Литература         21.11.2023   

Соединение веществ в химии. Простые и сложные вещества. Аллотропия. Химические соединения и смеси. Основные фазы в сплавах

Характерные особенности химических соединений:

  • 1. Кристаллическая решетка отличается от решеток компонентов, образующих соединение.
  • 2. В соединении всегда сохраняется простое кратное соотношение компонентов. Это позволяет выразить их состав простой формулой AnBm, где А и В - соответствующие элементы; п и т - простые числа.
  • 3. Свойства соединения резко отличаются от свойств образующих его компонентов.
  • 4. Температура плавления (диссоциации) постоянная.
  • 5. Образование химического соединения сопровождается значительным тепловым эффектом.

В отличие от твердых растворов химические соединения обычно образуются между компонентами, имеющими большое различие в электронном строении атомов и кристаллических решеток.

В качестве примера типичных химических соединений с нормальной валентностью можно указать на соединения магния с элементами IV-VI групп периодической системы: Mg2Sn, Mg2Pb, Mg2P, Mg8Sb, Mg3Bia, MgS и др.

Соединения одних металлов с другими - интерметаллиды (интерметаллических соединений).

Соединения металла с неметаллом (нитриды, карбиды, гидриды и т. д.), которые могут обладать Ме связью - металлическими соединениями.

Большое число химических соединений, образующихся в металлических сп-лавах, отличается по некоторым особенностям от типичных химических соединений, так как не подчиняется законам валентности и не имеет постоянного состава.

Фазы внедрения.

Переходные металлы (Fe, Mn, Сг, Мо и др.) образуют с углеродом, азотом, бором и водородом (имеют малый атомный радиус) соединения: карбиды, нитриды, бориды и гидриды. Они имеют общность строения и свойств.

Фазы внедрения имеют формулу М4Х (Fe4N, Mn4N и др.), М2Х (W2C, Mo2C, Fe2N и др.), MX (WC, VC, TiC, NbC, TiN, VN и др.).

Кристаллическая структура фаз внедрения определяется соотношением атомных радиусов неметалла (Rx) и металла (Rм). Если Rx/Rm < 59, то атомы металла в этих фазах расположены по типу одной из простых кристаллических решеток: кубической (К8, К12) или гексагональной (Г12), в которую внедряются атомы неметалла, занимая в ней определенные поры.

Фазы внедрения являются фазами переменного состава. Карбиды и нитриды, относящиеся к фазам внедрения, обладают высокой твердостью.

Рассмотренные выше твердые растворы внедрения образуются при значительно меньшей концентрации второго компонента (С, N, И) и имеют решетку металла растворителя, тогда как фазы внедрения получают кристаллическую решетку, отличную от решетки металла.

Если условие RX/RM < 0,59 не выполняется, как это наблюдается для карбида железа, марганца и хрома, то образуются соединения с более сложными решетками, и такие соединения нельзя считать фазами внедрения. На базе фаз внедрения легко образуются твердые растворы вычитания, называемые иногда твердыми растворами с дефектной решеткой. В твердых растворах вычитания часть узлов решетки, которые должны быть заняты атомами одного из компонентов, оказываются свободными. В избытке по сравнению со стехиометрическим соотношением МпХт имеется другой компонент.

Электронные соединения

Одновалентные Ме и неМе переходных групп соед-ся с простыми Ме с валентностью от 2 до 5 (Cu, Ag, Co, Fe). У них опр-ое отношение числа валентных е к числу атомов (е концентрации): 3/2 (1,5); 21/13 (1,62); 7/4 (1,75).

В отличие от хим. соедин. С нормальной валентностью они обр-ют тв.р-ры в широком интервале концентрации.

Фазы Лавеса.

Эти фазы имеют формулу АВ2 и образуются между компонентами типа А и В при отношении атомных диаметров DА/DB = 1,2 (чаще 1,1-1,6). Фазы Лавеса имеют плотноупакованную кристаллическую решетку гексагональную (MgZn2 и MgNi2) или гранецентрированную кубическую (MgCu2). К фазам Лавеса относятся AgBe2, CaAl2, TiBe2, TiCr2 и др. (тип MgCu2) или BaMg2, MoBe2, TiMn2 и др. (тип MgZn2).

Химия - удивительная и, признаться, запутанная наука. Почему-то ассоциируется она с яркими экспериментами, разноцветными пробирками, густыми облаками пара. Но мало кто задумывается о том, откуда же берётся это «волшебство». На самом деле ни одна реакция не проходит без образования соединений между атомами реагентов. Более того, эти «перемычки» иногда встречаются и в простых элементах. Они влияют на способность веществ вступать в реакции и объясняют некоторые их физические свойства.

Какие же бывают виды химических связей и как они влияют на соединения?

