Сказки        24.12.2021   

Сформулируйте определение квадратичной функции. Квадратичная функция. Визуальный гид (2019). Сбор и использование персональной информации

XIII областном научном форуме молодых исследователей

«Шаг в будущее - 2010»

Исследовательская работа

Квадратичная функция: её исследование и построение графика.

МОУ «Шипаковская основная

общеобразовательная школа »

Руководитель:

Учитель математики

МОУ «Шипаковская основная

общеобразовательная школа »

Российская Федерация

2010

Краткая аннотация

В данной исследовательской работе в доступной форме изложен материал о квадратичной функции, её свойствах.

Были построены графики 33 квадратичных функций отличных по структуре. На основании данных составлен алгоритм исследования.

Представлены два способа построения графиков. Определен свой алгоритм построения графиков.

При написании исследовательской работы использованы опубликованные материалы, программа ADVANCED GRAPHER, построены различные графики. Свои исследования я вела в течение прошлого учебного года.

Квадратичная функция: её исследование и построение графика

Россия, Тюменская область, Юргинский район, с. Шипаково,

МОУ « Шипаковская основная общеобразовательная школа », ученица 9 класса.

Аннотация

Цель работы: Исследование свойств квадратичной функции, особенностей расположения графиков на координатной плоскости, изучение алгоритмов построения графиков функций на координатной плоскости.

Задачи:

Исследовать свойства квадратичной функции. Выявить от чего зависит расположение графиков данных функций на координатной плоскости. Изучить алгоритмы построения квадратичной функции. Научиться быстро и правильно строить графики квадратичных функций на координатной плоскости.

Методы и приемы работы:

Исследование графиков квадратичных функций, изучение специальной литературы, поиск информации в Интернете, построение графиков квадратичных функций с помощью программы ADVANCED GRAPHER.

Полученные данные:

Расположение графиков квадратичных функций зависит от значения а, b, с, дискриминанта. Построить график данной функции можно двумя способами: по точкам, во вспомогательной системе координат через выделение полного квадрата.

Выводы:

1.Если а=1, то график квадратичной функции представляет собой график у = х2, перенесенный параллельно оси у с вершиной в точке (- ;-).

2.Если а>0, то ветви параболы направлены вверх. Если а<0, то ветви параболы направлены вниз.

3.Все графики квадратичных функций имеют ось симметрии, проходящей через вершину параболы, параллельно оси у, или являющуюся.

4. Для исследования графиков достаточно знать значение а, координаты вершины и точки пересечения с осью х.

5.Если а=1, координаты вершины целые числа, то удобней строить график с помощью вспомогательной системы координат. Если нет, то строить график по точкам.

Квадратичная функция: её исследование и построение графика

Россия, Тюменская область, Юргинский район, с. Шипаково,

МОУ « Шипаковская основная общеобразовательная школа », ученица 9 класса.

Научная статья

Квадратичной функцией называется функция, которую можно задать формулой вида

y = ax² + bx + c , где a ≠0.

Я решила построить различные графики квадратичных функций с помощью программы ADVANCED GRAPHER и исследовать их. Взяла произвольные формулы квадратичных функций, различные по структуре (формулы данных квадратичных функций отличаются друг от друга значениями а, b,с). Сравнила координаты вершин параболы построенных графиков и высчитанные по формуле (- ; -). А также нашла значения дискриминанта.

1. Квадратичная функция: у = х2 (элементарная квадратичная функция: а=1, b=0, с=0). (Приложение 1)

b=0, с=0

2. Квадратичная функция: у = 3х2 (а>0, b=0, с=0) (Приложение 2)

3. Квадратичная функция: у = -3х2 (а<0, b=0, с=0) (Приложение 3)

4. Квадратичная функция: у = х2 (0 <а <1, b=0, с=0) (Приложение 4)

5. Квадратичная функция: у = -х2 (0 >а >1, b=0, с=0) (Приложение 5)

Графики квадратичных функций, у которых а >0, b=0

6. Квадратичная функция: у = х2+4 (а=1, b=0, с>0) (Приложение 6)

7. Квадратичная функция: у = х2-4 (а=1, b=0, с<0) (Приложение 7)

8. Квадратичная функция: у = 2х2+4 (а>1, b=0, с>0) (Приложение 8)

9. Квадратичная функция: у = 2х2-4 (а>1, b=0, с<0) (Приложение 9)

