Здоровье        24.05.2020   

Сделать магические квадраты. Магические квадраты. Общие сведения о магических квадратах

Главная > Документ

МАГИЧЕСКИЕ КВАДРАТЫ

Магический, или волшебный квадрат - это квадратная таблица, заполненная числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова.

Сумма чисел в каждой строке, столбце и на диагоналях, называется магической константой, M.

Наименьшая магическая константа волшебного квадрата 3х3 равна 15, квадрата 4х4 равна 34, квадрата 5х5 равна 65,

Если в квадрате равны суммы чисел только в строках и столбцах, то он называется полумагическим.

Построение волшебного квадрата 3 х 3 с наименьшей

магической константой

Найдём наименьшую магическую константу волше́бного квадрата 3х3

1 способ

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (1+9) + (2+8) + (3+7) + (4+6) + 5 = 45

4
5 : 3 = 15 1 2 3 4 5 6 7 8 9

М = 15.

Число, записанное посередине 15 : 3 = 5

Определили, что посередине, записано число 5.

где n – число строк

Если можешь построить один магический квадрат, то нетрудно построить их любое количество. Поэтому запомним приёмы построения

магического квадрата 3х3 с константой 15.

1 способ построения. Расставь сначала по углам чётные числа

2,4,8,6 и посередине 5. Остальной процесс простая арифметика

15 – 6 = 9; 15 – 14 = 1 15 – 8 = 7; 15 – 12 = 3

2 способ решения

Используя найденный волшебный квадрат с константой 15, можно задавать множество разноплановых заданий:

Пример. Построить новые различные волшебные квадраты 3 х 3

Решение.

Сложив каждое число волшебного квадрата, или умножив его на одно и тоже число, получим новый волшебный квадрат.

Пример 1. Построить магический квадрат 3 х 3, у которого число, расположенное посередине, равно 13.

Решение.

Построим знакомый волшебный

квадрат с константой 15.

Найдём число, которое находится в

середине искомого квадрата

13 – 5 = 8.

К каждому числу волшебного

квадрата прибавим по 8.

Пример 2. Заполнить клетки волшебных

квадратов, зная магическую константу.

Решение. Найдём число,

записанное посередине 42: 3 = 14

42 – 34 = 8, 42 – 30 =12 42 – 20=22, 42 – 36=6 42–24=18, 42–32= 10

задания для самостоятельного решения

Примеры. 1. Заполнить клетки волшебных квадратов с магической

константой М =15.

1) 2) 3)

2. Найди магическую константу волшебных квадратов.

1) 2) 3)

3. Заполнить клетки волшебных квадратов, зная магическую константу

1) 2) 3)

М = 24 М = 30 М = 27

4 . Построить волшебный квадрат 3х3, зная, что магическая константа

равна 21.

Решение. Вспомним, как строится волшебный 3х3 квадрат по наименьшей

константе 15. По крайним полям записываются чётные числа

2, 4, 6, 8, а в середине число 5 (15: 3).

По условию надо построить квадрат по магической константе

21. В центре искомого квадрата должно быть число 7 (21: 3).

Найдём, насколько больше каждый член искомого квадрата

каждого члена с наименьшей магической константой 7 – 5 = 2.

Строим искомый волшебный квадрат:

21 – (4 + 6) = 11

21 – (6 + 10) = 5

21 – (8 + 10) = 3

21 – (4 + 8) = 9

4. Построить волшебные квадраты 3х3, зная их магические константы

М = 42 М = 36 М = 33

М = 45 М = 40 М = 35

Построение волшебного квадрата 4 х 4 с наименьшей

магической константой

Найдём наименьшую магическую константу волше́бного квадрата 4х4

и числа, расположенного посередине этого квадрата.

1 способ

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 +13 +14 + 15 + 16 =

(1+16)+(2+15)+(3+14)+(4+13)+(5+12)+ (6+11)+ (7+10)+(8+9) = 17 х 8 = 136

136: 4= 34.

где n – число строк n = 4.

Сумма чисел на любой горизонтали,

вертикали и диагонали равна 34.

Эта сумма также встречается во всех

угловых квадратах 2×2, в центральном

квадрате (10+11+6+7), в квадрате из

угловых клеток (16+13+4+1).

Для построения любых волше́бных квадратов 4х4 надо: построить один

с константой 34.

Пример. Построить новые различные волшебные квадраты 4 х 4.

Решение.

Сложив каждое число найденного

волшебного квадрата 4 х 4 или

умножив его на одно и тоже число,

получим новый волшебный квадрат.

Пример. Построить магический

квадрат 4 х 4, у которого магическая

константа равна 46.

Решение. Построили знакомый волшебный

квадрат с константой 34.

46 – 34 = 12. 12: 4 = 3

К каждому числу волшебного квадрата

прибавим по 3.

Прежде чем приступить к решению более сложных примеров на волшебных квадратах 4 х 4 ещё раз проверь свойства, которыми он обладает, если М=34.

Примеры. 1. Заполнить клетки волшебного квадрата с магической

константой М =38.