Теория

Начинать надо с самого простого. Химическая связь - это взаимодействие, при котором атомы веществ соединяются и образуют более сложные вещества. Ошибочно полагать, что это свойственно только соединениям вроде солей, кислот и оснований - даже простые вещества, молекулы которых состоят из двух атомов, имеют эти «перемычки», если так можно условно назвать связь. Кстати, важно запомнить, что объединиться могут только атомы, имеющие разные заряды (это основы физики: одинаково заряженные частицы отталкиваются, а противоположные -- притягиваются), так что в сложных веществах всегда найдётся катион (ион с положительным зарядом) и анион (отрицательная частица), а само соединение всегда будет нейтральным.

Теперь попробуем разобраться в том, как происходит образование химической связи.

Механизм образования

У любого вещества есть определённое количество электронов, распределённых по энергетическим слоям. Самым уязвимым считается внешний слой, на котором обычно находится самое малое количество этих частиц. Узнать их число можно, посмотрев на номер группы (строка с цифрами от одного до восьми в верхней части таблицы Менделеева), в которой находится химический элемент, а количество энергетических слоёв равно номеру периода (от одного до семи, вертикальная строка слева от элементов).

В идеале на внешнем энергетическом слое находятся восемь электронов. Если же их не хватает, атом старается перетянуть их у другой частицы. Именно в процессе отбора необходимых для завершения внешнего энергетического слоя электронов образуются химические связи веществ. Их число может варьироваться и зависит от количества валентных, или неспаренных, частиц (чтобы узнать, сколько их в атоме, нужно составить его электронную формулу). Число электронов, не имеющих пару, будет равно количеству образовавшихся связей.

Чуть подробнее о типах

Виды химических связей, образующихся при реакциях или же просто в молекуле какого-то вещества, целиком и полностью зависят от самого элемента. Различают три типа «перемычек» между атомами: ионный, металлический и ковалентный. Последний, в свою очередь, делится на полярный и неполярный.

Для того чтобы понять, какой связью связаны атомы, используют своеобразное правило: если элементы находятся в правой и левой частях таблицы (то есть являются металлом и неметаллом, например NaCl), то их соединение - отличный пример ионной связи. Два неметалла образуют ковалентную полярную связь (HCl), а два атома одного вещества, соединяясь в одну молекулу, - ковалентную неполярную (Cl 2 , O 2). Вышеназванные типы химических связей не подходят для веществ, состоящих из металлов, - там встречается исключительно металлическая связь.

Ковалентное взаимодействие

Как уже упоминалось ранее, виды химических связей имеют определённое влияние на вещества. Так, например, ковалентная «перемычка» очень нестойкая, из-за чего соединения с ней легко разрушаются при малейшем внешнем воздействии, нагревании например. Правда, касается это только молекулярных веществ. Те же, что имеют немолекулярное строение, практически неразрушимы (идеальный пример - кристалл алмаза - соединение атомов углерода).

Вернёмся к полярной и неполярной ковалентной связи. С неполярной всё просто - электроны, между которыми образуется «перемычка», находятся на равном расстоянии от атомов. Но во втором случае они смещаются к одному из элементов. Победителем в «перетягивании» окажется то вещество, электроотрицательность (способность привлекать электроны) которого выше. Определяется она по специальным таблицам, и чем больше разница этой величины у двух элементов, тем более полярной будет связь между ними. Правда единственное, для чего может пригодиться знание электроотрицательности элементов, - определение катиона (положительный заряд - вещество, у которого эта величина будет меньше) и аниона (отрицательная частица с лучшей способностью к привлечению электронов).

Ионная связь

Для соединения металла и неметалла подходят далеко не все типы химических связей. Как уже говорилось выше, если разница в электроотрицательности элементов огромна (а именно так бывает, когда они расположены в противоположных частях таблицы), между ними образуется ионная связь. В этом случае валентные электроны переходят от атома с меньшей электроотрицательностью к атому с большей, образуя анион и катион. Самым ярким примером подобной связи является соединение галогена и металла, например AlCl 2 или HF.

Металлическая связь

С металлами всё ещё проще. Им чужды вышеперечисленные виды химических связей, потому что у них есть собственная. Соединять она может как атомы одного вещества (Li 2), так и разных (AlCr 2), в последнем случае образуются сплавы. Если говорить о физических свойствах, то металлы совмещают в себе пластичность и прочность, то есть они не разрушаются при малейшем воздействии, а просто изменяют форму.

Межмолекулярная связь

Кстати, химические связи в молекулах тоже существуют. Они так и называются - межмолекулярными. Самый распространённый тип - водородная связь, при которой атом водорода заимствует электроны у элемента с высокой электроотрицательностью (у молекулы воды, например).

Все вещества делятся на простые и сложные.

Простые вещества - это вещества, которые состоят из атомов одного элемента.