10. Квадратичная функция: у = х2+4 (0<а<1, b=0, с>0) (Приложение 10)

11. Квадратичная функция: у = х2-4 (0<а<1, b=0, с<0) (Приложение 11)

Графики квадратичных функций, у которых а <0, b=0

12. Квадратичная функция: у = - х2+5 (а=-1, b=0, с>0) (Приложение 12)

13. Квадратичная функция: у = - х2-5 (а=-1, b=0, с<0) (Приложение 13)

14. Квадратичная функция: у = -2х2+5 (а<-1, b=0, с>0) (Приложение 14)

15. Квадратичная функция: у = -2х2-5 (а<-1, b=0, с<0) (Приложение 15)

16. Квадратичная функция: у = -х2+5 (0>а>-1, b=0, с>0) (Приложение 16)

17. Квадратичная функция: у = -х2-5 (0>а>-1, b=0, с<0) (Приложение 17)

Графики квадратичных функций, у которых b 0, с=0

18. Квадратичная функция: у = х2+3х (а=1, b≠0, с=0) (Приложение 18)

19. Квадратичная функция: у = - х2+3х (а=1, b≠0, с=0) (Приложение 19)

20. Квадратичная функция: у = 2х2+3х (а>1, b≠0, с=0) (Приложение 20)

21. Квадратичная функция: у = -2х2+3х (а<-1, b≠0, с=0) (Приложение 21)

22. Квадратичная функция: у = х2+3х (0<а<1, b≠0, с=0) (Приложение 22)

23. Квадратичная функция: у = -х2+3х (0>а>1, b≠0, с=0) (Приложение 23)

Графики квадратичных функций, у которых а=1, b≠0, с≠0

24. Квадратичная функция: у = х2+4х-5 (а>0, b≠0, с≠0) (Приложение 24)

25. Квадратичная функция: у = х2+4х+5 (а>0, b≠0, с≠0) (Приложение 25)

26. Квадратичная функция: у = х2+4х+4 (а>0, b≠0, с≠0) (Приложение 26)

Графики квадратичных функций, у которых а= -1, b≠0, с≠0

27. Квадратичная функция: у = - х2+4х+5 (а<0, b≠0, с≠0) (Приложение 27)

28. Квадратичная функция: у = - х2-4х-5 (а<0, b≠0, с≠0) (Приложение 28)

29. Квадратичная функция: у = - х2-4х-4 (а<0, b≠0, с≠0) (Приложение 29)

Графики квадратичных функций, у которых а≠1, b≠0, с≠0

30. Квадратичная функция: у = 2х2+6х+5 (а >1, b≠0, с≠0) (Приложение 30)

31. Квадратичная функция: у = -2х2+6х+5 (а < -1, b≠0, с≠0) (Приложение 31)

Графики квадратичных функций, у которых -1<а<1, b≠0, с≠0

32. Квадратичная функция: у = х2+6х+15 (0 <а <1, b≠0, с≠0) (Приложение 32)

33. Квадратичная функция: у = -х2+6х>а > -1, b≠0, с≠0) (Приложение 33)

Графиками всех квадратичных функций является парабола. Если a > 0, то ветви параболы направлены вверх. Если a < 0, то ветви параболы направлены вверх. Вершина параболы

у = ах² в точке (0;0); у = ах²+с в точке (0;с); у = ах²+вх и у = ах²+вх+с в точке (- ; -).

Ось симметрии – это прямая линия, относительно которой все точки графика функции расположены симметрично. Все графики квадратичных функций имеют ось симметрии, проходящей через вершину. Если функция задана формулой у = ах² или у = ах²+с, то осью симметрии является ось у. Если функция задана формулой у = ах²+ bх или у = ах²+ bх+с, то осью симметрии является прямая х = - .

Сжатие растяжение графиков.

Сжатие: График функции y = аf (x ) (а > 1) получается с помощью растяжения графика функции y = f (x ) вдоль оси y в а раз.

Растяжение: График функции y = аf (x ) (0 < а < 1) получается с помощью сжатия графика функции y = f (x ) вдоль оси y в раз.

График квадратичных функций, при а = 1, представляет собой график у = х2, перенесенный параллельно оси у в вершину (- ;-). если а = -1, то еще и симметрично перенесен относительно прямой у = - (прямой, проходящей через вершину, параллельно оси х).

