Здоровье        24.05.2020   

1 что называют радиоактивным излучением. Радиоактивность - это что такое? Проявление поражения организма

РАДИОАКТИВНОСТЬ , свойство некоторых химических элементов к самопроизвольному распаду на другие элементы. Этот распад сопровождается различными корпускулярными и световыми радиациями. Явление радиоактивности было открыто в 1896 г. Г. Беккерелем. Он обнаружил, что соли U выделяют излучения, действующие на фотографическую пластинку и сообщающие воздуху электропроводность. Дальнейшие исследования показали, что испускание «лучей Беккереля» есть атомное свойство U, не зависящее от того, в каком химическом соединении он находится. Систематические исследования всех известных элементов обнаружили, что кроме U значительной радиоактивностью обладает только Th (Г. Шмит и М. Кюри, 1898 г.). Впоследствии была открыта еще слабая радиоактивность К и Rb. При изучении природных соединений U оказалось, что радиоактивность их значительно больше, чем следует ожидать по содержанию в них U. Высказанная М. Кюри гипотеза, что эта аномалия связана с присутствием в урановых минералах неизвестных сильно радиоактивных элементов, подтвердилась. Путем длительной и кропотливой работы П. и М. Кюри удалось выделить из урановой смоляной руды Иоахимстальского месторождения (Чехо-Словакия) новые элементы Ро (1898 г.) и Ra (1898 г.), радиоактивность которых в большое число раз превосходит радиоактивность U. Этим было положено начало открытию ряда новых радиоактивных элементов или радиоэлементов, число которых доходит до 40.

Радиоактивные излучения . По своей природе излучения радиоактивных элементов не однородны. В 1902 г. Е. Резерфорд предложил названия α-(альфа), β-(бета) и γ-(гамма) лучей для трех видов радиоактивных излучений, обладающих следующими свойствами: α-лучи образуются положительно заряженными быстро движущимися материальными частичками атомных размеров и слабо отклоняются в электрическом и магнитном поле в сторону, соответствующую отклонению каналовых лучей; они очень сильно поглощаются материей; β-лучи - частички отрицательного электричества (электроны); они значительно сильнее отклоняются магнитным полем и вполне аналогичны катодным лучам. Проницаемость их значительно больше, чем у α-лучей; γ-лучи не испытывают отклонения в магнитном поле и не несут заряда; они обладают самой большой проницаемостью (фиг. 1). α-частицы несут двойной элементарный положительный заряд, равный 9,55·10 -10 CGSE. Пo своей природе они тождественны с ядром атома гелия; α-частички вылетают из атома с определенной начальной скоростью, характерной для каждого α-излучающего радиоэлемента; эта начальная скорость лежит в пределах 1,4·10 9 -2,06·10 9 см/сек. В воздухе α-частицы благодаря своей большой массе движутся почти прямолинейно, растрачивая постепенно свою кинетическую энергию при столкновениях с молекулами газа и вызывая сильную ионизацию. α-частицы обладают определенной дальностью полета, пройдя которую они теряют свой заряд и способность вызывать характерные действия. Величина этой дальности полета или «пробега» α-частиц зависит от начальной скорости частицы и от поглощающего вещества. Величина пробега α-частицы характерна для каждого радиоэлемента и обнимает периоды 2,67-8,62 см в воздухе при 0°С и 760 мм. В твердых телах α-частицы задерживаются толщиной слоя порядка 0,1 мм. Свойство водяного пара конденсироваться при определенных условиях на ионах позволяет наблюдать и фотографировать пути α-частиц (фиг. 2). β-лучи большинства радиоактивных веществ образуют несколько групп с различными начальными скоростями, распределение которых изучается по отклонению β-частиц в магнитном поле (спектр β-лучей). Начальные скорости β-частиц заключаются в пределах 8,7·10 9 -2,947·10 10 см/сек, т. е. до 0,988 скорости света. При прохождении через материю β-лучи рассеиваются значительно сильнее, чем α-лучи, мало изменяя свою скорость. Поглощение их происходит по закону, близкому к простому экспоненциальному I d = I 0 e - kd , где I d - интенсивность излучения, прошедшего толщину d, I 0 - начальная интенсивность, k - коэффициент поглощения. Характерной величиной может служить толщина слоя какого-либо вещества, например, алюминия, поглощающего β-лучи наполовину. Для различных β-лучей величина этого слоя 0,001-0,05 см алюминия. Наиболее жесткие β-лучи RaC поглощаются полностью двумя мм свинца, γ-лучи по своей природе совершенно аналогичны рентгеновым лучам и характеризуются длиной волны 10 -9 -10 -11 см. Поглощение γ-лучей сопровождается рассеянием и появлением вторичных β- и γ-лучей. Приближенно поглощение выражается простым показательным законом I = I 0 e -μх, причем в первом приближении удовлетворяется соотношение μ/ϱ = Const, где ϱ - плотность поглощающего вещества. Величина μ для γ-лучей различных радиоэлементов колеблется от 1000 до 0,12, чему соответствует толщина слоя Рb, поглощающего лучи наполовину, 10 -4 -5,5 см.