Н =38-(10+7+13)=8 д =38-(17+4+11)=6 в =38-(17+4+14)=3

е = 38-(12+7+8)=11 п =38-(17+6+10)=5 с =38-(3+12+8)=15

б =38-(11+7+16)=4 г =38-(5+7+12)=14 к =38-(6+11+12)=9

свойство 1,3,1 свойства 2,1,1 т =38-(14+9+13)=2

свойства 1,1,1,1

Ответ.

Задания для самостоятельного решения

Заполнить клетки волшебного квадрата с если известна магическая

константа

К = 46 К = 58 К = 62

Познакомься с волшебными квадратами 5х5 и 6х6

Задачи:

1. Научить заполнять магические квадраты.

2. Развивать наблюдательность, умение обобщать.

3. Прививать стремление к познанию нового, интерес к математике.

Оборудование: компьютер, мультимедиа проектор с экраном, презентация PowerPoint (Приложение 1).

В давние времена, научившись считать и выполнять арифметические действия, люди с удивление обнаружили, что числа имеют самостоятельную жизнь, удивительную и таинственную. Складывая различные числа, располагая их друг за другом или одно под другим, они иногда получали одинаковую сумму. Наконец, разделив числа линиями так, чтобы каждое оказалось в отдельной клетке, увидели квадрат, любое из чисел которого принимало участие в двух суммах, а те, что расположены вдоль диагоналей – даже в трех, и все суммы равны между собой! Недаром древние китайцы, индусы, а вслед за ними и арабы приписывали таким конструкциям таинственные и магические свойства. (слайд 1)

Магические квадраты появились на Древнем Востоке еще до нашей эры. Одна из сохранившихся легенд повествует о том, что когда император Ю из династии Шан (2000 г до н.э.) стоял на берегу Ло, притоке Желтой реки, вдруг появилась большая рыба (в других вариантах – огромная черепаха), у которой на спине был рисунок из двух мистических символов – черных и белых кружочков (слайд 2) , который был осознан затем как изображение магического квадрата порядка 3. (слайд 3)

Первое специальное упоминание о таком квадрате найдено около 1 века до н.э. Вплоть до 10 века н.э. магические квадраты были воплощены в амулетах, заклинаниях. Они использовались в качестве талисманов по всей Индии. Их рисовали на кувшинах удачи, медицинских кружках. До сих пор они используются у некоторых восточных народов как талисман. Их можно встретить на палубах больших пассажирских судов как площадку для игры.

Итак, под магическими будем понимать квадраты, в которых суммы чисел, стоящих в любом столбце или в любой строке, а также по диагоналям, одинаковы.

До сих пор вы использовали магические квадраты чаще всего для устного счета. При этом несколько чисел, в том числе и центральное, уже расставлены по клеткам квадрата. Требуется расставить остальные числа так, чтобы в любом направлении получилась определенная сумма.

Задача 1. Даны числа 1, 2, 3, 4, 5, 6, 7, 8, 9. Часть из них расставлена по клеткам Требуется расставить остальные числа, чтобы в сумме получалось 15. (слайд 4)

Оказывается, все другие магические квадраты, составленные из этих же чисел, можно получить из данного симметрией относительно строки, столбца или диагонали, поэтому во всех квадратах числа расставлены по одним и тем же правилам. (слайд 6)

Можно заметить ряд закономерностей, облегчающих заполнение клеток квадрата или дающих возможность решить задачу при меньшем числе данных в условии.

Например, в условиях задач, подобных предыдущей, не обязательно указывать, какая сумма должна получиться в любом направлении.

Задача 2. Найдите способ, как сосчитать сумму по строчкам, столбцам и диагоналям из предыдущей задачи.

Можно рассуждать следующим образом: сумма чисел в каждой строке одинакова, таких строк 3, значит сумма чисел в каждой строке в три раза меньше суммы всех чисел. Следовательно, в нашем примере, сумма в каждой строке равна 15 (45: 3). Но это число можно найти и другими способами: сложить три центральных числа 4, 5 и 6 или умножить центральное число 5 на 3.

Задача 3. Даны числа: 2, 3, 4, 5, 6, 7, 8, 9, 10. Требуется вписать их в клетки квадрата так, чтобы в любом направлении в сумме получилось одно и то же число. Часть чисел уже вписана в квадрат. (слайд 7)

Задача 4. Даны числа 5, 6, 7, 8, 9, 10, 11, 12, 13. Два их них вписаны в клетки квадрата. Впишите остальные так, чтобы в любом направлении получилось в сумме одно и то же число. (слайд 9)

Посмотрим на все три заполненных квадрата и попробуем найти еще ряд закономерностей, которые помогут заполнить квадрат еще с меньшим чисел, вписанных в квадрат. (слайд 11)

1, 2, 3, 4, 5, 6, 7, 8, 9

2, 3, 4, 5, 6, 7, 8, 9, 10

5, 6, 7, 8, 9, 10, 11, 12, 13

Посмотрите, какое число стоит в центре квадрата? Как оно расположено в ряду данных чисел? (слайд 12 ) (В центре квадрата всегда записывается число, стоящее на пятом месте нашей последовательности, т. е. одинаково удаленное с левого и правого ее краев.)

