3; 5; 4; 4; 3; 3; 3; 3; 3 табл. 6.9 будет заполнена следующим образом (табл. 6.10).

Таблица 6.10

Пример подсчета числовых характеристик рассеяния значений

*1

fi

1

Л п 25 = 2,92 = 2,9

D _S_47,6_ п 25

Ответ : а) средняя характеристика с учетом разброса данных равна х ± а = = 3 ± 1,4; б) стабильность полученных измерений находится на низком уровне, так как коэффициент вариации V = 48% > 32%.

Аналог табл. 6.9 может быть использован и для вычисления характеристик рассеяния интервального вариационного ряда. При этом варианты х г будут заменены представителями промежутков x v ja абсолютные частоты вариант f { - на абсолютные частоты промежутков f v

На основании вышеизложенного можно сделать следующие выводы.

Выводы математической статистики правдоподобны, если обрабатывается информация о массовых явлениях.

Обычно исследуется выборка из генеральной совокупности объектов, которая должна быть репрезентативна.

Опытные данные, полученные в результате исследования какого-либо свойства объектов выборки, представляют собой значение случайной величины, поскольку исследователь заранее не может предсказать, какое именно число будет соответствовать определенному объекту.

Для выбора того или иного алгоритма описания и первичной обработки опытных данных важно уметь определять тип случайной величины: дискретная, непрерывная или смешанная.

Дискретные случайные величины описываются дискретным вариационным рядом и его графической формой - полигоном частот.

Смешанные и непрерывные случайные величины описываются интервальным вариационным рядом и его графической формой - гистограммой.

При сравнении нескольких выборок по уровню сформированное™ некоторого свойства используют средние числовые характеристики и числовые характеристики рассеяния случайной величины по отношению к средним.

При вычислении средней характеристики важно правильно выбрать вид средней характеристики, адекватный области ее применения. Структурные средние значения мода и медиана характеризуют структуру расположения вариант в упорядоченном массиве опытных данных. Количественное среднее значение дает возможность судить о среднем размере вариант (выборочная средняя).

Для вычисления числовых характеристик рассеяния - выборочной дисперсии, среднего квадратичного отклонения и коэффициента вариации - эффективен табличный способ.

Наряду с наиболее вероятным значением риска важное значение имеет разброс возможных значений риска относительно его центрального значения. Учет разброса показателей необходим и при решении задач социально-гигиенического мониторинга.

Наиболее распространенными характеристиками разброса случайной величины являются дисперсия и среднеквадратичное отклонение.

Дисперсия случайной величины ξ обозначаемая как D (ξ) (используются также обозначения V (ξ) и σ 2 (ξ)), характеризует наиболее вероятное значение квадрата отклонения случайной величины от своего математического ожидания.

Для дискретной случайной величины, принимающей значения х i с вероятностями р i , дисперсия определяется как взвешенная сумма нитратов отклонений х i от математического ожидания ξ с весовыми коэффициентами, равными соответствующим вероятностям:

D(ξ) =

Для непрерывной случайной величины ξ ее дисперсия определяется по формуле:

D(ξ) =

Дисперсия обладает следующими практически важными свойствами:

1.Дисперсия любой случайной величины неотрицательна:

D(ξ) ≥ 0

2. Дисперсия постоянной величины равна 0:

D(C) = 0

где С - константа.

3. Дисперсия случайной величины ξ равна разности между математическим ожиданием квадрата этой случайной величины и квадратом математического ожидания ξ:

D(ξ) = M [ξ – M (ξ)] 2 = M(ξ 2) – ( .

4. Прибавление константы к случайной величине не изменяет дисперсии; умножение случайной величины на константу а приводит к умножению дисперсии на а 2 :

D(aξ + b) = a 2 D(ξ),

где а и b - константы.

5. Дисперсия суммы независимых случайных величин равна сумме их дисперсий:

где ξ и η - независимые случайные величины.