График квадратичных функций при a > 1, не зависимо от значения b и с, представляет собой график у = х2, который растянут вдоль оси симметрии в а раз от вершины, при 0а раз. Если а<0, а ≠-1, то графики помимо сжатия или растяжения еще и симметрично переносятся относительно прямой у = - .

Зависимость расположение графика квадратичной функции от дискриминанта.

Свойства функции и вид её графика определяются, значением а и дискриминанта

D = b ² - 4ac .

a > 0, D > 0

a > 0, D = 0

a > 0, D < 0

https://pandia.ru/text/78/547/images/image007_45.gif" alt="parabola1" align="left" width="192 height=187" height="187">

a < 0, D > 0

a < 0, D = 0

a < 0, D < 0

https://pandia.ru/text/78/547/images/image010_29.jpg" alt="parabola5" width="196" height="177">
Свойства квадратичных функций

1. Все квадратичные функции имеют область определения: R, все действительные числа.

2. Область значений зависит от значения а: при a > 0 [- ;+∞), при a < 0 (-∞;- ] .

3. Четность, нечетность квадратичных функций: при b = 0 функция четная (то есть у = ах2+с= а(-х)2+с; при b ≠0, то функция ни четная, ни нечетная.

4. Нули функции (то есть при каких значениях аргумента, значения функции равно 0).

Если D > 0, то график квадратичной функции имеет два нуля: х1=; х2=

и график функции пересекают ось х в 2 точках.

Если D = 0, то график квадратичной функции имеет один нуль: x = -;

и график функции касается оси х в точке (- ; 0)

Если D < 0, то график квадратичной функции не имеет нулей, график не пересекает ось х.

5. Промежутки знакопостоянства (промежутки из области определения функции, где функция принимает положительные или отрицательные значения, т. е. у>0 или у<0).

Если а>0, D>0, то у>0 при х(-∞;x1 )U(x2 ; + ∞); у<0 при хhttps://pandia.ru/text/78/547/images/image014_31.gif" width="13" height="13">(-∞;x )U(x ; +∞).

Если а>0, D <0, то у>0 при х https://pandia.ru/text/78/547/images/image014_31.gif" width="13" height="13 src="> (х1;х2); у<0 при х(-∞;x1 )U(x2 ; ∞).

Если а<0, D =0, то у<0 при х (-∞;x )U(x ; ∞).

Если а<0, D <0, то у<0 при х https://pandia.ru/text/78/547/images/image014_31.gif" width="13" height="13"> [- ;+∞); убывает при х (-∞;- ].

Если а<0, функция возрастает при х(-∞;- ], убывает при х [- ;+∞).

7. Экстремумы функции (точки максимума, минимума) В точках максимума (минимума) значение функции больше (соответственно меньше) всех соседних ее значений.

Если а >0, то у графиков есть только минимум функций, если а <0 – только максимум функций. Это точки вершины параболы.

Если a > 0, то x min = - ; y min = - ; если a < 0 x max = - ; y max = - .

Алгоритм исследования свойств квадратичной функции

Область определения. Область значений. Четность нечетность функции. Нули функции. Промежутки знакопостоянства. Промежутки монотонности. Экстремумы функции.

Проведя анализ построения графиков моих квадратичных функций, я составила алгоритм построения графиков квадратичных функций по точкам (1 способ).

Находим абсциссу вершины параболы по формуле х0 = - . Находим значение у0 по формуле у0 = - . На координатной плоскости строим вершину параболы с координатами (х0 ; у0). Определим направление ветвей параболы (по коэффициенту а). Проведем ось симметрии параболы через ее вершину, параллельно оси у. Выбираем значения х слева или справа от оси симметрии параболы и заполняет таблицу значений. Строим точки по полученным координатам на координатной плоскости. Строим график квадратичной функции без ограничений на крайних точках и подписываем график.

Я по данному алгоритму построю график у = х2 - 4х + 3

2. D = b2-4ас = (-= 4 у = - = .

4. а>0, ветви параболы направлены вверх.

5. Ось симметрии прямая х = 2.

6. Таблица значений

7.Строим точки с полученными координатами на координатной плоскости.

8 класс" href="/text/category/8_klass/" rel="bookmark">8 классе мы учились выделять в квадратных уравнениях полный квадрат. Елена Николаевна еще тогда говорила, что от этого зависит расположение графика на координатной плоскости. Я решила проверить: можно ли через выделение полного квадрата составить алгоритм построения графиков квадратичных функций на координатной плоскости.