Можно заметить еще ряд особенностей: в квадрате по разные стороны от центрального числа стоят числа, одинаково удаленные от левого и правого краев последовательности. Покажем пары соответствующих чисел на примере заполнения квадрата числами от 1 до 9: (слайд 13)

Зная это, можно заполнить квадрат, почти не считая.

Посмотрите, как расположены в квадрате числа, стоящие рядом с центральным, а также числа, записанные от них через одно число. Они соединены линиями сверху. (Они расположены по диагоналям квадрата.) А где расположены остальные числа, которые соединены линиями снизу? (Они расположены по вертикали и по горизонтали.)

Давайте проверим, выполняются ли такие закономерности в других квадратах. (слайд 14)

(Да, такие закономерности выполняются.)

Итак, давайте подведем итог. Какие свойства магических квадратов мы выяснили?

1) Чтобы найти сумму чисел в каждом столбце или строке, можно центральное число умножить на 3.

2) В центре квадрата стоит число, записанное в ряду пятым.

3) В квадрате по разные стороны от центрального числа стоят числа, одинаково удаленные от левого и правого краев последовательности.

4) Числа, стоящие рядом с центральным и через одно от него, расположены по диагоналям квадрата. Числа, стоящие с краю и через одно от него, расположены в квадрате по вертикали и по горизонтали.

Задача 5. Даны числа: 3, 4, 5, 6, 7, 8, 9, 10, 11. Впишите их в клетки квадрата так, чтобы в любом направлении получилось одно и то же число. (слайд 15)

(Найдем, какая сумма должна получаться в каждом направлении. Для этого умножим центральное число 7 на 3. В результате получим 21. В центр квадрата поставим число 7, по одной диагонали числа 6 и 8, по другой – 4 и 10. Осталось расставить недостающие числа: сумма записанных в первой строке чисел равна 10, до 21 недостает 11, значит, в пустой клетке верхней строки запишем число 11 (первое справа). Тогда в нижней строке запишем число 3 (первое слева). В левый столбик запишем число 5 (21 – (6 + 10)), тогда в правом столбике останется записать число 9. Таким образом, мы расставили все 9 чисел в клетки магического квадрата, при этом ни одно число по условию задачи в квадрате не было поставлено.)

Задача имеет несколько решений, но все квадраты получаются из других симметрией относительно средних линий или диагонали. (слайд 16)

Задача 6. Даны числа 2, 4, 6, 8, 10, 12, 14, 16, 18. Впишите их в клетки квадрата так, чтобы в любом направлении получилось в сумме одно и то же число.

Один из вариантов решения на слайде. (слайд 17)

Задача 7. Сравните условие задач 1 и 6 и подумайте, как можно было решить задачу, зная решение задачи 1.

(Числа из задачи 6 в два раза больше соответствующих чисел задачи 1. Поэтому можно каждое число квадрата из задачи 1 просто удвоить и получить искомый квадрат.)

Существуют различные способы построения магических квадратов. Рассмотрим метод террас, который придумали древние китайцы. Следуя этому методу надо «естественный» числовой квадрат повернуть относительно центра на половину прямого угла (слайд 19) и отделить квадратной рамкой таблицу 3´3. (слайд 20) Числами, записанными вне рамки, и образующими выступы («террасы»), заполняем пустые клетки у противоположной стороны таблицы. (слайд 21)

Аналогично можно построить любой квадрат нечетного порядка. Заполним клетки магического квадрата 5´5 числами от 1 до 25. (слайды 22, 23, 24)

Для построения магического квадрата 4´4 наиболее простым и доступным является следующий метод: в «естественном» квадрате меняются местами дополнительные числа на главных диагоналях, а остальные остаются без изменения. (слайды 25, 26)

Подведение итогов занятия

Какую тайну магических квадратов вы открыли сегодня на занятии? Что вам в этом помогло?

Существует несколько различных классификаций магических квадратов

пятого порядка, призванных хоть как-то их систематизировать. В книге

Мартина Гарднера [ГМ90, сс. 244-345] описан один из таких способов –

по числу в центральном квадрате. Способ любопытный, но не более того.

Сколько существует квадратов шестого порядка, до сих пор неизвестно, но их примерно 1.77 х 1019 . Число огромное, поэтому нет никаких надежд пересчитать их с помощью полного перебора, а вот формулы для подсчёта магических квадратов никто придумать не смог.

Как составить магический квадрат?

Придумано очень много способов построения магических квадратов. Проще всего составлять магические квадраты нечётного порядка . Мы воспользуемся методом, который предложил французский учёный XVII века А. де ла Лубер (De La Loubère). Он основан на пяти правилах, действие которых мы рассмотрим на самом простом магическом квадрате 3 х 3 клетки.

Правило 1. Поставьте 1 в среднюю колонку первой строки (Рис. 5.7).

Рис. 5.7. Первое число

Правило 2. Следующее число поставьте, если возможно в клетку, соседнюю с текущей по диагонали правее и выше (Рис. 5.8).

Рис. 5.8. Пытаемся поставить второе число

Правило 3. Если новая клетка выходит за пределы квадрата сверху , то запишите число в самую нижнюю строку и в следующую колонку (Рис. 5.9).

Рис. 5.9. Ставим второе число

Правило 4. Если клетка выходит за пределы квадрата справа , то запишите число в самую первую колонку и в предыдущую строку (Рис. 5.10).