Среднеквадратичным отклонением случайной величины ξ (используются также термин «стандартное отклонение») называется число σ (ξ) равное квадратному корню из дисперсии ξ:

Среднеквадратичное отклонение измеряет отклонение случайной нвеличины от ее математического ожидания в тех же величинах, в которых измеряется сама случайная величина (в отличие от дисперсии, размерность которой равна квадрату размерности исходной случайной величины). Для нормального распределения среднеквадратичное отклонение равно параметру σ. Таким образом, математическое ожидание и стандартное отклонение представляют собой полный набор характеристик нормального распределения и однозначно определяют вид плотности распределения. Для распределений, отличающихся от нормального, эта пара показателей не является столь же эффективной характеристикой распределения.


В качестве характеристики рассеяния случайной величины используется также коэффициент вариации. Коэффициентом вариации случайной величины ξ имеющей ненулевое математическое ожидание, называется число V (ξ) равное отношению среднеквадратичного отклонения ξ к ее математическому ожиданию:

Коэффициент вариации измеряет рассеяние случайной величины в долях ее математического ожидания и часто выражается в процентах от последнего. Этой характеристикой не следует пользоваться, если математическое ожидание близко к 0 или существенно меньше стандартного отклонения (в этом случае малые ошибки при определении математического ожидания приводят к высокой погрешности для коэффициента вариации), а также, если вид плотности распределении существенно отличается от гауссовского.

Коэффициент асимметрии (As ) определяет 3-ю степень отклонении случайной величины от математического ожидания и определяется по формуле:

На практике этот показатель используется в качестве оценки симметричности распределения. Для любого симметричного распределения он равен 0. Если же плотность распределения несимметрична (что часто может иметь место при оценке риска смерти и рисков, связанных с загрязнением воды и воздуха), то положительный коэффициент асимметрии соответствует случаю, когда левое плечо кривой плотности круче правого, а отрицательный - случаю, когда правое плечо круче левого (рис 4.17).

Для асимметричных распределений стандартное отклонение не является хорошим показателем рассеяния случайной величины. Для характеристики рассеяния в этом случае можно использовать такие показатели, как квартили, квантили и процентили.

Первой квартилью случайной величины ξ, имеющей функцию распределения F(х), называется число Q 1 являющееся решением уравнения

F(Q 1) = 1/4

т. е. такое число, для которого вероятность того, что ξ принимает значения, меньшие Q 1 , равна 1/4, вероятность того, что она принимает значения, большие Q 1 равна 3/4.

Второй квартилью (Q 2 ) случайной величины называется ее медиана, а третьей (Q 3 ) - решение уравнения

F(Q 3) = 3/4

Квартили делят ось абсцисс на 4 интервала: [-∞,Q 1 ], [Q 1 , Q 2 ], [Q 2 , Q 3 ] и [Q 3 , + ∞] в каждый из которых случайная величина попадает c равной вероятностью, а фигуру, ограниченную осью абсцисс и графиком плотности распределения - на 4 области с одинаковой площадью. И интервале между первой и третьей квартилями сосредоточено 50% распределения случайной величины. Для симметричных распределений первая и третья квартили одинаково удалены от медианы.

Квантилью порядка р случайной величины ξ с функцией распределения F(х) называется число х , являющееся решением уравнения

Таким образом, квартили являются квантилями порядка 0,25, 0,5 и 0,75. Если порядок квантили р выражается в процентах, то соответствующие значения х называются процентилями, или р -процентными точками распределения.

На рис. 4.18 показаны, наряду с квантилями, 2,5- и 97,5-процентные точки распределения. Между этими точками сосредоточено 95% распределения случайной величины, поэтому заключенный между ними интервал называют 95 %-м доверительным интервалом среднего (в частности, при оценке рисков - 95 %-м доверительным интервалом риска).

Задача 2. Какие из перечисленных ниже сведений о случайной величине ξ позволяют отвергнуть предположение о том, что она распределена по нормальному закону:

а) ξ - дискретная случайная величина;

б) математическое ожидание ξ отрицательно;

в) распределение ξ унимодально;

г) математическое ожидание ξ не равно ее медиане;

д) коэффициент асимметрии ξ отрицателен;

е) стандартное отклонение ξ больше ее математического ожидания;

ж) ξ характеризует распределение продолжительности острых заболеваний органов дыхания на исследуемой территории;

з) ξ характеризует распределение продолжительности жизни на исследуемой территории;

и) медиана ξ не совпадает с центром интервала между первой и третьей квартилями.