В некоторых простых веществах атомы одного элемента соединяются друг с другом и образуют молекулы. Такие простые вещества имеют молекулярное строение . К ним относятся: , . Все эти вещества состоят из двухатомных молекул. (Обратите внимание, что названия простых веществ совпадают с названиями элементов!)

Другие простые вещества имеют атомное строение , т. е. состоят из атомов, между которыми существуют определенные связи. Примерами таких простых веществ являются все ( , и т. д.) и некоторые ( , и др.). Не только названия, но и формулы этих простых веществ совпадают с символами элементов.

Существует также группа простых веществ, которые называются . К ним относятся: гелий Не, неон Ne, аргон Аr, криптон Kr, ксенон Хе, радон Rn. Эти простые вещества состоят из не связанных друг с другом атомов.

Каждый элемент образует как минимум одно простое вещество. Некоторые элементы могут образовывать не одно, а два или несколько простых веществ. Это явление называется аллотропией.

Аллотропия - это явление образования нескольких простых веществ одним элементом.

Разные простые вещества, которые образуются одним и тем же химическим элементом, называются аллотропными видоизменениями (модификациями).

Аллотропные модификации могут отличаться друг от друга составом молекул. Например, элемент кислород образует два простых вещества. Одно из них состоит из двухатомных молекул О 2 и имеет такое же название, как и элемент- . Другое простое вещество состоит из трехатомных молекул О 3 и имеет собственное название - озон.

Кислород О 2 и озон О 3 имеют различные физические и химические свойства.

Аллотропные модификации могут представлять собой твердые вещества, которые имеют различное строение кристаллов. Примером являются аллотропные модификации углерода С - алмаз и графит.

Число известных простых веществ (примерно 400) значительно больше, чем число химических элементов, так как многие элементы могут образовывать две или несколько аллотропных модификаций.

Сложные вещества - это вещества, которые состоят из атомов разных элементов.

Примеры сложных веществ: НCl, Н 2 O, NaCl, СО 2 , H 2 SO 4 и т. д.

Сложные вещества часто называют химическими соединениями. В химических соединениях свойства простых веществ, из которых образуются эти соединения, не сохраняются. Свойства сложного вещества отличаются от свойств простых веществ, из которых оно образуется.

Например, хлорид натрия NaCl может образоваться из простых веществ - металлического натрия Na и газообразного хлора Сl Физические и химические свойства NaCl отличаются от свойств Na и Cl 2 .

В природе, как правило, встречаются не чистые вещества, а смеси веществ. В практической деятельности мы также обычно используем смеси веществ. Любая смесь состоит из двух или большего числа веществ, которые называются компонентами смеси .

Например, воздух представляет собой смесь нескольких газообразных веществ: кислорода О 2 (21 % по объему), (78%), и др. Смесями являются растворы многих веществ, сплавы некоторых металлов и т. д.

Смеси веществ бывают гомогенными (однородными) и гетерогенными (неоднородными).

Гомогенные смеси - это смеси, в которых между компонентами нет поверхности раздела.

Гомогенными являются смеси газов (в частности, воздух), жидкие растворы (например, раствор сахара в воде).

Гетерогенные смеси - это смеси, в которых компоненты разделяются поверхностью раздела.

К гетерогенным относятся смеси твердых веществ (песок + порошок мела), смеси нерастворимых друг в друге жидкостей (вода + масло), смеси жидкостей и нерастворимых в нем твердых веществ (вода + мел).

Важнейшие отличия смесей от химических соединений:

  1. В смесях свойства отдельных веществ (компонентов) сохраняются.
  2. Состав смесей не является постоянным.

Классификация веществ Все вещества можно разделить на простые состоящие из атомов одного элемента и сложные – состоящие из атомов различных элементов. Простые вещества делятся на металлы и неметаллы: Металлы – s и d элементы. Неметаллы – p элементы. Сложные вещества делятся на органические и неорганические.

Свойства металлов определяются способностью атомов отдавать свои электроны. Характерный тип химической связи для металлов – металлическая связь. Она характеризуется такими физическими свойствами: ковкость, тягучесть, теплопроводность, электропроводность. При комнатных условиях все металлы кроме ртути находятся в твердом состоянии.

Свойства неметаллов определяются способностью атомов легко принимать электроны и плохо отдавать свои. Неметаллы обладают противоположными металлам физическими свойствами: их кристаллы хрупкие, отсутствует «металлический» блеск, низкие значения теплои электропроводности. Часть неметаллов при комнатных условиях газообразна.

Классификация органических соединений. По строению углеродного скелета: Насыщенные/ненасыщенные Линейные/разветвленные/циклические По наличию функциональных групп: Спирты Кислоты Простые и сложные эфиры Углеводы Альдегиды и кетоны

Оксиды – сложные вещества, молекулы которых состоят из двух элементов, один из которых – кислород в степени окисления -2. Оксиды делятся на солеобразующие и несолеобразующие(безразличные). Солеобразующие оксиды делятся на основные, кислотные и амфотерные.