Рис. 5.10. Ставим третье число

Правило 5. Если в клетке уже занята , то очередное число запишите под текущей клеткой (Рис. 5.11).

Рис. 5.11. Ставим четвёртое число

Рис. 5.12. Ставим пятое и шестое число

Снова выполняйте Правила 3, 4, 5, пока не составите весь квадрат (Рис.

Не правда ли, правила очень простые и понятные, но всё равно довольно утомительно расставлять даже 9 чисел. Однако, зная алгоритм построения магических квадратов, мы сможем легко перепоручить компьютеру всю рутинную работу, оставив себе только творческую, то есть написание программы.

Рис. 5.13. Заполняем квадрат следующими числами

Проект Магические квадраты (Magic)

Набор полей для программы Магические квадраты совершенно очевиден:

// ПРОГРАММА ДЛЯ ГЕНЕРИРОВАНИЯ

// НЕЧЕТНЫХ МАГИЧЕСКИХ КВАДРАТОВ

// ПО МЕТОДУ ДЕ ЛА ЛУБЕРА

public partial class Form1 : Form

//макс. размеры квадрата: const int MAX_SIZE = 27; //var

int n=0; // порядок квадрата int [,] mq; // магический квадрат

int number=0; // текущее число для записи в квадрат

int col=0; // текущая колонка int row=0; // текущая строка

Метод де ла Лубера годится для составления нечётных квадратов любого размера, поэтому мы можем предоставить пользователю возможность самостоятельно выбирать порядок квадрата, разумно ограничив при этом свободу выбора 27-ью клетками.

После того как пользователь нажмёт заветную кнопку btnGen Генерировать! , метод btnGen_Click создаёт массив для хранения чисел и переходит в метод generate :

//НАЖИМАЕМ КНОПКУ "ГЕНЕРИРОВАТЬ"

private void btnGen_Click(object sender, EventArgs e)

//порядок квадрата:

n = (int )udNum.Value;

//создаем массив:

mq = new int ;

//генерируем магический квадрат: generate();

lstRes.TopIndex = lstRes.Items.Count-27;

Здесь мы начинаем действовать по правилам де ла Лубера и записываем первое число – единицу – в среднюю клетку первой строки квадрата (или массива, если угодно):

//Генерируем магический квадрат void generate(){

//первое число: number=1;

//колонка для первого числа - средняя: col = n / 2 + 1;

//строка для первого числа - первая: row=1;

//заносим его в квадрат: mq= number;

Теперь мы последовательно пристраиваем по клеткам остальные числа – от двойки до n * n:

//переходим к следующему числу:

Запоминаем на всякий случай координаты актуальной клетки

int tc=col; int tr = row;

и переходим в следующую клетку по диагонали:

Проверяем выполнение третьего правила:

if (row < 1) row= n;

А затем четвёртого:

if (col > n) { col=1;

goto rule3;

И пятого:

if (mq != 0) { col=tc;

row=tr+1; goto rule3;

Как мы узнаем, что в клетке квадрата уже находится число? – Очень просто: мы предусмотрительно записали во все клетки нули , а числа в готовом квадрате больше нуля . Значит, по значению элемента массива мы сразу же определим, пустая клетка или уже с числом! Обратите внимание, что здесь нам понадобятся те координаты клетки, которые мы запомнили перед поиском клетки для следующего числа.

Рано или поздно мы найдём подходящую клетку для числа и запишем его в соответствующую ячейку массива:

//заносим его в квадрат: mq = number;

Попробуйте иначе организовать проверку допустимости перехода в но-

вую клетку!

Если это число было последним , то программа свои обязанности выполнила, иначе она добровольно переходит к обеспечению клеткой следующего числа:

//если выставлены не все числа, то if (number < n*n)

//переходим к следующему числу: goto nextNumber;

И вот квадрат готов! Вычисляем его магическую сумму и распечатываем на экране:

} //generate()

Напечатать элементы массива очень просто, но важно учесть выравнивание чисел разной «длины», ведь в квадрате могут быть одно-, дву- и трёхзначные числа:

//Печатаем магический квадрат void writeMQ()

lstRes.ForeColor = Color .Black;

string s = "Магическая сумма = " + (n*n*n +n)/2; lstRes.Items.Add(s);

lstRes.Items.Add("" );

// печатаем магический квадрат: for (int i= 1; i<= n; ++i){

s="" ;

for (int j= 1; j <= n; ++j){

if (n*n > 10 && mq < 10) s += " " ; if (n*n > 100 && mq < 100) s += " " ; s= s + mq + " " ;

lstRes.Items.Add(s);

lstRes.Items.Add("" ); }//writeMQ()

Запускаем программу – квадраты получаются быстро и на загляденье (Рис.

Рис. 5.14. Изрядный квадратище!

В книге С.Гудман, С.Хидетниеми Введение в разработку и анализ алгорит-

мов , на страницах 297-299 мы отыщем тот же самый алгоритм, но в «сокращённом» изложении. Он не столь «прозрачен», как наша версия, но работает верно.