Исследовала уравнения моих квадратичных функций с 18-33 и сравнила полученные формулы с вершинами построенных графиков:

18. у = х2+3х = (х2+2· 1,5·х +2,25) – 2,25 = (х+1,5) 2-2,25 а = 1 вершина (-1,5;-2,25)

19. у = - х2+3х = -1(х2-2 ·1,5 ·х +2,25) + 2,25 = -1(х – 1,5)2 +2,25 а = -1 вершина (1,5; 2,25)

20. у = 2х2+3х = 2(х2+2·0,75·х + 0,5625) -1,125 = 2(х+0,75)2 -1,125 а = 2

вершина (-0,75;-1,125)

21. у = -2х2+3х = -2(х2-2·0,75·х +0,5625)+1,125 =-2(х-0,75)2 +1,125 а = 2

вершина (0,75;1,125)

22. у = х2+3х = (х2 +2·3·х + 9) – 4,5= (х +3)2 -4,5 а =https://pandia.ru/text/78/547/images/image004_61.gif" width="16 height=41" height="41">х2+3х = -(х2 -2·3·х + 9) + 4,5= -(х -3)2 +4,5 а = -https://pandia.ru/text/78/547/images/image004_61.gif" width="16 height=41" height="41">х2+4х+15 =(х2 +2·6·х + 36) –18+15= (х +6)2 -3 а =https://pandia.ru/text/78/547/images/image004_61.gif" width="16 height=41" height="41">х2+6х-14 = -(х2 -2·6·х + 36) +18 -14= -(х -6)2 +4 а =https://pandia.ru/text/78/547/images/image001_112.gif" width="24" height="41">; n = -. То есть координаты вершины параболы (m ; n)

Алгоритм построения графика квадратичной функции с помощью вспомогательной системы координат через выделение полного квадрата (2 способ).

1.Преобразование формулы у=ах²+вх+с = у =а(х – m)2 + n , где m= -; n = -

или у = а (х + )2 -

2. Растяжение графика y = x 2 вдоль оси у в а раз при а>1, при 0 < a < 1 - это сжатие в a раз.
Если a < 0, произвести ещё и зеркальное отражение графика относительно оси х (ветви параболы будут направлены вниз).
Результат преобразования: график функции у= ax 2.

https://pandia.ru/text/78/547/images/image020_21.jpg" width="147" height="193 src=">

y = a (x - m )2 вдоль оси y на n (вверх при n > 0 и вниз при n < 0). Результат преобразования: график функции y = a(x-m) 2+n

https://pandia.ru/text/78/547/images/image026_15.jpg" width="336" height="161 src=">

4. Параллельный перенос графика функции
y = - (x + 2)2 вдоль оси y на -1.

6 класс" href="/text/category/6_klass/" rel="bookmark">6 класс , . – Изд.4 –е.- М. Издательство “Русское слово”, 1997г. “Алгебра”. Учебник 9 класс. , . М. Просвещение, 2004г. “Математика” Еженедельная учебно-методическая газета. Издательский дом “Первое сентября”. № 48, 2003г. “Математика” Еженедельная учебно-методическая газета. Издательский дом “Первое сентября”. №7, 1998г. Тесты и экзаменационные задания по математике. Учебное пособие. , . – Издательский дом “Питер”, 2005 г. “Абсолютная величина”. . – М.: Просвещение, 1968. “Функции и построение графиков”. .- М.: Просвещение, 1968. “Задачи повышенной трудности в курсе алгебры для 7-9 классов”. . М.: Просвещение, 1991.

Квадратичная функция: её исследование и построение графика

Россия, Тюменская область, Юргинский район, с. Шипаково,

МОУ « Шипаковская основная общеобразовательная школа », ученица 9 класса.

План исследования

Обоснование проблемы. В контрольно - измерительных материалах по алгебре в 9 классе для прохождения государственной итоговой аттестации в новой форме выяснилось, что много заданий встречаются по построению графиков квадратичных функций, их исследованию. При построении графиков квадратичной функции возникает трудности из-за того, что при составлении таблицы значений при небольших, по модулю, значениях аргумента, значения функции иногда бывают очень большие, по модулю, и не входят на страницу тетради. Поэтому я решила исследовать: свойства квадратичной функции и от чего зависит расположение графиков квадратичных функций на координатной плоскости; изучить алгоритмы построения графиков данных функций и выбрать наиболее легкий алгоритм построения графика квадратичной функции.