Основные оксиды – это оксиды, образующие в реакциях с кислотами или кислотными оксидами соли. Основные оксиды образуются металлами с невысокой степенью окисления (+1, +2) – это элементы 1 й и 2 й групп периодической таблицы. Примеры основных оксидов: Na 2 O, Ca. O, Mg. O, Cu. O. Примеры реакций образования солей: Cu. O + 2 HCl Cu. Cl 2 + H 2 O, Mg. O + CO 2 Mg. CO 3.

Основные оксиды Оксиды щелочных и щелочноземельных металлов реагируют с водой, образуя основания: Na 2 O + H 2 O 2 Na. OH Ca. O + H 2 O Ca(OH)2 Оксиды других металлов с водой не реагируют, соответствующие основания получаются косвенным путем.

Кислотные оксиды – это оксиды, образующие в реакциях с основаниями или с основными оксидами соли. Кислотные оксиды образуются элементами – неметаллами и d – элементами в высоких степенях окисления (+5, +6, +7). Примеры кислотных оксидов: N 2 O 5, SO 3, CO 2, Cr. O 3, V 2 O 5. Примеры реакций кислотных оксидов: SO 3 + 2 KOH K 2 SO 4 + H 2 O Ca. O + CO 2 Ca. CO 3

Кислотные оксиды Часть кислотных оксидов реагирует с водой с образованием соответствующих кислот: SO 3 + H 2 O H 2 SO 4 N 2 O 5 + H 2 O 2 HNO 3 Другие кислотные оксиды напрямую с водой не реагируют (Si. O 2 , Te. O 3 , Mo. O 3 , WO 3), соответствующие кислоты получаются косвенным путем. Один из способов получения кислотных оксидов – отнятие воды от соответствующих кислот. Поэтому кислотные оксиды иногда называются «ангидридами» .

Амфотерные оксиды обладают свойствами и кислотных и основных оксидов. С сильными кислотами такие оксиды реагируют как основные, а с сильными основаниями как кислотные: Sn. O + H 2 SO 4 Sn. SO 4 + H 2 O Sn. O + 2 KOH + H 2 O K 2

Способы получения оксидов Окисление простых веществ: 4 Fe + 3 O 2 2 Fe 2 O 3, S + O 2 SO 2. Горение сложных веществ: CH 4 + 2 O 2 CO 2 + 2 H 2 O, 2 SO 2 + O 2 2 SO 3. Термическое разложение солей, оснований и кислот. Примеры соответственно: Ca. CO 3 Ca. O + CO 2, Cd(OH)2 Cd. O + H 2 O, H 2 SO 4 SO 3 + H 2 O.

Номенклатура оксидов Название оксида строится по формуле «оксид + название элемента в родительном падеже» . Если элемент образует несколько оксидов, то после названия в скобках указывают степень окисления элемента. Например: CO – оксид углерода (II), CO 2 – оксид углерода (IV), Na 2 O – оксид натрия. Иногда вместо степени окисления в названии указывается число атомов кислорода: монооксид, диоксид, триокид и т. д.

Гидроксиды – соединения, содержащие в своем составе гидроксогруппу (-OH). В зависимости от прочности связей в ряду Э-O-H гидроксиды делятся на кислоты и основания: У кислот самая слабая связь O-H, поэтому при их диссоциации образуется Э-О- и H+. У оснований самая слабая связь Э-О, поэтому при диссоциации образуются Э+ и OH-. У амфотерных гидроксидов может быть разорвана любая из этих двух связей, в зависимости от природы вещества, с которым реагирует гидроксид.

Кислоты Термин «кислота» в рамках теории электролитической диссоциации имеет следующее определение: Кислоты – это вещества, диссоциирующие в растворах с образованием катионов водорода и анионов кислотного остатка. HA H++AКислоты делятся на сильные и слабые (по способности к диссоциации), на одно-, двух-, и трехосновные (по количеству содержащихся атомов водорода) и на кислородсодержащие и бескислородные. Например: H 2 SO 4 – сильная, двухосновная, кислородсодержащая.

Химические свойства кислот 1. Взаимодействие с основаниями с образованием соли и воды (реакция нейтрализации): H 2 SO 4 + Cu (OH)2 Cu. SO 4 + 2 H 2 O. 2. Взаимодействие с основными и амфотерными оксидами с образованием солей и воды: 2 HNO 3 + Mg. O Mg(NO 3)2 + H 2 O, H 2 SO 4 + Zn. O Zn. SO 4 + H 2 O.

Химические свойства кислот 3. Взаимодействие с металлами. Металлы, стоящие в “Ряду напряжений” до водорода, вытесняют водород из растворов кислот (кроме азотной и концентрированной серной кислот); при этом образуется соль: Zn + 2 HCl Zn. Cl 2 + H 2 Металлы, находящиеся в “Ряду напряжений” после водорода, водород из растворов кислот не вытесняют Cu + 2 HCl ≠.