Добавим кнопку btnGen2 Генерировать 2! и запишем алгоритм на языке

Си-шарп в метод btnGen2_Click :

//Algorithm ODDMS

private void btnGen2_Click(object sender, EventArgs e)

//порядок квадрата: n = (int )udNum.Value;

//создаем массив:

mq = new int ;

//генерируем магический квадрат: int row = 1;

int col = (n+1)/2;

for (int i = 1; i <= n * n; ++i)

mq = i; if (i % n == 0)

if (row == 1) row = n;

if (col == n) col = 1;

//построение квадрата закончено: writeMQ();

lstRes.TopIndex = lstRes.Items.Count - 27;

Кликаем кнопку и убеждаемся, что генерируются «наши» квадраты (Рис.

Рис. 5.15. Старый алгоритм в новом обличии

Тестирование с помощью Чатуранги Шорин Александр

5.2.1 О магии цифр. Что такое магические квадраты

О магии цифр можно рассказывать много. В качестве примера в начале этого исследования мы уже упоминали о цифре 4. Очень многое можно сказать подобным образом о любой цифре.

Например, цифра 1 – единица, начало всего. Цифра 2 – разделение, противоположность двух полов. 3 – треугольник… И так далее. Это очень благодатная тема, углубляться в которую можно бесконечно.

Поэтому оставим ее и прейдем к магическим квадратам, которые имеют прямое отношение к Чатуранге.

Магическими квадратами называют квадратные таблица из целых чисел, которые обладают уникальными свойствами: например, суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.

Считается, что магические квадраты изобретены в Древнем Китае, а также были известны в Древней Индии, откуда берёт начало Чатуранга. В частности это доказывает Н. М. Рудин в своей книге «От магического квадрата – к шахматам».

Согласно легенде, во времена правления императора Ю (ок. 2200 до н. э.) из вод Хуанхэ (Жёлтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы. Эти знаки известны под названием ло-шу и равносильны магическому квадрату. В 11 в. о магических квадратах узнали в Индии, а затем в Японии, где в 16 в. магическим квадратам была посвящена обширная литература. Европейцев с магическими квадратами познакомил в 15 в. византийский писатель Э. Мосхопулос. Первым квадратом, придуманным европейцем, считается квадрат А. Дюрера изображенный на его знаменитой гравюре «Меланхолия 1». Дата создания гравюры (1514) указана числами, стоящими в двух центральных клетках нижней строки. Магическим квадратам приписывали различные мистические свойства. В 16 в. Корнелий Генрих Агриппа построил квадраты 3-го, 4-го, 5-го, 6-го, 7-го, 8-го и 9-го порядков, которые были связаны с астрологией 7 планет. Бытовало поверье, что выгравированный на серебре магический квадрат защищает от чумы. Даже сегодня среди атрибутов европейских прорицателей можно увидеть магические квадраты.

В 19–20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры и операционного исчисления.

Каждый элемент магического квадрата называется клеткой. Квадрат, сторона которого состоит из n клеток, содержит n 2 клеток и называется квадратом n -го порядка. В большинстве магических квадратов используются первые n последовательных натуральных чисел. Сумма S чисел, стоящих в каждой строке, каждом столбце и на любой диагонали, называется постоянной квадрата и равна S = n (n 2 + 1)/2. Доказано, что n – 3. Для квадрата 3-го порядка S = 15, 4-го порядка – S = 34, 5-го порядка – S = 65.

Две диагонали, проходящие через центр квадрата, называются главными диагоналями. Ломаной называется диагональ, которая, дойдя до края квадрата, продолжается параллельно первому отрезку от противоположного края. Клетки, симметричные относительно центра квадрата, называются кососимметричными.

Магические квадраты можно строить, например, с помощью метода французского геометра 17 в. А. де ла Лубера.

По методу А. де ла Лубера магический квадрат 5?5 можно построить так:

Число 1 помещается в центральную клетку верхней строки. Все натуральные числа располагаются в естественном порядке циклически снизу вверх в клетках диагоналей справа налево. Дойдя до верхнего края квадрата (как в случае числа 1), продолжаем заполнять диагональ, начинающуюся от нижней клетки следующего столбца. Дойдя до правого края квадрата (число 3), продолжаем заполнять диагональ, идущую от левой клетки строкой выше. Дойдя до заполненной клетки (число 5) или угла (число 15), траектория спускается на одну клетку вниз, после чего процесс заполнения продолжается.

Получается такой магический квадрат:

Можно также воспользоваться методом Ф. де ла Ира (1640–1718), который основан на двух первоначальных квадратах. В клетку первого квадрата вписываются числа от 1 до 5 так, что число 3 повторяется в клетках главной диагонали, идущей вправо вверх, и ни одно число не встречается дважды в одной строке или в одном столбце. То же самое мы проделываем с числами 0, 5, 10, 15, 20 с той лишь разницей, что число 10 теперь повторяется в клетках главной диагонали, идущей сверху вниз. Поклеточная сумма этих двух квадратов образует магический квадрат. Этот метод используется и при построении квадратов четного порядка.