Теория радиоактивного распада . Для объяснения радиоактивных явлений Резерфорд и Содди предложили в 1902 г. теорию атомного распада, полностью подтвержденную дальнейшими экспериментами. Атомы радиоактивных элементов являются неустойчивыми образованиями и подвершены самопроизвольному распаду, подчиненному закону случайности. При этом освобождается внутриатомная энергия в виде излучений, атом же претерпевает превращение, переходя в другой химический элемент с совершенно иными свойствами, например, металл Ra превращается в RaEm - инертный газ. Основной закон радиоактивного распада формулируется следующим образом: количество вещества ΔN, распадающегося в элемент времени Δt, пропорционально наличному его количеству N и промежутку времени Δt, т. е. ΔN=-λNΔt, или N t =N 0 e -Δ t где N 0 - начальное количество, N t - количество для момента t. Коэффициент пропорциональности λ носит название радиоактивной постоянной, или константы распада радиоэлемента. Более наглядно каждый радиоэлемент характеризуется периодом полураспада, т. е. промежутком времени, в течение которого начальное количество его уменьшается наполовину, или же средней продолжительностью жизни τ. Период полураспада Т, средняя продолжительность жизни τ и радиоактивная постоянная λ связаны между собой следующим образом: Т= 0,6931τ = 0,6931 τ -1 . Для различных радиоэлементов λ = 1,3·10 -13 - 10 11 сек., соответственно Т=5,2·10 17 сек. (1,65·10 10 лет)-10 -11 сек. Между λ и величиной пробега α-лучей R существует найденное эмпирически Гейгером и Нуталлом соотношение Ig λ = А + В lg R, где А и В - константы. Графическое изображение закона Гейгера и Нуталла дает для трех радиоактивных семейств U - Ra, Th и Ас три параллельные прямые. Этим законом приходится пользоваться, между прочим, для определения радиоактивных констант быстро распадающихся веществ. Явления радиоактивного распада, сопровождаемого вылетом из ядра атома α- и β-частиц, дали первое доказательство сложного строения атомного ядра, заключающего в качестве структурных элементов электроны, протоны и ядра Не. Закономерности, наблюдаемые в распределении длин волн γ-лучей и скоростей β- и α-частиц, указывают на существование в ядре устойчивых состояний, соответствующих определенным уровням энергии. γ-излучения по-видимому связаны с внутриядерными переходами α-частиц с одного уровня энергии на другой, причем длина волны γ-луча определяется из квантовых соотношений. При радиоактивном превращении, сопровождаемом вылетом α-частицы из ядра, она должна пройти через уровень потенциальной энергии, значительно превышающий собственную энергию частички, которой она обладает в ядре. С точки зрения классической теории невозможно объяснить вылет α-частички из ядра через этот «потенциальный барьер». Теории радиоактивного распада, основанные на принципах волновой механики, описывают движение α-частиц при помощи волновой функции, причем α-излучение является результатом постепенного проникновения волновой функции через вышеупомянутый потенциальный барьер. При этом можно найти теоретическое выражение для связи скорости α-частиц с константой распада атома, удовлетворяющее опытным данным. Принимая, что α-частички в ядре атома обладают той же величиной энергии, с какой они покидают ядро при распаде, мы получаем исходную величину для оценки абсолютных значений уровней энергии в ядре атома. Эти величины порядка 10 6 V (в обозначениях атомной физики). β-излучения радиоактивных элементов образуют, с одной стороны, группы электронов определенных скоростей, по всей вероятности появляющихся в результате фотоэффекта, вызываемого γ-излучением ядра в электронных оболочках атома, с другой стороны, β-частички, вылетающие из ядра, обладают скоростями самых различных значений (непрерывный магнитный спектр γ-лучей). Часто за α-превращением в ряду распада следуют два β-превращения, что ложно истолковать нарушением устойчивости электронных уровней в ядре при уменьшении числа α-частиц. Энергетические взаимоотношения в ядре, связанные с β-излучением, представляются еще не вполне ясными.

При распаде радиоактивного атома получается б. ч. также радиоактивный элемент. Т.о. образуются ряды распада , или радиоактивные семейства , последовательно превращающихся радиоэлементов. Закон радиоактивного распада дает возможность рассчитать количество любого из членов ряда для каждого момента времени при заданных начальных условиях. На практике важнее всего следующие случаи. 1) Распад отдельного радиоэлемента, например RaEm; количество радиоэлемента в любой момент выразится так: N t =N 0 e -λ t начальное количество (при t=0). 2) Образование из радиоэлемента с весьма большой продолжительностью жизни (количество которого за рассматриваемый промежуток времени практически не изменяется, например, образование UX (период полураспада 24 дня) из U (период полураспада 10 9 лет). В этом случае количество атомов образующегося элемента N 2 для момента t выразится через число атомов материнского элемента N 1 и соответствующие константы распада так:

3) Случай радиоактивного равновесия, когда сохраняется постоянное отношение чисел атомов последовательных элементов в ряду распада. В этом случае соблюдаются равенства: N 1 λ=N 2 λ 2 =…=N k λ k если рассматриваемый ряд содержит к элементов (фиг. 3, А - нарастание и В - распадение ТhХ). Превращение радиоэлементов всегда сопровождается α- или β-излучением. Неизвестно ни одного случая, когда радиоактивное превращение сопровождалось бы только одним γ-излучением.

Изучение радиоактивных превращений привело к открытию большого числа новых элементов. При попытках разместить радиоэлементы в периодической системе возникли затруднения, т. к. число свободных мест оказалось недостаточным. Эти затруднения удалось преодолеть в результате изучения химических особенностей радиоэлементов. Болтвуд, открывший в 1906 г. новый радиоактивный элемент ионий, показал, что его химические свойства совершенно совпадают со свойствами элемента тория. Далее подобная химическая идентичность была обнаружена у ряда радиоэлементов (Ra и MsTh, Pb, RaB, ТhВ, АсВ и др.), и в 1910 г. Содди высказал мысль, что эти элементы обладают принципиально одинаковыми свойствами, и их разделение методами химии невозможно. Группа таких неразличимых химически элементов называется по предложению Фаянса плеядой , а сами элементы по предложению Содди изотопами , т.к. они занимают одно и то же место в периодической системе. Тогда же Содди предположил, что и нерадиоактивные элементы могут являться смесью принципиально неразделимых элементов разного атомного веса, чем и объясняются дробные значения атомных весов большинства элементов. Эта идея Содди нашла себе блестящее подтверждение в работах Астона, открывшего методом положительных лучей изотопы обычных элементов. Понятие изотопии позволило разместить все радиоэлементы в периодической системе. Они обнимают 10 плеяд, расположенных в двух последних рядах периодической системы (фиг. 4).