Химические свойства кислот 4. Некоторые кислоты при нагревании разлагаются: H 2 Si. O 3 H 2 O + Si. O 2 5. Менее летучие кислоты вытесняют более летучие кислоты из их солей: H 2 SO 4 конц + Na. Clтв Na. HSO 4 + HCl 6. Более сильные кислоты вытесняют менее сильные кислоты из растворов их солей: 2 HCl + Na 2 CO 3 2 Na. Cl + H 2 O + CO 2

Номенклатура кислот Названия бескислородных кислот составляют, добавляя к корню русского названия кислотообразующего элемента (или к названию группы атомов, например, CN – циан, CNS – родан) суффикс «-о-» , окончание «водородная» и слово «кислота» . Например: HCl – хлороводородная кислота H 2 S – сероводородная кислота HCN – циановодородная кислота

Номенклатура кислот Названия кислородсодержащих кислот образуются по формуле «название элемента» + «окончание» + «кислота» . Окончание меняется в зависимости от степени окисления кислотообразующего элемента. Окончания «–овая» / «-ная» используются для высших степеней окисления. HCl. O 4 – хлорная кислота. Затем используются окончание «–оватая» . HCl. O 3 – хлорноватая кислота. Затем используется окончание «–истая» . HCl. O 2 – хлористая кислота. Наконец, последнее окончание «-оватистая» HCl. O – хлорноватистая кислота.

Номенклатура кислот Если элемент образует всего две кислородсодержащие кислоты (например сера), то для высшей степени окисления используется окончание «–овая» / «- ная» , а для более низкой окончание «-истая» . Пример для кислот серы: H 2 SO 4 – серная кислота H 2 SO 3 – сернистая кислота

Номенклатура кислот Если один кислотный оксид присоединяет различное количество молекул воды при образовании кислоты, то кислота, содержащая большее количество воды обозначается приставкой «орто-» , а меньшее «мета-» . P 2 O 5 + H 2 O 2 HPO 3 - метафосфорная кислота P 2 O 5 + 3 H 2 O 2 H 3 PO 4 - ортофосфорная кислота.

Основания Термин «основание» в рамках теории электролитической диссоциации имеет следующее определение: Основаниями – это вещества, диссоциирующие в растворах с образованием гидроксид - ионов (OH‾) и ионов металлов. Основания классифицируются на слабые и сильные(по способности к диссоциации), на одно-, двух-, трехкислотные (по количеству гидроксогрупп, которые могут заместиться на кислотный остаток) на растворимые (щелочи) и нерастворимые(по способности растворяться в воде). Например, KOH – сильное, однокислотное, растворимое.

Химические свойства оснований 1. Взаимодействие с кислотами: Ca(OH)2 + H 2 SO 4 Ca. SO 4 + H 2 O 2. Взаимодействие с кислотными оксидами: Ca(OH)2 + CO 2 Ca. CO 3 + H 2 O 3. Взаимодействие с амфотерными оксидами: 2 KOH + Sn. O + H 2 O K 2

Химические свойства оснований 4. Взаимодействие с амфотерными основаниями: 2 Na. OH + Zn(OH)2 Na 2 5. Термическое разложение оснований с образованием оксидов и воды: Ca(OH)2 Ca. O + H 2 O. Гидроксиды щелочных металлов при нагревании не распадаются. 6. Взаимодействие с амфотерными металлами (Zn, Al, Pb, Sn, Be): Zn + 2 Na. OH + 2 H 2 O Na 2 + H 2

Номенклатура оснований Название основания образуется по формуле «гидроксид» + «название металла в родительном падеже» . Если элемент образует несколько гидроксидов, то в скобках указывается его степень окисления. Например Cr(OH)2 – гидроксид хрома (II), Cr(OH)3 – гидроксид хрома (III). Иногда в названии приставкой к слову «гидроксид» указывается количество гидроксогрупп – моногидроксид, дигидроксид, тригидроксид, и т. д.

Соли Термин «основание» в рамках теории электролитической диссоциации имеет следующее определение: Соли - это вещества, диссоциирующие в растворах или в расплавах с образованием положительно заряженных ионов, отличных от ионов водорода, и отрицательно заряженных ионов, отличных от гидроксид – ионов. Соли рассматриваются как продукт частичного или полного замещения атомов водорода на атомы металла или гидроксогрупп на кислотный остаток. Если замещение происходит полностью, то образуется нормальная (средняя) соль. Если замещение происходит частично, то такие соли называются кислыми(имеются атомы водорода), либо основными (имеются гидроксогруппы).