Гипотеза:

Если я изучу свойства квадратичной функции, алгоритмы построения графиков, выявлю, от чего зависит расположение графиков на координатной плоскости, то я смогу быстро и правильно строить графики данной функции, выбрав наиболее легкий способ построения; исследовать данную функцию.

Описание метода:

1. Анализируя свои квадратичные функции я сделала вывод, что для проведения исследования свойств функций достаточно знать:

Значение а: для определения направлений ветвей параболы, сжатие и растяжение графиков, промежутков знакопостоянства;

Координаты вершин параболы: для определения области значений, промежутков монотонности, экстремумы функции;

Значение b: для определения четности, или ни четности, ни нечетности;

Значение дискриминанта: для определения количества нулей функций;

Если D < 0, то нулей функции нет;

Если D = 0, то нуль функции один – это вершина параболы;

Если D > 0, то нулей функции 2.

Нули функции: для определения промежутков знакопостоянства.

2. Работая над своей темой, я вывела свой способ построения графиков квадратичной функции (с помощью вспомогательной системы координат) по следующему алгоритму:

    Определить вершину параболы. Построить вспомогательную систему координат с центром в точке вершины. Построить график у = х2 в точке вершины Если а › 0, то ветви направить вверх.

Если а ‹ 0, то ветви направить вниз.

    Если IaI ›1, то растянуть график относительно оси симметрии в а раз

Если 0 ‹ IaI ‹1, то сжать график относительно оси симметрии в а раз

3. Построение графиков квадратичных функций удобно проводить различными способами. Если а = 1, координаты вершины целые числа, то с помощью вспомогательной системы координат. Если а ≠ 1, координаты вершины параболы не являются целыми числами, то способом: по точкам.

4. На уроках алгебры в 9 классе после выполнения данной исследовательской работы, я помогаю одноклассникам усвоить данные методы построения графиков квадратичных функций моими способами, проводить их исследование.

Результат:

В ходе исследовательской работы я составила алгоритм исследования свойств квадратичной функции и апробировала его на практике. Узнала, что квадратичные функции можно задать двумя способами: ах2+bх+с и а(х-m)+n. Научилась по 2 алгоритмам строить графики данных функций. Выявила, от чего зависит расположения графиков на координатной плоскости. Создала методическое пособие «Подводные камни квадратичной функции», которые раздала ученикам своей школы, презентовали другим школам. В дальнейшем планирую исследовать квадратичные функции, имеющие в формуле модуль.

Квадратичной функцией называется функция вида:
y=a*(x^2)+b*x+c,
где а - коэффициент при старшей степени неизвестной х,
b - коэффициент при неизвестной х,
а с - свободный член.
Графиком квадратичной функции является кривая, называемая параболой. Общий вид параболы представлен на рисунке ниже.

Рис.1 Общий вид параболы.

Есть несколько различных способов построения графика квадратичной функции. Мы рассмотрим основной и самый общий из них.

Алгоритм построения графика квадратичной функции y=a*(x^2)+b*x+c

1. Построить систему координат, отметить единичный отрезок и подписать координатные оси.

2. Определить направление ветвей параболы (вверх или вниз).
Для этого надо посмотреть на знак коэффициента a. Если плюс - то ветви направлены вверх, если минус - то ветви направлены вниз.

3. Определить координату х вершины параболы.
Для этого нужно использовать формулу Хвершины = -b/2*a.

4. Определить координату у вершины параболы.
Для этого подставить в уравнение Увершины = a*(x^2)+b*x+c вместо х, найденное в предыдущем шаге значение Хвершины.

5. Нанести полученную точку на график и провести через неё ось симметрии, параллельно координатной оси Оу.

6. Найти точки пересечения графика с осью Ох.
Для этого требуется решить квадратное уравнение a*(x^2)+b*x+c = 0 одним из известных способов. Если в уравнение не имеет вещественных корней, то график функции не пересекает ось Ох.

7. Найти координаты точки пересечения графика с осью Оу.
Для этого подставляем в уравнение значение х=0 и вычисляем значение у. Отмечаем эту и симметричную ей точку на графике.