Характерными элементами, или доминантами , плеяды радиоактивных изотопов служат элементы с наибольшей продолжительностью жизни, или устойчивые элементы. При этом пять из них: Ra, Em, Ро, Ас и Ра являются новыми элементами, занявшими свободные места в периодической системе, остальные же попадают на места, занятые ранее известными радиоэлементами U и Тh и неактивными Рb, Tl, Bi. Наибольшая разница в атомных весах радиоактивных изотопов не превосходит 8 единиц. Т. о. радиоактивные превращения позволили глубже вникнуть в физический смысл периодического закона и понятия о химическом элементе. Оказалось, что место элемента в периодической системе определяется не атомным весом элемента, как это принималось ранее, а величиной положительного заряда ядра его атома. Все свойства изотопов, связанные с электронными оболочками атома, в пределах точности наших экспериментов практически одинаковы (атомный объем, температура перехода из одного состояния в другое, термическое изменение размеров, магнитная восприимчивость, спектры и т. п.). Они отличаются кроме радиоактивных свойств только теми особенностями, которые связаны с массой ядра, например, в тонкой структуре спектра и в ничтожных различиях в константах диффузии. На последнем обстоятельстве основаны попытки разделения изотопов, приведшие в результате кропотливой работы к частичному успеху.

При радиоактивном распаде происходит превращение элементов, подчиняющееся следующим правилам сдвига (К. Фаянс). 1) После излучения α-частички элемент смещается на два места влево в периодической системе. 2) При β-превращении элемент смещается на одно место вправо (направление стрелок на фиг. 4). Эти правила указывают, что радиоактивность есть свойство ядра атома, ибо вылет α-частички, несущей два элементарных положительных заряда, уменьшает на две единицы заряд ядра, что соответствует уменьшению атомного номера на две единицы. β-частичка уносит один отрицательный заряд, т. е. увеличивает положительный заряд ядра, а, следовательно, и его атомный номер на единицу. В результате радиоактивных превращений два различных элемента могут занять одно и то же место в периодической системе.

Все известные нам радиоэлементы образуют три радиоактивных семейства, или ряда: семейство U-Ra, семейство Ас и семейство Th. Ряды U и Th самостоятельны, ряд же Ас по всем данным связан с рядом U-Ra. На фиг. 5 приведена схема радиоактивных семейств с их превращениями. Наибольший практический интерес представляют радиоэлементы Ra и MsTh, как обладающие весьма большой радиоактивностью и являющиеся источником сильно радиоактивных элементов малой продолжительности жизни (нaпpимер, RaEm, ThX и др.). Из других химических элементов только К и Rb обладают слабой радиоактивностью с испусканием β- и γ-лучей. Продукты их превращения неизвестны.

Действия радиоактивных излучений . 1) Все радиоактивные излучения производят ионизацию газов. При этом сильнее всего действуют α-лучи, действие β- и γ-лучей значительно слабее. В меньшей степени ионизация наблюдается у жидких и твердых диэлектриков. 2) Энергия радиоактивных излучений переходит при поглощении их материй в тепло. При этом наибольший эффект дают также α-лучи, обладающие максимальной энергией. Теоретически количество выделяемого тепла можно подсчитать, зная энергию излучений и кинетическую энергию остатка распавшегося атома. Экспериментально тепловое действие особенно тщательно изучено для Ra; 1 г Ra выделяет в час 25 cal, а вместе с продуктами распада 170 cal. 3) Сильные радиоактивные препараты светятся сами и вызывают свечение ряда тел. Вспышки на экране сернистого цинка, вызываемые отдельными α-частицами (сцинтилляции ), позволяют считать α-частицы, излучаемые радиоэлементами. 4) Многие вещества меняют свою окраску под действием радиоактивных излучений. 5) Радиоактивные лучи действуют на фотографическую пластинку. Прикладывая к фотографической пластинке плохо отшлифованную поверхность куска радиоактивной руды, можно получить радиографию распределения радиоактивных минералов по поверхности образца. 6) Под действием радиоактивных излучений происходят химические реакции, связанные главным образом с вызываемой ими ионизацией; некоторые действия β-лучей на коллоиды объясняются отрицательным зарядом самих β-частиц. 7) Действие радиоэлементов на живой организм сказывается в виде местных и общих явлений и сильно зависит от дозы. Действие радиоактивных излучений выражается в общем утомлении организма, изменении состава крови (уменьшение числа белых кровяных шариков и др.). При местном воздействии β-лучей больших количеств радиоэлементов может получиться ожог, трудно поддающийся излечению. Молодые клетки наиболее чувствительны к действию излучений. Введение внутрь организма больших количеств радиоэлементов влечет за собой смерть. Незначительные количества радиоэлементов оказывают благотворное действие на организм.

Практические приложения радиоактивности. 1) Свойство радиоэлементов ионизировать газы нашло свое применение в изготовлении радиоактивных коллекторов, служащих для измерения электрического поля, главным образом при исследованиях атмосферного электричества. Для этой цели употребляются обыкновенно α-излучатели Io или Во. Последний приходится периодически возобновлять, т. к. он распадается наполовину в 137 дней. 2) Радиоактивные Em м. б. использованы при определении газопроницаемости различных веществ. 3) При прохождении α-частиц через различные вещества наблюдается при определенных условиях появление Н-частичек (ядра водорода). Впервые явление это было обнаружено в 1919 г. Резерфордом в азоте и истолковано как результат разрушения ядра азота при столкновении с α-частичкой. Дальнейшие работы, главным образом сотрудников Резерфорда - Кирша и Петерсона, - показали, что большое число элементов разрушается под действием α-частиц. О других практических приложениях радиоактивности см. Радий .