Химические свойства солей 1. Соли вступают в реакции ионного обмена, если при этом образуется осадок, слабый электролит или выделяется газ: с щелочами реагируют соли, катионам металлов которых соответствуют нерастворимые основания: Cu. SO 4 + 2 Na. OH Na 2 SO 4 + Cu (OH)2↓ с кислотами взаимодействуют соли: а) катионы которых образуют с анионом новой кислоты нерастворимую соль: Ba. Cl 2 + H 2 SO 4 Ba. SO 4↓ + 2 HCl б) анионы которой отвечают неустойчивой угольной или какойлибо летучей кислоте (в последнем случае реакция проводится между твердой солью и концентрированной кислотой): Na 2 CO 3 + 2 HCl 2 Na. Cl + H 2 O + CO 2, Na. Clтв + H 2 SO 4 конц Na. HSO 4 + HCl;

Химические свойства солей в) анионы которой отвечают малорастворимой кислоте: Na 2 Si. O 3 + 2 HCl H 2 Si. O 3↓ + 2 Na. Cl г) анионы которой отвечают слабой кислоте: 2 CH 3 COONa + H 2 SO 4 Na 2 SO 4 + 2 CH 3 COOH 2. cоли взаимодействуют между собой, если одна из образующихся новых солей нерастворима или разлагается (полностью гидролизуется) с выделением газа или осадка: Ag. NO 3 + Na. Cl Na. NO 3+ Ag. Cl↓ 2 Al. Cl 3 + 3 Na 2 CO 3 + 3 H 2 O 2 Al (OH)3↓ + 6 Na. Cl + 3 CO 2

Химические свойства солей 3. Соли могут вступать во взаимодействие с металлами, если металл, которому соответствует катион соли, находится в“Ряду напряжений “правее реагирующего свободного металла (более активный металл вытесняет менее активный металл из раствора его соли): Zn + Cu. SO 4 Zn. SO 4 + Cu 4. Некоторые соли разлагаются при нагревании: Ca. CO 3 Ca. O + CO 2 5. Некоторые соли способны реагировать с водой и образовывать кристаллогидраты: Cu. SO 4 + 5 H 2 O Cu. SO 4*5 H 2 O

Химические свойства солей 6. Соли подвергаются гидролизу. Подробно этот процесс будет рассмотрен в дальнейших лекциях. 7. Химические свойства кислых и основных солей отличаются от свойств средних солей тем, что кислые соли вступают также во все реакции, характерные для кислот, а основные соли вступают во все реакции, характерные для оснований. Например: Na. HSO 4 + Na. OH Na 2 SO 4 + H 2 O, Mg. OHCl + HCl Mg. Cl 2 + H 2 O.

Получение солей 1. Взаимодействие основного оксида с кислотой: Cu. O + H 2 SO 4 Cu. SO 4 + H 2 O 2. Взаимодействие металла с солью другого металла: Mg + Zn. Cl 2 Mg. Cl 2 + Zn 3. Взаимодействие металла с кислотой: Mg + 2 HCl Mg. Cl 2 + H 2 4. Взаимодействие основания с кислотным оксидом: Ca(OH)2 + CO 2 Ca. CO 3 + H 2 O 5. Взаимодействие основания с кислотой: Fe(OH)3 + 3 HCl Fe. Cl 3 + 3 H 2 O

Получение солей 6. Взаимодействие соли с основанием: Fe. Cl 2 + 2 KOH Fe(OH)2 + 2 KCl 7. Взаимодействие двух солей: Ba(NO 3)2 + K 2 SO 4 Ba. SO 4 + 2 KNO 3 8. Взаимодействие металла с неметаллом: 2 K + S K 2 S 9. Взаимодействие кислоты с солью: Ca. CO 3 + 2 HCl Ca. Cl 2 + H 2 O + CO 2 10. Взаимодействие кислотного и основного оксидов: Ca. O + CO 2 Ca. CO 3

Номенклатура солей Название средней соли формируется по следующему правилу: «название кислотного остатка в именительном падеже» + «название металла в родительном падеже» . Если металл может входить в состав соли в нескольких степенях окисления, то степень окисления указывается в скобках после названия соли.

Названия кислотных остатков. Для бескислородных кислот название кислотного остатка состоит из корня латинского названия элемента и окончания «ид» . Например: Na 2 S- сульфид натрия, Na. Cl – хлорид натрия. Для кислородсодержащих кислот название остатка состоит из корня латинского названия и нескольких вариантов окончаний.

Названия кислотных остатков. Для кислотного остатка с элементов в высшей степени окисления используется окончание «ат» . Na 2 SO 4 – сульфат натрия. Для кислотного остатка с меньшей степенью окисления (-истая кислота) используется окончание «-ит» . Na 2 SO 3 – сульфит натрия. Для кислотного остатка с еще меньшей степенью окисления (-оватистая кислота) используется приставка «гиппо-» и окончание «-ит» . Na. Cl. O – гиппохлорит натрия.