Ответ: Предположение о нормальном законе распределения случайной величины несовместимо с утверждениями а), г), д), з), и).

Рис. 4.17. Зависимость между знаком Рис.4.18. Квартили и процентили:

коэффициента асимметрии и формой иллюстрация с помощью функции

функции плотности распределения

Характеристики рассеяния

Меры разброса выборки.

Минимум и максимум выборки - это соответственно наименьшее и наибольшее значение изучаемой переменной. Разность между максимумом и минимумом называется размахом выборки. Все данные выборки расположены в промежутке между минимумом и максимумом. Эти показатели как бы очерчивают границы выборки.

R№1= 15,6-10=5,6

R №2 =0,85-0,6=0,25

Дисперсия выборки (англ. variance ) и среднее квадратическое отклонение выборки (англ. standard deviation ) являют собой меру изменчивости переменной и характеризуют степень разброса данных вокруг центра. При этом среднее квадратическое отклонение является более удобным показателем в силу того, что имеет ту же размерность, что и собственно исследуемые данные. Поэтому показатель среднего квадратического отклонения используется наряду со значением среднего арифметического выборки для короткого описания результатов анализа данных.

Выборочную дисперсию при целесообразнее считать по формуле:

Стандартное отклонение считается по формуле:

Коэффициент вариации является относительной мерой рассеяния признака.

Коэффициент вариации используется и как показатель однородности выборочных наблюдений. Считается, что если коэффициент вариации не превышает 10 %, то выборку можно считать однородной, т. е. полученной из одной генеральной совокупности.

Т. к. коэффициент вариации в обеих выборках, то они являются однородными.

Выборку можно представить аналитически в виде функции распределения, а так же в виде таблицы частот, состоящей из двух строк. В верхней строке- элементы выборки (варианты), расположенные в порядке возрастания; в нижней строке записываются частоты вариант.

Частота варианты - число, равное количеству повторений данной варианты в выборке.

Выборка №1 «Матери»

Вид кривой распределения

Асимметрия или коэффициент асимметрии (термин был впервые введен Пирсоном, 1895) является мерой несимметричности распределения. Если асимметрия отчетливо отличается от 0, распределение асимметричное, плотность нормального распределения симметрична относительно среднего.

Показатель асимметрии (англ. skewness ) используется для того, чтобы охарактеризовать степень симметричности распределения данных вокруг центра. Асимметрия может принимать как отрицательные, так и положительные значения. Положительное значение данного параметра указывает на то, что данные смещены влево от центра, отрицательное - вправо. Таким образом, знак показателя асимметрии указывает на направление смещения данных, тогда как величина - на степень этого смещения. Асимметрия равная нулю говорит о том, что данные симметрично сконцентрированы вокруг центра.

Т.к. асимметрия положительная, следовательно, вершина кривой сдвигается влево от центра.

Коэффициент эксцесса (англ. kurtosis ) является характеристикой того, насколько кучно основная масса данных группируется около центра.

При положительном эксцессе - кривая заостряется, при отрицательном - сглаживается.

Кривая сглаживается;

Кривая заостряется.

В описательной статистике центральное место занимает оценивание параметров выборки.

Точечное оценивание параметров распределения

Точечная оценка - количественная характеристика генеральной совокупности, функция от наблюдаемых случайных величин. Далее речь пойдет о точечном оценивании параметров распределения.

Рассмотрим свойства точечных оценок.

А) Несмещенной оценкой параметра θ называется статистическая оценка θ* , математическое ожидание которой равно θ : М (θ* )= θ .

Если М (θ* ) > θ (или М (θ* ) < θ ) , то возникает систематическая ошибка (неслучайная ошибка, искажающая результаты измерений в одну сторону). Несмещенность оценки является гарантией защиты от систематических ошибок.