Из книги Мастер сновидений. Словарь-сонник. автора Смирнов Терентий Леонидович

Сонник чёрной магии (символы сновидений чёрной магии) Многие духовные искатели, увлечённые популярными эзотерическими концепциями, сами того не подозревают, что в своём развитии сновидений практикуют самую настоящую чёрную магию! Это в самой полной мере относится к

Из книги Практическая магия современной ведьмы. Обряды, ритуалы, пророчества автора Миронова Дарья

Талисманы и магические квадраты Магия талисманов тесно связана с традицией нумерологии. Числа и буквы алфавита, а также специальные символы, без которых не обходится изготовление амулета, оберегают его владельца от плохого воздействия.Многие талисманы имеют вид

Из книги Ритуалы денежной магии автора Золотухина Зоя

Магия цифр Ваше магическое числоДля каждого из нас, утверждают нумерологи, существует своеобразный ключик к заветной тайне – магический числовой знак. Чтобы определить его, вам надо сложить все цифры вашей даты рождения.Складывайте до тех пор, пока в итоге не получится

Из книги Узнай свое будущее. Заставь Фортуну работать на себя автора Коровина Елена Анатольевна

Соотношение цифр и букв

Из книги Звезда защиты и Денежный талисман. Антикризисная нумерология автора Коровина Елена Анатольевна

Соотношение цифр и букв Таблица

Из книги Дата рождения - ключ к пониманию человека автора Александров Александр Федорович

ПЕРЕХОДЫ ЦИФР Можно вас поздравить с тем, что все характеристики цифр изучены. Смело приступайте к расчетам дат рождения всех своих близких, друзей, знакомых, незнакомых и врагов. Здорово! Теперь все раскроют свою «скрытую сущность». Начните, конечно же, с себя - и вы сразу

Из книги Славянская кармическая нумерология. Улучши матрицу своей судьбы автора Маслова Наталья Николаевна

ВЗАИМООТНОШЕНИЯ ЦИФР 5 И 9 Последний переход нельзя назвать собственно переходом, так как речь будет идти не о переходе одной цифры в другую, а об усилении одной цифры через другую. Рассмотрим взаимное влияние друг на друга цифр 5 (логика) и 9 (память). Прежде чем мы определим

Из книги Что можно узнать о человеке по дате его рождения и имени автора Зюрняева Тамара

Справочник. Значение цифр Это сила характера, янская энергия человека, его солнце. От наличия единиц в матрице зависит целеустремленность человека, его самооценка, наличие у него лидерских качеств, степень его

Из книги Математика для мистиков. Тайны сакральной геометрии автора Шессо Ренна

Магия цифр или математика? С глубокой древности люди обращались к числам и придавали им сакральное значение. Разгадать тайну числа – означало разгадать тайну жизни. Еще древнегреческий мудрец Пифагор считал, что все в мире познается через числа.Числам придавали

Из книги Мудры. Все в одной книге. Исполни любое желание автора Левин Петр

Глава № 5 Магические квадраты Мы называем их магическими квадратами или планетарными квадратами. Или печатями, камеями, таблицами. Как и многие другие магические инструменты, они под разными именами известны в различных системах, но как бы их ни называли, они датируются

Из книги Числовой код рождения и его влияние на судьбу. Как просчитать удачу автора Михеева Ирина Фирсовна

Из книги О магии смешно, о магии серьезно автора Картавцев Владислав

Энергия цифр Для того чтобы определить значение числа генетики дня рождения, надо, прежде всего, определить значение самой цифры, ее статус и энергетическое наполнение. По понятиям нашей обыденной жизни «вес» каждого числового значения растет по мере увеличения самой

Из книги Тестирование с помощью Чатуранги автора Шорин Александр

Характеристика цифр Цифра 1 – красный цвет. Точка реальности, основа, стержень всей цифровой надстройки, определяющий Род того или иного течения энергии. Предназначение цифры 1 – определение значения, важности и весомости возникшей реальности. Так в мире бизнеса на

Из книги автора

«Магические доказательства» или «Доказательства магии» «Ты – плохой человек!» Или: «Он – плохой человек» Или: «Он – хороший человек!» Или: «Ты – хороший человек!» Выбирайте! Что Вам более по душе?Не правда ли, смешно наблюдать за «ритуальными зулусскими танцами на

Из книги автора

5.2. Магические квадраты в Чатуранге. Чатуранга как гадание 5.2.1 О магии цифр. Что такое магические квадраты О магии цифр можно рассказывать много. В качестве примера в начале этого исследования мы уже упоминали о цифре 4. Очень многое можно сказать подобным образом о любой

Из книги автора

5.2.2. Магические квадраты в Чатуранге 5.2.2.1 Магия немагического квадрата Любопытно, что самый простой (немагический) квадрат 5?5, где цифры идут просто одна за одной – от 1 до 25 может также обладать необычными свойствами. Так, в этом простом квадрате сумма «Креста Слона»

Введение

Великие ученые древности считали количественные отношения основой сущности мира. Поэтому числа и их соотношения занимали величайшие умы человечества. «В дни моей юности я в свободное время развлекался тем, что составлял… магические квадраты»- писал Бенджамин Франклин. Магический квадрат- это квадрат, сумма чисел которого в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же.

Некоторые выдающиеся математики посвятили свои работы магическим квадратам и полученные ими результаты оказали влияние на развитие групп, структур, латинских квадратов, определителей, разбиений, матриц, сравнений и других нетривиальных разделов математики.