Для количественного измерения радиоактивных веществ употребляется почти исключительно метод основанный на ионизации. В случае очень сильных препаратов возможно пользоваться для измерения ионизационных токов чувствительным гальванометром. Для измерения же малых количеств радиоэлементов пользуются электроскопами и электрометрами. Важнейшие схемы применяемых приборов представлены на фиг. 6.

1) Измерения по α-лучам . Исследуемое вещество радиоактивности помещается в тонко измельченном виде в плоской чашечке на дно «ионизационной камеры» электроскопа (фиг. 6а) или электрометра (фиг. 6б). Ионизационный ток измеряется по скорости спадания листка электроскопа, отсчитываемой по окулярной шкале микроскопа. При этом необходимо учитывать собственное спадание листка под влиянием дефектов изоляции и ионизации воздуха внутри прибора, определяемое специальным наблюдением в отсутствии радиоактивного вещества. При измерении с электрометром пользуются или методом зарядки или же компенсационными методами. При измерениях по α-лучам берут обычно слой вещества толщиной порядка 1 мм. Такой слой будет насыщенным для α-излучения, т. е. α-лучи из нижних частей уже поглощаются в самом активном веществе и не выходят наружу. При этом измеряемая ионизация приблизительно пропорциональна концентрации радиоэлементов в препарате. Обычно измерения производятся по сравнению с эталоном, содержащим известное количество определяемого радиоэлемента, например, U в равновесии с продуктами распада. Или же результаты выражают в урановых единицах , причем под урановой единицей подразумевается одностороннее излучение 1 см 2 насыщенного для α-лучей слоя окиси урана U 3 О 8 . В абсолютных единицах это соответствует току насыщения 1,73·10 -3 CGSE. В случае бесконечно тонкого слоя (например, активный налет, получаемый в присутствии эманаций на твердых телах и состоящий из продуктов их распада) ионизация пропорциональна количеству радио-элемента на препарате. 2) Измерения по γ-лучам . Благодаря большой проницаемости γ-лучей возможно с их помощью измерить количество радио-элементов (обычно Ra, RaEm или MsTh) в герметически запаянных препаратах. Измерения производятся по сравнению с эталоном, содержащим известное количество Ra. При измерении малых количеств Ra порядка 10 -5 -10 -7 г их помещают внутри прибора специального устройства. При измерении же больших количеств - от 10 -4 г и выше - испытуемый препарат помещается на некотором расстоянии снаружи прибора. 3) Измерения малых количеств RaEm производятся по α-лучам в электрометре с ионизационной камерой , приспособленной для введения Еm внутрь ее. Обычно приходится измерять Еm из водного раствора, при этом Em перегоняют в ионизационную камеру с током воздуха посредством циркуляции (фиг. 7) или каким-либо иным способом.

Далее измеряется ионизация, вызываемая α-лучами Em и продуктов ее воде источников. Этот же метод применяется при определении малых количеств Ra в растворе. Исследуемый раствор помещают в газопромывательную склянку L и освобождают от Em продуванием через него воздуха в течение 10-30 мин. Затем сосуд с раствором герметически закрывают и оставляют на несколько дней для накопления Em. Далее Em переводят в измерительный прибор J, где и определяют ее количество. Накопление эманации происходит по формуле Е=Е ∞ (1 е λ t), где Е - количество Em, накопленной в течение времени t, Е ∞ - количество ее, находящееся в равновесии с радием в данном растворе. Численно Е ∞ равно стольким кюри эманации, сколько грамм Ra находится в растворе.

Эталоном служит раствор с известным содержанием Ra порядка 10 -8 -10 -9 г. По Em возможно измерить 10 -10 г даже 10 -12 г Ra. 4) Измерение числа отдельных частиц производится или при помощи метода сцинтилляций или же путем соответствующего усиления ионизирующего действия отдельных частиц или импульсов (счетчик Гейгера ). Возможно также применение фотографической пластинки с толстым слоем (метод Л. В. Мысовского).

  • лучи первого типа отклоняются так же, как поток положительно заряженных частиц; их назвали α-лучами ;
  • лучи второго типа отклоняются в магнитном поле так же, как поток отрицательно заряженных частиц (в противоположную сторону), их назвали β-лучами ;
  • лучи третьего типа, которые не отклоняются магнитным полем, назвали γ-излучением .

Альфа-распад

α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4 He).

α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А ≥140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы , состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его (см. Туннельный эффект) и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера экспоненциально уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.

Правило смещения Содди для α-распада:

. .

В результате α-распада элемент смещается на 2 клетки к началу таблицы Менделеева , массовое число дочернего ядра уменьшается на 4.

Бета-распад

Беккерель доказал, что β-лучи являются потоком электронов . β-распад - это проявление слабого взаимодействия .

β-распад (точнее, бета-минус-распад, β − -распад) - это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино .

β-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d -кварков в одном из нейтронов ядра в u -кварк ; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:

Правило смещения Содди для β − -распада:

После β − -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.

Существуют также другие типы бета-распада. В позитронном распаде (бета-плюс-распаде) ядро испускает позитрон и нейтрино . При этом заряд ядра уменьшается на единицу (ядро смещается на одну клетку к началу таблицы Менделеева). Позитронный распад всегда сопровождается конкурирующим процессом - электронным захватом (когда ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу). Однако обратное неверно: многие нуклиды, для которых позитронный распад запрещён, испытывают электронный захват. Наиболее редким из известных типов радиоактивного распада является двойной бета-распад , он обнаружен на сегодня лишь для десяти нуклидов, и периоды полураспадов превышают 10 19 лет. Все типы бета-распада сохраняют массовое число ядра.

Гамма-распад (изомерный переход)

Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра ¹H , ²H , ³H и ³He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьи времена жизни измеряются микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.

Специальные виды радиоактивности

  • Протонная радиоактивность
  • Двухпротонная радиоактивность
  • Нейтронная радиоактивность

Литература

  • Сивухин Д. В. Общий курс физики. - 3-e издание, стереотипное. - М .: Физматлит, 2002. - Т. V. Атомная и ядерная физика. - 784 с. - ISBN 5-9221-0230-3

См. также

  • Единицы измерения радиоактивности

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Радиоактивность" в других словарях:

    Радиоактивность … Орфографический словарь-справочник

    - (от лат. radio излучаю, radius луч и activus действенный), способность нек рых ат. ядер самопроизвольно (спонтанно) превращаться в др. ядра с испусканием ч ц. К радиоактивным превращениям относятся: альфа распад, все виды бета распада (с… … Физическая энциклопедия

    РАДИОАКТИВНОСТЬ - РАДИОАКТИВНОСТЬ, свойство нек рых хим. элементов самопроизвольно превращаться в другие элементы. Это превращение или радиоактивный распад сопровождается выделением энергии в виде различных корпускулярных и лучистых радиации. Явление Р. было… … Большая медицинская энциклопедия

    Радиоактивность - (от радио... и латинского activus деятельный), свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд ядра Z, число нуклонов A) путем испускания элементарных частиц, g квантов или ядерных фрагментов. Некоторые из… … Иллюстрированный энциклопедический словарь

    - (от лат. radio испускаю лучи и activus действенный) самопроизвольное превращение неустойчивых атомных ядер в ядра др. элементов, сопровождающееся испусканием частиц или? кванта. Известны 4 типа радиоактивности: альфа распад, бета распад,… … Большой Энциклопедический словарь

    Способность некоторых атомных ядер самопроизвольно распадаться с испусканием элементарных частиц и образованием ядра другого элемента. Р. урана была впервые открыта Беккерелем в 1896 г. Несколько позднее М. и П. Кюри и Резерфордом было доказано… … Геологическая энциклопедия

    Свойство некотор. тел испускать особого рода невидимые лучи, отличающиеся особыми свойствами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. радиоактивность (радио... + лат. acti vus деятельный) радиоактивный… … Словарь иностранных слов русского языка

    Сущ., кол во синонимов: 1 гамма радиоактивность (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Самопроизвольное превращение неустойчивых изотопов одного химического элемента в изотопы обычно другого элемента, сопровождающееся испусканием элементарных частиц или ядер (альфа и бетα излучение), а также гаммα излучением. Бывает естественной и… … Морской словарь

К основным типам радиоактивности относятся альфа-,бета- и гамма-распады..

Альфа-распад. В этом случае происходит самопроизвольное испускание ядром α-частицы (ядра нуклида 4 Не), и это проис­ходит по схеме

где X - символ материнского ядра, Y - дочернего.

Установлено, что α-частицы испускают только тяжелые ядра. Кинетическая энергия, с которой α-частицы вылетают из рас­падающегося ядра, порядка нескольких МэВ. В воздухе при нормальном давлении пробег α-частиц составляет несколько сантиметров (их энергия расходуется на образование ионов на своем пути).

Альфа-частица возникает только в момент радиоактивного распада ядра. Покидая ядро, ей прихо­дится преодолевать потенциальный барь-­
ер, высота которого превосходит ее энер­гию (см.рис.).

Внутренняя сторона барь­ера обусловлена ядерными силами, внешняя же - силами кулоновского от­талкивания α-частицы и дочернегоядра.
Преодоление α-частицей потенциаль­
ного барьера в данных условиях происходит благодаря туннельному эффекту

Квантовая теория, учитывая вол­новые свойства α-частицы, «позволяет» ей с определенной веро­ятностью проникать сквозь такой барьер. Соответствующий расчет хорошо подтверждается результатами измерений.

Бета-распад. Так называют самопроизвольный процесс, в котором исходное ядро превращается в другое ядро с тем же массовым числом А , но с зарядовым числом Z , отличающимся от исходного на ±1. Это связано с тем, что β -распад сопровождается испусканием электрона (позитрона) или его захватом из оболочки атома. Различают три разновидности β -распада:

1)электронный - распад, в котором ядро испускает электрон и его зарядовое число Z становится Z + 1;

2)позитронный - распад, в котором ядро испускает позитрон и его зарядовое число Z становится Z - 1;

3)К -захват , в котором ядро захватывает один из электронов электронной оболочки атома (обычно из К -оболочки) и его зарядовое число Z становится равным Z -1. На освободив­шееся место в К -оболоч-ке переходит электрон с другой обо­лочки, и поэтому К -захват всегда сопровождается характе­-
ристическим рентгеновским излучением.

«Проблему -распада» ре­шил Паули (1930), предположивший, что вместе с электроном испускается электрически нейтральная частица, неуловимая вследствие очень большой проникающей способности. Ее назва­ли нейтрино .

Важное обстоятельство в пользу гипотезы о существовании нейтрино - это необходимость сохранения момента импульса в реакции распада. Дело в том, что отличи­тельной чертой (-распада является превращение в ядре ней­трона в протон, и наоборот. Поэтому можно сказать, что -распад есть не внутриядерный процесс, а внутринуклонный про­цесс. В связи с этим указанные выше три разновидности -распада обусловлены следующими превращениями нукло­нов в ядре:


Сейчас установлено, что спин ней­трино равен 1/2.

Наблюдать нейтрино непосредственно очень сложно. Это обу­словлено тем, что их электрический заряд равен нулю, масса (если она есть) чрезвычайно мала, фантастически мало и эф­фективное сечение взаимодействия их с ядрами. Согласно тео­ретическим оценкам средняя длина свободного пробега нейтри­но с энергией 1 МэВ в воде порядка 10 16 км (или 100 световых лет!). Это значительно превышает размеры звезд. Такие ней­трино свободно пронизывают Солнце, а тем более Землю.

Чтобы зарегистрировать процесс захвата нейтрино, необхо­димо иметь огромные плотности потока их. Это стало возмож­ным только после создания ядерных реакторов, которые и были использованы как мощные источники нейтрино.

Непосредственное экспериментальное доказательство суще­ствования нейтрино было получено в 1956 г.

Гамма-распад . Этот вид распада заключается в испускании возбужденным ядром при переходе его в нормальное состояние γ-квантов, энергия которых варьируется в пределах от 10 кэВ до 5 МэВ. Существенно, что спектр испускаемых γ-квантов диск­ретный, так как дискретны энергетические уровни самих ядер.

В отличие от β -распада, γ -распад - процесс внутриядерный, а не внутринуклонный.

Возбужденные ядра образуются при β -распаде в случае, если распад материн­ского ядра X в основное состояние дочерне­го ядра Y запрещен. Тогда дочернее ядро Y оказывается в одном из возбужденных состояний, переход из которого в основное состояние и сопровождается испусканием у-квантов (см.рис.).

Возбужденное ядро может перейти в основное состояние и другим путем, путем непосредственной передачи энергии воз­буждения одному из атомных электронов, например, в К -оболочке. Этот процесс, конкурирующий с β -распадом, называют внутренней конверсией электронов.Внутренняя конверсия сопровождается рентгеновским излучением.

Ядерные реакции

Ядерная реакция - это процесс сильного взаимодействия атомного ядра с элементарной частицей или с другим ядром, - процесс, сопровождающийся преобразованием ядер. Это взаи­модействие возникает благодаря действию ядерных сил при сближении частиц до расстояний порядка 10 -13 см.

Отметим, что именно ядерные реакции дают наиболее широ­кую информацию о свойствах ядер. Поэтому изучение ядерных реакций является самой главной задачей ядерной физики.

Наиболее распространенным типом ядерной реакции явля­ется взаимодействие частицы а с ядром X, в результате чего об­разуется частица b и ядроY. Это записывают символически так:

Роль частиц а и b чаще всего выполняют нейтрон п , протон р , дейтрон d , α -частица и γ -квант..

Частицы, рождающиеся в результате ядерной реакции, могут быть не только b и Y , но вместе с ними и другие b", Y" . В этом случае говорят, что ядерная реакция имеет несколько ка­налов, причем различным каналам соответствуют различные вероятности.

Типы ядерных реакций. Установлено, что реакции, вызыва­емые не очень быстрыми частицами, протекают в два этапа. Первый этап - это захват налетающей частицы а ядром X с об­разованием составного (или промежуточного) ядра. При этом энергия частицы а быстро перераспределяется между всеми нуклонами ядра, и составное ядро оказывается в возбужденном состоянии. В этом состоянии ядро пребывает до тех пор, пока в результате внутренних флуктуации на одной из частиц (кото­рая может состоять и из нескольких нуклонов) не сконцентри­руется энергия, достаточная для вылета ее из ядра.

Такой механизм протекания ядерной реакции был предло­жен Н. Бором (1936) и впоследствии подтвержден эксперимен­тально. Эти реакции иногда записывают с указанием составно­го ядра С , как например

где звездочка у С указывает на то, что ядро С* возникает в воз­бужденном состоянии.

Составное ядро С* существует достаточно долго - по сравне­нию с «ядерным временем», т. е. временем пролета нуклона с энергией порядка 1 МэВ (v 10 9 см/с) расстояния, равного диа­метру ядра. Ядерное время я 10 -21 с. Время же жизни состав­ного ядра в возбужденном состоянии ~ 10 -14 с. Т. е. в ядерном масштабе составное ядро живет действительно очень долго. За это время все следы истории его образования исчезают. Поэто­му распад составного ядра - вторая стадия реакции - проте­кает независимо от способа образования составного ядра.

Реакции, вызываемые быстрыми частицами с энергией, пре­вышающей десятки МэВ, протекают без образования составно­го ядра. И ядерная реакция, как правило, является прямой. В этом случае налетающая частица непосредственно передает свою энергию какой-то частице внутри ядра, например, одному нук­лону, дейтрону, α -частице и т. д., в результате чего эта частица вылетает из ядра.

Типичная реакция прямого взаимодействия - это реакция срыва, когда налетающей частицей является, например, дей­трон. При попадании одного из нуклонов дейтрона в область действия ядерных сил он будет захвачен ядром, в то время как другой нуклон дейтрона окажется вне зоны действия ядерных сил и пролетит мимо ядра. Символически реакцию срыва запи­сывают как (d, n ) или (d, p ).

При бомбардировке ядер сильно взаимодействующими час­тицами с очень высокой энергией (от нескольких сотен МэВ ивыше) ядра могут «взрываться», распадаясь на множество мел­ких осколков. При регистрации такие взрывы оставляют след в виде многолучевых звезд.

Энергия реакции . Принято говорить, что ядерные реакции могут происходить как с выделением, так и с поглощением энергии.

Реакции с выделением энергии называют экзоэнергетическими, реакции с поглощением энергии - эндоэнергетическими.

У электрона есть античастица - позитрон, который был обнаружен в составе космического излучения. Существо­вание позитронов также было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Позитрон - частица с массой, равной массе электрона, и спином 1/2 (в единицах ), несущая положительный заряд +е.

Согласно Бору, ядерные реакции протекают в две стадии по схеме:

Первая стадия - захват ядром частицы а и образование промежуточного ядра С , называемого составным, или компаунд-ядром. Вторая стадия - распад составного ядра на ядро Y и частицу b .

Фредерик и Ирен Жолио-Кюри бомбардировали α -частицами В, А1 и Mg, что привело к искусственно радиоактивным ядрам, претерпеваю-щим -распад (позитронный распад или + р- распад):

В ядерных реакциях выполняется правило смещения

Процесс р + - распада протекает так, как если бы один из протонов ядра превратился в нейт­рон, испустив при этом позитрон и нейтрино:

Позитроны могут рождаться при взаимодействии γ -квантов большой энергии (E γ > 1,02 МэВ = 2m e с 2 ) с веществом. Этот процесс протекает по схеме

Электронно-позитронные пары были обнаружены в камере Вильсона, поме­щенной в магнитное поле, в которой и отклонялись в противопо­ложные стороны. Процесс превращения электронно-позитронной пары (при столкновении позитрона с электроном) в два γ - кванта, называется аннигиляция. При аннигиляции энергия пары переходит в энергию фотонов

Появление в этом процессе двух γ -квантов следует из законов сохранения импульса и энергии.

Захват ядром электрона с одной из внутренних оболочек атома (К, L и т. д.) с испусканием нейтрино (электронный захват или е-захват) происходит по следующей схеме:

(появление нейтрино вытекает из закона сохранения спина). В общем виде схема е -захвата:

В зависимости от скорости (энергии) нейтроны делят на медленные и быстрые.

Медленные нейтроны: ультрахолодные (≤ 10 -7 эВ),

очень холодные(10 -7 ÷10 -4 эВ),холодные(10 -4 ÷10 -3 эВ),

тепловые (10 -3 ÷0,5 эВ), резонансные (0,5÷10 4 эВ) Электронный захват обнаруживается по сопровождающему его харак­теристическому рентгеновскому излучению, возникающему при заполнении образовавшихся вакансий в электронной оболочке атома. Вся энергия распада уносится нейтрино.

Замедлить нейтроны можно пропуская их через вещество, содержащее водород (например, воду). Они испытывают при этом рассеяние и замедляются.

Радиоактивность - самопроизвольный распад неустойчивых атомных ядер. Он сопровождается испусканием элементарных частиц или ядер гелия (α‑частиц) и превращением изотопа одного элемента в изотоп другого.

Радиоактивные семейства тория ‑232, урана‑235 и урана‑238.

Французский ученый Антуан Беккерель летом 1835 г. в Венеции наблюдал исключительную по красоте фосфоресценцию Адриатического моря. Спустя 61 год это явление послужило одной из путеводных нитей, позволивших его внуку Анри Беккерелю открыть явление радиоактивности. Лучи, обнаруженные В. Рентгеном в 1895 г., также привлекли внимание Анри Беккереля тем, что они вызывали фосфоресценцию различных веществ. Возникло предположение, что фосфоресценция, в свою очередь, сопровождается испусканием рентгеновских лучей. Желая проверить это предположение, Анри Беккерель исследовал двойной сульфат уранила и калия - сильно фосфоресцирующее соединение. Оказалось, что оно и без предварительного освещения испускает лучи ранее неизвестной природы.

Это наблюдение Анри Беккерель сделал 1 марта 1896 г. В мае он выяснил: ответственным за испускание новых лучей является элемент уран - в то время последний элемент периодической системы химических элементов.

М. Склодовская‑Кюри назвала эти лучи радиоактивными, а само явление их испускания - радиоактивностью. Она же обнаружила это явление у тория и вместе с мужем П. Кюри выделила из урановых минералов два новых радиоактивных элемента - полоний и радий. Начиная с 1899 г. различные ученые стали обнаруживать новые радиоактивные вещества всё в больших количествах, например актиний, эманации (см. Радон) и др. Как правило, эти вещества имели очень короткие периоды полураспада (время, за которое распадается половина любого радиоактивного вещества), и потому ученые даже сомневались, являются ли эти вещества химическими элементами в обычном понимании. Тем более что число свободных мест в периодической системе между висмутом и ураном было весьма ограниченно.

Огромный вклад в изучение радиоактивности внес английский ученый Э. Резерфорд. Вместе с английским радиохимиком Ф. Содди он доказал, что радиоактивность сопровождается самопроизвольной превращаемостью химических элементов. Например, радий, испуская а‑частицу, превращается в радон. К 1913 г. обилие радиоактивных веществ (около 40) было сведено в три радиоактивных семейства, представляющих собой цепочки последовательных превращаемостей родоначальников рядов (урана‑238, урана‑235 и тория‑232) в стабильный свинец (см. Радиоактивные элементы). Среди радиоактивных веществ оказалось несколько групп веществ, химически неразличимых, но разных по массе. Они были названы изотопами. Открытие радиоактивных элементов фактически было открытием отдельных естественных радиоактивных изотопов: ведь все члены радиоактивных семейств являются изотопами урана, тория, протактиния, актиния, радия, радона, полония, свинца. В то же время все стабильные элементы были первоначально открыты как природные смеси изотопов.

Существует несколько видов радиоактивных превращений. Это α‑распад (испускание α‑частицы), β − ‑распад (испускание электрона) и спонтанное деление ядер. Испускание γ‑лучей не является видом радиоактивного распада (при этом не происходит превращения элементов), а представляет собой электромагнитное излучение малых длин волн. Эти виды наблюдаются в природе.

В 1934 г. супруги И. и Ф. Жолио‑Кюри обнаружили явление искусственной радиоактивности. В результате ядерных реакций могут быть получены искусственные радиоактивные изотопы всех элементов периодической системы. Их известно теперь около 1800. Изучение искусственных радиоизотопов позволило обнаружить новые виды радиоактивных превращаемостей: испускание позитрона, или β + ‑распад, и K‑захват (поглощение ядром электрона с ближайшей электронной K‑оболочки) (см. Атом). Предсказана и доказана возможность протонной (испускание протона) и двупротонной (испускание двух протонов одновременно) радиоактивности.

В 1982 г. американские ученые экспериментально доказали, что некоторые ядра способны сразу испускать два протона. Это так называемая двупротонная радиоактивность, которая была предсказана еще в 1960 г. советским физиком В. И. Гольданским. А в конце 1983 г. английские физики Г. Роуз и Г. Джонс обнаружили совершенно удивительный вид радиоактивности - испускание ядрами изотопа 223 Ra тяжелых частиц - ядер 14 C. Это открытие вызвало огромный интерес и породило обширный цикл исследований в разных странах, в том числе и в СССР. Оказалось, что помимо «углеродной» радиоактивности существует и «неоновая»: ядра некоторых изотопов протактиния и урана, кроме обычной, присущей им α‑активности, способны испускать ядра неона. Новый вид радиоактивности именуют «фрагментарным» или кластерным. Ныне известно лишь восемь ядер, испускающих ядра углерода или неона. Это четыре изотопа радия (вылетают ядра углерода) и четыре изотопа урана и протактиния (ядра неона). Эксперименты в этой области стремительно развиваются. Теоретики пока еще не имеют единой точки зрения в объяснении этого редкого, но чрезвычайно интересного вида радиоактивного распада. Вероятно, в арсенале природы хранится еще большее число способов радиоактивных распадов, чем мы себе представляем в настоящее время.

Явление радиоактивности характеризуется тремя факторами: 1) скоростью радиоактивного распада; 2) видом испускаемых частиц и 3) их энергией. Скорость распада выражается простой математической формулой:

N t = N 0 e −λt .

В ней N t - число атомов радиоактивного элемента в момент времени t; N 0 - число атомов в начальный момент времени (t = 0), е - основание натуральных логарифмов, а λ - это так называемая постоянная радиоактивного распада. Она связана с периодом полураспада T соотношением:

Величины периодов полураспада известных радиоактивных изотопов заключаются в очень широком временном интервале - от тысячных долей секунды до миллиардов лет. Однако большинство изотопов характеризуются периодами полураспада от 30 с до 10 дней.

Самый распространенный вид радиоактивных превращений - испускание электронов, или β − ‑распад. Он свойственен 45% всех известных радиоактивных изотопов и наблюдается у ядер с избытком нейтронов, т. е. у тяжелых радиоактивных изотопов элементов. Более 15% радиоактивных ядер распадаются путем испускания α‑частиц; α‑распаду подвергаются изотопы элемментов конца периодической системы (начиная с висмута), а также некоторых элементов её середины (начиная с редкоземельных). Для более легких элементов а‑распад энергетически невозможен.

Спонтанное деление в природе встречается у изотопов 238 U и 232 Th; оно становится существенным у изотопов трансурановых элементов по мере роста Z - заряда атомного ядра.

Позитронный распад и K‑захват наблюдаются фактически лишь у искусственных радиоактивных изотопов и характерны для ядер с недостатком нейтронов. Около 10% изотопов подвержены β + ‑распаду (в основном это изотопы элементов первой половины периодической системы). На долю электронного захвата приходится примерно 25% наблюдавшихся радиоактивных превращаемостей (они в большей степени свойственны изотопам элементов второй половины таблицы Менделеева, в атомах которых внутренние электронные оболочки расположены близко к ядру).

Изучение радиоактивности сыграло огромную роль в создании современных представлений о строении и свойствах материи.

Нестабильность атомов была открыта в конце 19-го века. Спустя 46 лет был построен первый ядерный реактор.

Радиоактивностью называется способность нестабильных ядер превращаться в другие ядра при этом процесс превращения сопровождается испусканием различных частиц.

Открытие радиоактивности – явления, доказывающего сложный состав ядра, произошло благодаря счастливой случайности. Рентгеновские лучи впервые были получены при столкновении быстрых электронов со стеклянной стенкой разрядной трубки. Одновременно наблюдалось свечение стенок трубки. Беккерель завернул фотопластинку в плотную черную бумагу, положил соли и выставил на яркий свет. После проявления пластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое-то излучение, которое, подобно рентгеновскому пронизывает непрозрачные тела и действует на пластинку. Беккерель думал, что излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1884 года, провести очередной опыт не удавалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких-либо внешних влияний создают какое-то излучение.

В 1898 году Мария Склодовская-Кюри во Франции и другие учёные обнаружили излучение тория. В дальнейшем главные усилия в поисках новых элементов были предприняты Марией Склодовской-Кюри и её мужем Пьером Кюри . Был открыт ещё один элемент, дающий очень интенсивное излучение. Он был назван радием. Само же явление самопроизвольного излучения было названо супругами Кюри радиоактивностью.

Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными.

После открытия радиоактивности элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри этим занялся Резерфорд.

Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившие из канала излучения действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу. Вся установка размещалась в вакууме.

В отсутствии магнитного поля на фотопластинке после проявления обнаруживалось одно тёмное пятно, точно напротив канала. В магнитном поле пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо больше чем положительный. Третья составляющая не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный – бета-лучей и нейтральный – гамма-лучей.

Эти три вида излучения очень сильно отличаются друг от друга по проникающей способности, т.е. по тому, насколько интенсивно они поглощаются различными веществами.

Альфа-излучение - это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение - это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение - это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Вопрос