Б) Однако несмещенная оценка не всегда дает хорошее приближение оцениваемого параметра. Действительно, возможные значения θ* могут быть сильно рассеяны вокруг своего среднего значения (дисперсия D (θ* ) может быть велика). Тогда найденная по данной выборке оценка, например θ* 1 , может оказаться удаленной от М (θ* ), а значит и от θ . Поэтому естественным вслед за несмещенностью, является требование малости дисперсии.

Эффективной называют оценку, которая при данном объеме выборки имеет наименьшую дисперсию.

В) При рассмотрении выборок большого объема к статистическим оценкам предъявляется требование состоятельности. Состоятельной называют оценку, которая при n→∞ по вероятности стремиться к оцениваемому параметру:

Например, если дисперсия несмещенной оценки стремиться к нулю при n→∞, то такая оценка оказывается и состоятельной.

Перейдем к оцениванию параметров распределения.

Параметры распределения – это его числовые характеристики. Они указывают, где в среднем располагаются значения признака (мера положения ), насколько значения изменчивы (мера рассеяния), ихарактеризуют отклонение распределения от нормального (мера формы) . В реальных условиях исследования мы оперируем не параметрами, а их приближенными значениями – оценками параметров, которые являются функциями от наблюдаемых величин. Заметим, что чем больше выборка, тем ближе может быть оценка параметра к его истинному значению.



Пусть x 1 , x 2 , … x к вариационный ряд и n 1 , n 2 , … n к - частоты соответствующих вариант, n – объем выборки.

Показатели положения


Если дано интервальное статистическое распределение, то выборочная средняя определяется для соответствующих интервалов .

Где - середина интервала .

Выборочная средняя является несмещенной и состоятельной оценкой.

Медиана - значение признака, приходящееся на середину упорядоченного по возрастанию вариационного ряда. Если ряд состоит их (2N +1) вариант, то медианой является (N +1)-е значение варианта, если ряд состоит из 2N вариант, то медиана равна полусумме N – го и (N +1) – ого значений вариант.

Мода - вариант с наибольшей частотой. Если таких вариант несколько (у них одна и та же частота), то распределение называют полимодальным .

Показатели вариации

Размах – разница между наибольшим и наименьшим значениями вариант.

Выборочная дисперсия (оценка дисперсии) – характеристика рассеяния наблюдаемых значений количественного признака выборки вокруг своего среднего значения. Обозначим D в - выборочную дисперсию

Можно показать, что М(D в) = (n/(n-1))D в. Поэтому исправленная (несмещенная) дисперсия, которую будем обозначать через , равна


Кроме выборочной дисперсии для характеристики рассеяния пользуются сводной характеристикой - средним квадратическим отклонением (стандартом) σ
Выборочная асимметрия – характеристика симметричности распределения. Обозначается . Для симметричных распределений (в том числе для нормального распределения) асимметрия равна нулю. Если , то «длинная часть» кривой распределения расположена справа от математического ожидания, если , то слева от математического ожидания (рис.2.).

Выборочный эксцесс – характеристика «подъема, крутости» кривой распределения. Обозначается . Для нормального распределения эксцесс равен нулю. При , то кривая имеет более высокую и острую вершину, если , то кривая имеет более низкую вершину, чем нормальная кривая (рис.1).