Цель настоящего реферата - знакомство с различными магическими квадратами, латинскими квадратами и изучение областей их применения.

Магические квадраты

Полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2х2 не существует. Существует единственный магический квадрат 3х3, так как остальные магические квадраты 3х3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.

Расположить натуральные числа от 1 до 9 в магический квадрат 3х3 можно 8 различными способами:

  • 9+5+1
  • 9+4+2
  • 8+6+2
  • 8+5+2
  • 8+4+3
  • 7+6+2
  • 7+5+3
  • 6+5+4

В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5.

Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой-то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять - таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность.

Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6),

дерево (3 и 8), металл (4 и 9).

С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха.

Магический квадрат Пифагора

Великий ученый Пифагор, основавший религиозно - философское учение, провозгласившее количественные отношения основой сущности вещей, считал, что сущность человека заключается тоже в числе - дате рождения. Поэтому с помощью магического квадрата Пифагора можно познать характер человека, степень отпущенного здоровья и его потенциальные возможности, раскрыть достоинства и недостатки и тем самым выявить, что следует предпринять для его совершенствования.

Для того, чтобы понять, что такое магический квадрат Пифагора и как подсчитываются его показатели, сделаю его расчет на своем примере. А чтобы убедиться, что результаты подсчета действительно соответствуют реальному характеру той или иной личности, вначале я проверю его на себе. Для этого я буду делать расчет по своей дате рождения. Итак, моя дата рождения 20.08.1986. Сложим цифры дня, месяца и года рождения (без учета нулей): 2+8+1+9+8+6=34. Далее складываем цифры результата: 3+4=7. Затем из первой суммы вычитаем удвоенную первую цифру дня рождения: 34-4=30. И вновь складываем цифры последнего числа:

3+0=3. Осталось сделать последние сложения - 1-й и 3-й и 2-й и 4-й сумм: 34+30=64, 7+3=10. Получили числа 20.08.1986,34,7,30, 64,10.

и составляем магический квадрат так, чтобы все единицы этих чисел вошли в ячейку 1, все двойки - в ячейку 2 и т. д. Нули при этом во внимание не принимаются. В результате мой квадрат будет выглядеть следующим образом:

Ячейки квадрата означают следующее:

Ячейка 1 - целеустремленность, воля, упорство, эгоизм.

  • 1 - законченные эгоисты, стремятся из любого положения извлечь максимальную выгоду.
  • 11 - характер, близкий к эгоистическому.
  • 111 - «золотая середина». Характер спокойный, покладистый, коммуникабельный.
  • 1111 - люди сильного характера, волевые. Мужчины с таким характером подходят на роль военных - профессионалов, а женщины держат свою семью в кулаке.
  • 11111 - диктатор, самодур.
  • 111111 - человек жестокий, способный совершить невозможное; нередко попадает под влияние какой - то идеи.

Ячейка 2 - биоэнергетика, эмоциональность, душевность, чувственность. Количество двоек определяет уровень биоэнергетики.

Двоек нет - открыт канал для интенсивного набора биоэнергетики. Эти люди воспитаны и благородны от природы.

  • 2 - обычные в биоэнергетическом отношении люди. Такие люди очень чувствительны к изменениям в атмосфере.
  • 22 - относительно большой запас биоэнергетики. Из таких людей получаются хорошие врачи, медсестры, санитары. В семье таких людей редко у кого бывают нервные стрессы.
  • 222 - знак экстрасенса.

Ячейка 3 - точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность к постоянному «восстановлению справедливости».

Нарастание троек усиливает все эти качества. С ними человеку есть смысл искать себя в науках, особенно точных. Перевес троек порождает педантов, людей в футляре.

Ячейка 4 - здоровье. Это связано с экгрегором, то есть энергетическим пространством, наработанным предками и защищающим человека. Отсутствие четверок свидетельствует о болезненности человека.

  • 4 - здоровье среднее, необходимо закалять организм. Из видов спорта рекомендуются плавание и бег.
  • 44 - здоровье крепкое.
  • 444 и более - люди с очень крепким здоровьем.

Ячейка 5 - интуиция, ясновидение, начинающееся проявляться у таких людей уже на уровне трех пятерок.

Пятерок нет - канал связи с космосом закрыт. Эти люди часто

ошибаются.

  • 5 - канал связи открыт. Эти люди могут правильно рассчитать ситуацию извлечь из нее максимальную пользу.
  • 55 - сильно развита интуиция. Когда видят «вещие сны», могут предугадывать ход событий. Подходящие для них профессии - юрист, следователь.
  • 555 - почти ясновидящие.
  • 5555 - ясновидящие.

Ячейка 6 - заземленность, материальность, расчет, склонность к количественному освоению мира и недоверие к качественным скачкам и тем более к чудесам духовного порядка.

Шестерок нет - этим людям необходим физический труд, хотя они его, как правило, не любят. Они наделены неординарным воображением, фантазией, художественным вкусом. Тонкие натуры, они тем не менее способны на поступок.