8. Находим координаты произвольной точки А(х,у)
Для этого выбираем произвольное значение координаты х, и подставляем его в наше уравнение. Получаем значение у в этой точке. Нанести точку на график. А также отметить на графике точку, симметричную точке А(х,у).

9. Соединить полученные точки на графике плавной линией и продолжить график за крайние точки, до конца координатной оси. Подписать график либо на выноске, либо, если позволяет место, вдоль самого графика.

Пример построения графика

В качестве примера, построим график квадратичной функции заданной уравнением y=x^2+4*x-1
1. Рисуем координатные оси, подписываем их и отмечаем единичный отрезок.
2. Значения коэффициентов а=1, b=4, c= -1. Так как а=1, что больше нуля ветви параболы направлены вверх.
3. Определяем координату Х вершины параболы Хвершины = -b/2*a = -4/2*1 = -2.
4. Определяем координату У вершины параболы
Увершины = a*(x^2)+b*x+c = 1*((-2)^2) + 4*(-2) - 1 = -5.
5. Отмечаем вершину и проводим ось симметрии.
6. Находим точки пересечения графика квадратичной функции с осью Ох. Решаем квадратное уравнение x^2+4*x-1=0.
х1=-2-√3 х2 = -2+√3. Отмечаем полученные значения на графике.
7. Находим точки пересечения графика с осью Оу.
х=0; у=-1
8. Выбираем произвольную точку B. Пусть она имеет координату х=1.
Тогда у=(1)^2 + 4*(1)-1= 4.
9. Соединяем полученные точки и подписываем график.

На уроках математики в школе Вы уже познакомились с простейшими свойствами и графиком функции y = x 2 . Давайте расширим знания по квадратичной функции .

Задание 1.

Построить график функции y = x 2 . Масштаб: 1 = 2 см. Отметьте на оси Oy точку F (0; 1/4). Циркулем или полоской бумаги измерьте расстояние от точки F до какой-нибудь точки M параболы. Затем приколите полоску в точке M и поверните ее вокруг этой точки так, чтобы она стала вертикальной. Конец полоски опустится немного ниже оси абсцисс (рис. 1) . Отметьте на полоске, насколько она выйдет за ось абсцисс. Возьмите теперь другую точку на параболе и повторите измерение еще раз. Насколько теперь опустился край полоски за ось абсцисс?

Результат: какую бы точку на параболе y = x 2 вы не взяли, расстояние от этой точки до точки F(0; 1/4) будет больше расстояния от той же точки до оси абсцисс всегда на одно и то же число – на 1/4.

Можно сказать иначе: расстояние от любой точки параболы до точки (0; 1/4) равно расстоянию от той же точки параболы до прямой y = -1/4. Эта замечательная точка F(0; 1/4) называется фокусом параболы y = x 2 , а прямая y = -1/4 – директрисой этой параболы. Директриса и фокус есть у каждой параболы.

Интересные свойства параболы:

1. Любая точка параболы равноудалена от некоторой точки, называемой фокусом параболы, и некоторой прямой, называемой ее директрисой.

2. Если вращать параболу вокруг оси симметрии (например, параболу y = x 2 вокруг оси Oy), то получится очень интересная поверхность, которая называется параболоидом вращения.

Поверхность жидкости во вращающемся сосуде имеет форму параболоида вращения. Вы можете увидеть эту поверхность, если сильно помешаете ложечкой в неполном стакане чая, а потом вынете ложечку.

3. Если в пустоте бросить камень под некоторым углом к горизонту, то он полетит по параболе (рис. 2).

4. Если пересечь поверхность конуса плоскостью, параллельной какой-либо одной его образующей, то в сечении получится парабола (рис. 3) .

5. В парках развлечений иногда устраивают забавный аттракцион «Параболоид чудес». Каждому, из стоящих внутри вращающегося параболоида, кажется, что он стоит на полу, а остальные люди каким-то чудом держаться на стенках.

6. В зеркальных телескопах также применяют параболические зеркала: свет далекой звезды, идущий параллельным пучком, упав на зеркало телескопа, собирается в фокус.

7. У прожекторов зеркало обычно делается в форме параболоида. Если поместить источник света в фокусе параболоида, то лучи, отразившись от параболического зеркала, образуют параллельный пучок.