Одна из причин проведения статистического анализа заключается в необходимости учитывать влияние на исследуемый показатель случайных факторов (возмущений), которые приводят к разбросу (рассеянию) данных. Решение задач, в которых присутствует разброс данных, связано с риском, поскольку даже при использовании всей доступной информации нельзя точно предугадать, что же произойдет в будущем. Для адекватной работы в таких ситуациях целесообразно понимать природу риска и уметь определять степень рассеяния набора данных. Существуют три числовые характеристики, описывающие меру рассеяния: стандартное отклонение, размах и коэффициент вариации (изменчивости). В отличие от типических показателей (среднее, медиана, мода), характеризующих центр, характеристики рассеяния показывают, насколько близко к этому центру располагаются отдельные значения набора данных
Определение стандартного отклонения Стандартное отклонение (среднее квадратическое отклонение) является мерой случайных отклонений значений данных от среднего. В реальной жизни большинство данных характеризуется рассеянием, т.е. отдельные значения располагаются на некотором расстоянии от среднего.
Использовать стандартное отклонение как обобщающую характеристику рассеяния, просто усреднив отклонения данных нельзя, потому что часть отклонений окажется положительной, а другая часть – отрицательной, и, вследствие этого, результат усреднения может оказаться равным нулю. Чтобы избавиться от отрицательного знака, применяют стандартный прием: сначала вычисляют дисперсию как сумму квадратов отклонений, поделенную на (n –1), а затем из полученного значения извлекают квадратный корень. Формула для вычисления стандартного отклонения выглядит следующим образом: Замечание 1. Дисперсия не несет никакой дополнительной информации по сравнению со стандартным отклонением, однако ее сложнее интерпретировать, т. к. она выражается в «единицах в квадрате», в то время как стандартное отклонение выражено в привычных для нас единицах (например, в долларах). Замечание 2. Приведенная выше формула предназначена для расчета стандартного отклонения по выборке и более точно называется выборочное стандартное отклонение . При расчете стандартного отклонения генеральной совокупности (обозначается символом s) производят деление на n . Величина выборочного стандартного отклонения получается несколько больше (т. к. делят на n –1), что обеспечивает поправку на случайность самой выборки. В случае, когда набор данных имеет нормальное распределение, стандартное отклонение приобретает особый смысл. На рисунке, представленном ниже, по обе стороны от среднего сделаны отметки на расстоянии одного, двух и трех стандартных отклонений соответственно. Из рисунка видно, что примерно 66,7% (две трети) всех значений находятся в пределах одного стандартного отклонения по обе стороны от среднего значения, 95% значений окажутся в пределах двух стандартных отклонений от среднего и почти все данные (99,7%) будут находиться в пределах трех стандартных отклонений от среднего значения.
66,7%


Это свойство стандартного отклонения для нормально распределенных данных называется «правилом двух третей».

В некоторых ситуациях, например при анализе контроля качества продукции, часто устанавливают такие пределы, чтобы в качестве заслуживающей внимание проблемы рассматривались те результаты наблюдений (0,3%), которые отстоят от среднего на расстоянии большем, чем три стандартных отклонения.

К сожалению, если данные не подчиняются нормальному распределению, то описанное выше правило применять нельзя.

В настоящее время существует ограничение, называемое правилом Чебышева, которое можно применять к ассиметричным (скошенным) распределениям.

Сформировать исходные данные Совокупность СВ

В таблице 1 представлена динамика изменений дневной прибыли на бирже, зафиксированной в рабочие дни за период от 31 июля по 9 октября 1987 года.

Таблица 1. Динамика изменения дневной прибыли на бирже

Дата Дневная прибыль Дата Дневная прибыль Дата Дневная прибыль
-0,006 0,009 0,012
-0,004 -0,015 -0,004
0,008 -0,006 0,002
0,011 0,002 -0,008
-0,001 0,011 -0,010
0,017 0,013 -0,013
0,017 0,002 0,009
-0,004 -0,018 -0,020
0,008 -0,014 -0,003
-0,002 -0,001 -0,001
0,006 -0,001 0,017
-0,017 -0,013 0,001
0,004 0,030 -0,000
0,015 0,007 -0,035
0,001 -0,007 0,001
-0,005 0,001 -0,014
Запустить Excel
Создать файл Щелкните на кнопке Сохранить на панели инструментов Стандартная. откройте В появившемся диалоговом окне папку Статистика и задайте имя файлу Характеристики рассеяния.xls.
Задать метку 6. На Листе1 в ячейке A1 задайте метку Дневная прибыль, 7. а в диапазон A2:A49 введите данные из Таблицы 1.
Задать функцию СРЕДНЕЕ ЗНАЧЕНИЕ 8. В ячейку D1 введите метку Среднее. В ячейке D2 вычислите среднее, используя статистическую функцию СРЗНАЧ.
Задать функцию СТАНДОТКЛОН В ячейку D4 введите метку Стандартное отклонение. В ячейке D5 вычислите стандартное отклонение, используя статистическую функцию СТАНДОТКЛОН
Уменьшите разрядность полученного результата до четвертого знака после запятой.
Интерпретация результатов Снижение дневной прибыли в среднем составило 0,04% (значение средней дневной прибыли получилось равным –0,0004). Это означает, что средняя дневная прибыль за рассматриваемый период времени была приблизительно равна нулю, т.е. на рынке держался средний курс. Стандартное отклонение получилось равным 0,0118. Это означает, что вложенный в фондовый рынок один доллар ($1) за сутки изменялся в среднем на $0,0118, т.е. его вложение могло привести к прибыли или потере в размере $0,0118.
Проверим, соответствуют ли приведенные в Таблице 1 значения дневной прибыли правилам нормального распределения 1. Рассчитайте интервал, соответствующий одному стандартному отклонению по обе стороны от среднего. 2. В ячейках D7, D8 и F8 задайте соответственно метки: Одно стандартное отклонение, Нижняя граница, Верхняя граница. 3. В ячейку D9 введите формулу = -0,0004 – 0,0118, а в ячейку F9 введите формулу = -0,0004 + 0,0118. 4. Получите результат с точностью до четвертого знака после запятой.

5. Определите число значений дневной прибыли, находящихся в пределах одного стандартного отклонения. Сначала отфильтруйте данные, оставив значения дневной прибыли в интервале [-0,0121, 0,0114]. Для этого выделите любую ячейку в столбце A со значениями дневной прибыли и выполните команду:

Данные®Фильтр®Автофильтр

Откройте меню, щелкнув на стрелке в заголовке Дневная прибыль , и выберите (Условие…). В диалоговом окне Пользовательский автофильтр установите параметры как показано ниже. Щелкните на кнопке ОК.

Чтобы подсчитать число отфильтрованных данных, выделите диапазон значений дневной прибыли, щелкните правой кнопкой на свободном месте в строке состояния и в контекстном меню выберите команду Количество значений. Прочтите результат. Теперь отобразите все исходные данные, выполнив команду: Данные®Фильтр®Отобразить все и выключите автофильтр с помощью команды: Данные®Фильтр®Автофильтр.

6. Вычислите процент значений дневной прибыли, удаленных от среднего на расстоянии одного стандартного отклонения. Для этого в ячейку H8 занесите метку Процент , а в ячейке H9 запрограммируйте формулу вычисления процента и получите результат с точностью до одного знака после запятой.

7. Рассчитайте интервал значений дневной прибыли в пределах двух стандартных отклонений от среднего. В ячейках D11, D12 и F12 задайте соответственно метки: Два стандартных отклонения , Нижняя граница , Верхняя граница . В ячейки D13 и F13 введите расчетные формулы и получите результат с точностью до четвертого знака после запятой.

8. Определите число значений дневной прибыли, находящихся в пределах двух стандартных отклонений, предварительно отфильтровав данные.

9. Вычислите процент значений дневной прибыли, удаленных от среднего на расстоянии двух стандартных отклонений. Для этого в ячейку H12 занесите метку Процент , а в ячейке H13 запрограммируйте формулу вычисления процента и получите результат с точностью до одного знака после запятой.

10. Рассчитайте интервал значений дневной прибыли в пределах трех стандартных отклонений от среднего. В ячейках D15, D16 и F16 задайте соответственно метки: Три стандартных отклонения , Нижняя граница , Верхняя граница . В ячейки D17 и F17 введите расчетные формулы и получите результат с точностью до четвертого знака после запятой.

11. Определите число значений дневной прибыли, находящихся в пределах трех стандартных отклонений, предварительно отфильтровав данные. Вычислите процент значений дневной прибыли. Для этого в ячейку H16 занесите метку Процент , а в ячейке H17 запрограммируйте формулу вычисления процента и получите результат с точностью до одного знака после запятой.

13. Постройте гистограмму дневной прибыли акций на бирже и поместите ее вместе с таблицей распределения частот в области J1:S20. Покажите на гистограмме приблизительно среднее значение и интервалы, соответствующие одному, двум и трем стандартным отклонениям от среднего соответственно.