Названия кислотных остатков. Некоторые кислотные остатки называются историческими названиями Na. Cl. O 4 – перхлорат натрия. К названию кислых солей добавляется приставка «гидро» , и перед ней еще одна приставка, указывающая на число незамещенных (оставшихся) атомов водорода. Например, Na. H 2 PO 4 – дигидроортофосфат натрия. Аналогично к названию металла основных солей добавляется приставка «гидроксо-» . Например, Cr(OH)2 NO 3 – нитрат дигидроксохрома (III).

Названия и формулы кислот и их остатков Формула кислоты Кислотный остаток Название кислотного остатка 2 3 4 Азотная HNO 3 ‾ нитрат Азотистая HNO 2 ‾ нитрит Бромоводородная HBr Br ‾ бромид Йодоводородная HI I‾ йодид Кремниевая H 2 Si. O 32¯ силикат Марганцовая HMn. O 4¯ перманганат Марганцовистая H 2 Mn. O 42¯ манганат Метафосфорная HPO 3¯ H 3 As. O 43¯ Название кислоты 1 Мышьяковая метафосфат арсенат

Формула кислоты Мышьяковистая H 3 As. O 3 Ортофосфорная H 3 PO 4 Название кислоты Пирофосфорная H 4 P 2 O 7 Двухромовая Родановодородная Сернистая Фосфористая Фтороводородная (плавиковая) Хлороводородная (соляная) Хлорная Хлорноватая Хлористая Хлорноватистая Хромовая Циановодородная (синильная) H 2 Cr 2 O 7 HCNS H 2 SO 4 H 2 SO 3 H 3 PO 3 Кислотный Название кислотного остаток остатка As. O 33¯ арсенит PO 43¯ ортофосфат (фосфат) пирофосфат P 2 O 7 4 ¯ (дифосфат) Cr 2 O 72¯ дихромат CNS¯ роданид SO 42¯ сульфат SO 32¯ сульфит PO 33¯ фосфит HF F¯ HCl. O 4 HCl. O 3 HCl. O 2 HCl. O H 2 Cr. O 4 Cl¯ Cl. O 4¯ Cl. O 3¯ Cl. O 2¯ Cl. O¯ Cr. O 42¯ HCN CN¯ фторид хлорид перхлорат хлорит гипохлорит хромат цианид

Большинство людей не задумывается о составе окружающих их предметов, веществ, материи. Атомы, молекулы, электроны, протоны - эти понятия кажутся не только непонятными, но и далекими от действительности. Однако такое мнение ошибочно. Практически все, что нас окружает, состоит из химических связей. Химические соединения - это достаточно сложные формы веществ. В окружающем нас мире великое множество таких связей. Однако и соединения, состоящие только из одного элемента химического, могут относиться к ним, например, кислород или хлор. Поэтому стоит подробнее разобрать вопрос: "Химические соединения - это что?"

Сложный "химический" мир

Мало кто задумывается о том, что окружающий нас мир состоит из сложных структур, макромолекул и крошечных частиц. Удивительно, насколько разнородны даже размеры атомов у разных элементов. Различия в величинах атомных масс тоже впечатляют - бериллий со своими 9 а. е. м. - "легковес" по сравнению с "тяжеловесом" астатом: его атомный вес составляет 210 а. е. м. (а. е. м. - атомные единицы массы - единица измерения массы атомов, молекул, ядер, которая равна 1/12 массы атома углерода, находящегося в основном состоянии).

Многообразие элементов обуславливает и наличие множества химических соединений (это, простыми словами, комбинация соединенных между собой атомов различных и, в некоторых случаях, одинаковых частей). Большинство предметов, веществ представляют собой именно такого рода соединения. Необходимый для жизни кислород, поваренная соль, ацетон... Можно еще очень долго перечислять примеры и всем известные, и понятные только узким специалистам. Что же такое эти химические соединения?

Определение, отличие от смесей

Химические соединения - это которые состоят из соединенных между собой атомов разных химических элементов, однако существуют исключения: к химическим соединениям относятся и простые вещества (то есть состоят из атомов одного элемента), если атомы этих веществ соединены ковалентной связью (она образована общими для обоих атомов электронами). К таким веществам относятся азот, кислород, большинство галогенов (в таблице Менделеева элементы седьмой группы главной подгруппы; фтор, хлор, бром, йод, предположительно и астат).

Зачастую путают между собой понятия "химическое соединение" и "смесь простых веществ". Смесь веществ - это, как можно сделать вывод из названия, не самостоятельное вещество, а система двух и более компонентов. Сам состав этих двух единиц химических веществ является основным различием между ними. Как уже говорилось, соединение химических элементов и смесь простых (или сложных) веществ - это не одно и то же. Свойства, способы получения, методы разделения на компоненты также являются отличительными критериями смесей и соединений. Важно отметить, что ни получить, ни разделить химические соединения нельзя без проведения химических реакций, а смеси - можно.