Построение графика квадратичной функции

На уроках математики вы изучали получение из графика функции y = x 2 графиков функций вида:

1) y = ax 2 – растяжение графика y = x 2 вдоль оси Oy в |a| раз (при |a| < 0 – это сжатие в 1/|a| раз, рис. 4 ).

2) y = x 2 + n – сдвиг графика на n единиц вдоль оси Oy, причем, если n > 0, то сдвиг вверх, а если n < 0, то вниз, (или же можно переносить ось абсцисс).

3) y = (x + m) 2 – сдвиг графика на m единиц вдоль оси Ox: если m < 0, то вправо, а если m > 0, то влево, (рис. 5) .

4) y = -x 2 – симметричное отображение относительно оси Ox графика y = x 2 .

Подробнее остановимся на построении графика функции y = a(x – m) 2 + n .

Квадратичную функцию вида y = ax 2 + bx + c всегда можно привести к виду

y = a(x – m) 2 + n, где m = -b/(2a), n = -(b 2 – 4ac)/(4a).

Докажем это.

Действительно,

y = ax 2 + bx + c = a(x 2 + (b/a) x + c/a) =

A(x 2 + 2x · (b/a) + b 2 /(4a 2) – b 2 /(4a 2) + c/a) =

A((x + b/2a) 2 – (b 2 – 4ac)/(4a 2)) = a(x + b/2a) 2 – (b 2 – 4ac)/(4a).

Введем новые обозначения.

Пусть m = -b/(2a) , а n = -(b 2 – 4ac)/(4a) ,

тогда получим y = a(x – m) 2 + n или y – n = a(x – m) 2 .

Сделаем еще замены: пусть y – n = Y, x – m = X (*).

Тогда получим функцию Y = aX 2 , графиком которой является парабола.

Вершина параболы находится в начале координат. X = 0; Y = 0.

Подставив координаты вершины в (*), получаем координаты вершины графика y = a(x – m) 2 + n: x = m, y = n.

Таким образом, для того, чтобы построить график квадратичной функции, представленной в виде

y = a(x – m) 2 + n

путем преобразований, можно действовать следующим образом:

a) построить график функции y = x 2 ;

б) путем параллельного переноса вдоль оси Ox на m единиц и вдоль оси Oy на n единиц – вершину параболы из начала координат перевести в точку с координатами (m; n) (рис. 6) .

Запись преобразований:

y = x 2 → y = (x – m) 2 → y = a(x – m) 2 → y = a(x – m) 2 + n.

Пример.

С помощью преобразований построить в декартовой системе координат график функции y = 2(x – 3) 2 2.

Решение.

Цепочка преобразований:

y = x 2 (1) → y = (x – 3) 2 (2) → y = 2(x – 3) 2 (3) → y = 2(x – 3) 2 – 2 (4) .

Построение графика изображено на рис. 7 .

Вы можете практиковаться в построении графиков квадратичной функции самостоятельно. Например, постройте в одной системе координат с помощью преобразований график функции y = 2(x + 3) 2 + 2. Если у вас возникнут вопросы или же вы захотите получить консультацию учителя, то у вас есть возможность провести бесплатное 25-минутное занятие с онлайн репетитором после регистрации . Для дальнейшей работы с преподавателем вы сможете выбрать подходящий вам тарифный план.

Остались вопросы? Не знаете, как построить график квадратичной функции?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1) Формула параболы y=ax 2 +bx+c ,
если а>0 то ветви параболы направленны вверх ,
а то ветви параболы направлены вниз .
Свободный член c эта точке пересекается параболы с осью OY;

2) , ее находят по формуле x=(-b)/2a , найденный x подставляем в уравнение параболы и находим y ;

3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax 2 +bx+c=0 ;

Виды уравнений:

a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x 1 =(-4+2)/2=-1
x 2 =(-4-2)/2=-3

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x 1 =2
x 2 =-2

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE , чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

Во многих задачах требуется вычислить максимальное или минимальное значение квадратичной функции. Максимум или минимум можно найти, если исходная функция записана в стандартном виде: или через координаты вершины параболы: f (x) = a (x − h) 2 + k {\displaystyle f(x)=a(x-h)^{2}+k} . Более того, максимум или минимум любой квадратичной функции можно вычислить с помощью математических операций.