  • 6 - могут заниматься творчеством или точными науками, но физический труд является обязательным условием существования.
  • 66 - люди очень заземлены, тянутся к физическому труду, хотя как раз для них он не обязателен; желательна умственная деятельность либо занятия искусством.
  • 666 - знак Сатаны, особый и зловещий знак. Эти люди обладают повышенным темпераментом, обаятельны, неизменно становятся в обществе центром внимания.
  • 6666 - эти люди в своих предыдущих воплощениях набрали слишком много заземленности, они очень много трудились и не представляют свою жизнь без труда. Если в их квадрате есть

девятки, им обязательно нужно заниматься умственной деятельностью, развивать интеллект, хотя бы получить высшее образование.

Ячейка 7 - количество семерок определяет меру таланта.

  • 7 - чем больше они работают, тем больше получают впоследствии.
  • 77 - очень одаренные, музыкальные люди, обладают тонким художественным вкусом, могут иметь склонность к изобразительному искусству.
  • 777 - эти люди, как правило, приходят на Землю ненадолго. Они добры, безмятежны, болезненно воспринимают любую несправедливость. Они чувствительны, любят мечтать, не всегда чувствуют реальность.
  • 7777 - знак Ангела. Люди с таким знаком умирают в младенчестве, а если и живут, то их жизни постоянно угрожает опасность.

Ячейка 8 - карма, долг, обязанность, ответственность. Количество восьмерок определяет степень чувства долга.

Восьмерок нет - у этих людей почти полностью отсутствует чувство долга.

  • 8 - натуры ответственные, добросовестные, точные.
  • 88 - у этих людей развитое чувство долга, их всегда отличает желание помочь другим, особенно слабым, больным, одиноким.
  • 888 - знак великого долга, знак служения народу. Правитель с тремя восьмерками добивается выдающихся результатов.
  • 8888 - эти люди обладают парапсихологическими способностями и исключительной восприимчивостью к точным наукам. Им открыты сверхъестественные пути.

Ячейка 9 - ум, мудрость. Отсутствие девяток - свидетельство того, что умственные способности крайне ограничены.

  • 9 - эти люди должны всю жизнь упорно трудиться, чтобы восполнить недостаток ума.
  • 99 - эти люди умны от рождения. Учатся всегда неохотно, потому что знания даются им легко. Они наделены чувством юмора с ироничным оттенком, независимые.
  • 999 - очень умны. К учению вообще не прикладывают никаких усилий. Прекрасные собеседники.
  • 9999 - этим людям открывается истина. Если у них к тому же развита интуиция, то они гарантированы от провала в любом из своих начинаний. При всем этом они, как правило, довольно приятны, так как острый ум делает их грубыми, немилосердными и жестокими.

Итак, составив магический квадрат Пифагора и зная значение всех комбинаций цифр, входящих в его ячейки, вы сможете в достаточной мере оценить те качества вашей натуры, которыми наделила матушка - природа.

Латинские квадраты

Не смотря на то, что математиков интересовали в основном магические квадраты наибольшее применение в науке и технике нашли латинские квадраты.

Латинским квадратом называется квадрат nхn клеток, в которых написаны числа 1, 2,…, n, притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.3 изображены два таких квадрата 4х4. Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными.

Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причём в такой занимательной формулировке: “ Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и кроме того поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить всех офицеров в каре 6 х 6 так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?”

Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не существует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений n и для таких четных значений n, которые делятся на 4. Эйлер выдвинул гипотезу, что для остальных значений n, то есть если число n при делении на 4 даст в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов 6 6 не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. помощью ЭВМ были найдены сначала ортогональные квадраты 10х10, потом 14х14, 18х18, 22х22. А затем было показано, что для любого n , кроме 6, существуют ортогональные квадраты nхn.

Магические и латинские квадраты - близкие родственники. Пусть мы имеем два ортогональных квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число n(a - 1)+b, где а - число в такой клетке первого квадрата, а b - число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.

Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для того разобьем квадратный участок земли на 16 делянок (рис.4). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт - на четырех делянках, соответствующих следующей полосе, и т. д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают:

первая - количество килограммов удобрения первого вида, вносимого на этот участок, а вторая - количество вносимого удобрения второго вида. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.

Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике.

квадрат магический пифагор латинский

Заключение

В настоящем реферате рассмотрены вопросы, связанные с историей развития одного из вопросов математики, занимавшего умы очень многих великих людей, - магических квадратов. Несмотря на то, что собственно магические квадраты не нашли широкого применения в науке и технике, они подвигли на занятия математикой множество незаурядных людей и способствовали развитию других разделов математики (теории групп, определителей, матриц и т.д.).

Ближайшие родственники магических квадратов - латинские квадраты нашли многочисленные применения как в математике, так и в ее приложениях при постановке и обработке результатов экспериментов. В реферате приведен пример постановки такого эксперимента.

В реферате также рассмотрен вопрос о квадрате Пифагора, представляющем исторический интерес и, возможно, полезном для составления психологического портрета личности.

Список литературы

  • 1. Энциклопедический словарь юного математика. М., «Педагогика», 1989г.
  • 2. М. Гарднер «Путешествие во времени», М., «Мир», 1990г.
  • 3. Физкультура и спорт № 10, 1998г.