или элементов?

Очень многие люди также путают между собой словосочетания "соединение химических веществ" и "соединение элементов". По непонятным причинам, но, скорее всего, в силу своей некомпетентности, большинство из них не видит разницы между первым и вторым научными понятиями. Стоит узнать и понимать, что не существует такой терминологии, как "соединение химических веществ". Не стоит повторять за другими ошибки этимологии тех или иных не только выражений, но и слов.

Как определить свойства соединений

Зачастую свойства химических соединений разительно отличаются от свойств элементов, из которых они состоят. Например, молекула этилового спирта состоит из двух атомов углерода, шести атомов водорода и одного атома кислорода, однако его свойства разительно отличаются от свойств всех элементов своего состава. В связи с тем, что существуют разные классы соединений, то и свойства у каждого из них свои. Большинство реакций, безусловно, являются характерными для многих соединений, однако механизмы их проявления разные.

На какие классы делятся химические соединения

В зависимости от своей природы, существуют такие классы химических соединений, как органические и неорганические. Стоит сказать, что органическими называют вещества (соединения), в составе которых присутствует углерод (исключения составляют некоторые соединения, содержащие углерод, но относящиеся к неорганическим, ниже они приводятся). Основными группами органических соединений являются углеводороды, спирты, альдегиды, кетоны, эфиры, карбоновые кислоты, амиды и амины. (соединения) в своем составе не содержат атомов углерода, однако среди них можно выделить карбиды, цианиды, карбонаты и оксиды углерода, так как они, наравне с органическими соединениями, в своем составе содержат его атомы. И те, и другие соединения имеют свои особенности, свои свойства, причем разные группы соединений одного класса могут иметь разные характеристики.

Неорганические соединения: основные свойства

Все неорганические соединения можно разбить на несколько групп. У каждого из данных есть общие свойства, зачастую не совпадающие с другими группами этого же класса. Итак, ответ на вопросы, какие химические соединения относятся к неорганическими, какие группы образуют и какими свойствами обладают, можно представить следующим образом:

Сложные неорганические соединения, их свойства

Как было сказано ранее, вторую группу неорганических соединений можно разделить на четыре подгруппы:

  • Оксиды. Для этой подгруппы неорганических соединений характерны реакции взаимодействия с водой, кислотами и кислотными оксидами (у них есть соответствующая кислородсодержащая кислота).
  • Кислоты. Эти соединения взаимодействуют с водой, щелочами и основными оксидами (у них есть соответствующее основание).
  • Амфотерные соединения - соединения, которые могут вести себя и как кислоты, и как основания (обладают и теми, и теми свойствами). Такие соединения реагируют и с кислотными оксидами, и с основаниями.
  • Гидроксиды. Эти вещества неограниченно растворяются в воде, изменяют окраску при воздействии на них щелочами.

Соединения органической природы

Большинство предметов, с которыми человек ежедневно сталкивается, изготовлены из органических соединений. Органические химические соединения представляют собой обширный класс связей, составы и свойства групп, при взаимодействии которых они отличаются завидной разнообразностью. Стоит подробнее рассмотреть группы этих соединений.

Группы органических соединений и их некоторые свойства

  1. Углеводороды. Они представляют собой соединения только атомов водорода и углерода. Можно выделить предельные и непредельные, линейные (ациклические) и карбоциклические, ароматические и не ароматические; алканы, алкены, алкины, диены, нафтены. Для всех перечисленных углеводородов является общим свойством их не смешиваемость с водой. Для предельных типичны реакции замещения, а для непредельных - присоединения.
  2. Спирты - соединения, содержащие в своем составе гидроксильную (-ОН) группу (конечно, органические соединения). Они обладают свойствами слабых кислот, для них характерны реакции нуклеофильного замещения и реакции окисления, а также спирты сами могут выступать в качестве нуклеофила.
  3. Простые и сложные эфиры. Простые эфиры малорастворимы в воде, обладают слабоосновными свойствами. Сложные эфиры выступают в качестве носителей электрофильных реагентов, вступают в реакции замещения.
  4. Альдегиды (содержат альдегидную -СНО группу). Они вступают в такие реакции, как присоединение, окисление, восстановление, сопряженного присоединения.
  5. Кетоны. Для них характерны гидрирование, конденсация, нуклеофильное замещение.
  6. Карбоновые кислоты. Они проявляют, конечно же, кислотные свойства. Восстановление, галогенирование, реакции нуклеофильного замещения у ацильного атома углерода, получение амидов и нитрилов, декарбоксилирование - основные характерные реакции.
  7. Амиды. Гидролизация, разложение, кислотность и основность - основные свойственные реакции для амидов.
  8. Амины. Являются основаниями; взаимодействуют с водой, с кислотами, с ангидридами, галогенами и галогеналканами.