Шаги

Квадратичная функция записана в стандартном виде

    Запишите функцию в стандартном виде. Квадратичная функция - это функция, уравнение которой включает переменную x 2 {\displaystyle x^{2}} . Уравнение может включать или не включать переменную x {\displaystyle x} . Если уравнение включает переменную с показателем степени больше 2, оно не описывает квадратичную функцию. Если нужно, приведите подобные члены и переставьте их, чтобы записать функцию в стандартном виде.

    График квадратичной функции представляет собой параболу. Ветви параболы направлены вверх или вниз. Если коэффициент a {\displaystyle a} при переменной x 2 {\displaystyle x^{2}} a {\displaystyle a}

    Вычислите -b/2a. Значение − b 2 a {\displaystyle -{\frac {b}{2a}}} – это координата x {\displaystyle x} вершины параболы. Если квадратичная функция записывается в стандартном виде a x 2 + b x + c {\displaystyle ax^{2}+bx+c} , воспользуйтесь коэффициентами при x {\displaystyle x} и x 2 {\displaystyle x^{2}} следующим образом:

    • В функции коэффициенты a = 1 {\displaystyle a=1} и b = 10 {\displaystyle b=10}
    • В качестве второго примера рассмотрим функцию . Здесь a = − 3 {\displaystyle a=-3} и b = 6 {\displaystyle b=6} . Поэтому координату «x» вершины параболы вычислите так:
  1. Найдите соответствующее значение f(x). Подставьте найденное значение «x» в исходную функцию, чтобы найти соответствующее значение f(x). Так вы найдете минимум или максимум функции.

    • В первом примере f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1} вы вычислили, что координата «х» вершины параболы равна x = − 5 {\displaystyle x=-5} . В исходной функции вместо x {\displaystyle x} подставьте − 5 {\displaystyle -5}
    • Во втором примере f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4} вы нашли, что координата «х» вершины параболы равна x = 1 {\displaystyle x=1} . В исходной функции вместо x {\displaystyle x} подставьте 1 {\displaystyle 1} , чтобы найти ее максимальное значение:
  2. Запишите ответ. Перечитайте условие задачи. Если нужно найти координаты вершины параболы, в ответе запишите оба значения x {\displaystyle x} и y {\displaystyle y} (или f (x) {\displaystyle f(x)} ). Если необходимо вычислить максимум или минимум функции, в ответе запишите только значение y {\displaystyle y} (или f (x) {\displaystyle f(x)} ). Еще раз посмотрите на знак коэффициента a {\displaystyle a} , чтобы проверить, что вы вычислили: максимум или минимум.

    Квадратичная функция записана через координаты вершины параболы

    1. Запишите квадратичную функцию через координаты вершины параболы. Такое уравнение имеет следующий вид:

      Определите направление параболы. Для этого посмотрите на знак коэффициента a {\displaystyle a} . Если коэффициент a {\displaystyle a} положительный, парабола направлена вверх. Если коэффициент a {\displaystyle a} отрицательный, парабола направлена вниз. Например:

      Найдите минимальное или максимальное значение функции. Если функция записана через координаты вершины параболы, минимум или максимум равен значению коэффициента k {\displaystyle k} . В приведенных выше примерах:

      Найдите координаты вершины параболы. Если в задаче требуется найти вершину параболы, ее координаты равны (h , k) {\displaystyle (h,k)} . Обратите внимание, когда квадратичная функция записана через координаты вершины параболы, в скобки должна быть заключена операция вычитания (x − h) {\displaystyle (x-h)} , поэтому значение h {\displaystyle h} берется с противоположным знаком.

    Как вычислить минимум или максимум с помощью математических операций

      Сначала рассмотрим стандартный вид уравнения. Запишите квадратичную функцию в стандартном виде: f (x) = a x 2 + b x + c {\displaystyle f(x)=ax^{2}+bx+c} . Если нужно, приведите подобные члены и переставьте их, чтобы получить стандартное уравнение.

      Найдите первую производную. Первая производная квадратичной функции, которая записана в стандартном виде, равна f ′ (x) = 2 a x + b {\displaystyle f^{\prime }(x)=2ax+b} .

      Производную приравняйте к нулю. Напомним, что производная функции равна угловому коэффициенту функции в определенной точке. В минимуме или максимуме угловой коэффициент равен нулю. Поэтому, чтобы найти минимальное или максимальное значение функции, производную нужно приравнять к нулю. В нашем примере: