Сказки        28.06.2020   

Основные положения и постулаты статистической термодинамики. Статистическая физика и термодинамика. Смотреть что такое "статистическая термодинамика" в других словарях

Методы Образование Об этом сайте Библиотека Мат. форумы

Библиотека > Книги по физике > Статистическая физика

Статистическая физика

  • Айзеншиц Р. Статистическая теория необратимых процессов. М.: Изд. Иностр. лит., 1963 (djvu)
  • Ансельм А.И. Основы статистической физики и термодинамики. М.: Наука, 1973 (djvu)
  • Ахиезер А.И., Пелетминский С.В. Методы статистической физики. М.: Наука, 1977 (djvu)
  • Базаров И.П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. Избранные труды по статистической физике. М.: Изд-во МГУ, 1979 (djvu)
  • Боголюбов Н.Н. (мл.), Садовников Б.И. Некоторые вопросы статистической механики. М.: Высш. шк., 1975 (djvu)
  • Бонч-Бруевич В.Л., Тябликов С.В. Метод функций Грина в статистической механике. М.: Физматлит, 1961 (djvu, 2.61Mb)
  • Васильев А.М. Введение в статистическую физику. М.: Высш. школа, 1980 (djvu)
  • Власов А.А. Нелокальная статистическая механика. М.: Наука, 1978 (djvu)
  • Гиббс Дж.В. Основные принципы статистической механики (излагаемые со специальным применением к рациональному обоснованию термодинамики). М.-Л.: ОГИЗ, 1946 (djvu)
  • Гуров К.П. Основания кинетической теории. Метод Н.Н. Боголюбова. М.: Наука, 1966 (djvu)
  • Заславский Г.М. Статистическая необратимость в нелинейных системах. М.: Наука, 1970 (djvu)
  • Захаров А.Ю. Решёточные модели статистической физики. Великий Новгород: НовГУ, 2006 (pdf)
  • Захаров А.Ю. Функциональные методы в классической статистической физике. Великий Новгород: НовГУ, 2006 (pdf)
  • Иос Г. Курс теоретической физики. Часть 2. Термодинамика. Статистическая физика. Квантовая теория. Ядерная физика. М.: Просвещение, 1964 (djvu)
  • Исихара А. Статистическая физика. М.: Мир, 1973 (djvu)
  • Каданов Л., Бейм Г. Квантовая статистическая механика. Методы функций Грина в теории равновесных и неравновесных процессов. М.: Мир, 1964 (djvu)
  • Кац М. Вероятность и смежные вопросы в физике. М.: Мир, 1965 (djvu)
  • Кац М. Несколько вероятностных задач физики и математики. М.: Наука, 1967 (djvu)
  • Киттелъ Ч. Элементарная статистическая физика. М.: ИЛ, 1960 (djvu)
  • Киттель Ч. Статистическая термодинамика. М: Наука, 1977 (djvu)
  • Козлов В.В. Тепловое равновесие по Гиббсу и Пуанкаре. Москва-Ижевск: Институт компьютерных исследований, 2002 (djvu)
  • Компанеец А.С. Законы физической статистики. Ударные волны. Сверхплотное вещество. М.: Наука, 1976 (djvu)
  • Компанеец А.С. Курс теоретической физики. Том 2. Статистические законы. М.: Просвещение, 1975 (djvu)
  • Коткин Г.Л. Лекции по статистической физике, НГУ (pdf)
  • Крылов Н.С. Работы по обоснованию статистической физики. М.-Л.: Из-во АН СССР, 1950 (djvu)
  • Кубо Р. Статистическая механика. М.: Мир, 1967 (djvu)
  • Ландсберг П. (ред.) Задачи по термодинамике и статистической физике. М.: Мир, 1974 (djvu)
  • Левич В.Г. Введение в статистическую физику (2-е изд.) М.: ГИТТЛ, 1954 (djvu)
  • Либов Р. Введение в теорию кинетических уравнений. М.: Мир, 1974 (djvu)
  • Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980 (djvu)
  • Минлос Р.А. (ред.) Математика. Новое в зарубежной науке-11. Гиббсовсиие состояния в статистической физике. Сборник статей. М.: Мир, 1978 (djvu)
  • Ноздрев В.Ф., Сенкевич А.А. Курс статистической физики. М.: Высш. школа, 1965 (djvu)
  • Пригожин И. Неравновесная статистическая механика. М.: Мир, 1964 (djvu)
  • Радушкевич Л.В. Курс статистической физики (2-е изд.) М.: Просвещение, 1966 (djvu)
  • Рейф Ф. Берклеевский курс физики. Том 5. Статистическая физика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика, статистическая физика и кинетика. М.: Наука, 1972 (djvu)
  • Румер Ю.Б., Рывкин М.Ш. Термодинамика статистическая физика и кинетика (2-е изд.). М.: Наука, 1977 (djvu)
  • Рюэль Д. Статистическая механика. М.: Мир, 1971 (djvu)
  • Савуков В.В. Уточнение аксиоматических принципов статистической физики. СПб.: Балт. гос. техн. унив. "Военмех", 2006

10. Основные постулаты статистической термодинамики

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. В первом подходе, основанном на классической или квантовой механике, подробно характеризуется микросостояние системы, например, координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): 3N координат и 3N проекций импульса.

Макроскопический подход, который использует классическая термодинамика, характеризует только макросостояния системы и использует для этого небольшое число переменных, например, три: температуру, объем и число частиц. Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле, бесконечно много) микросостояний.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояний, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее по всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам (p , q , t ), которая определяется следующим образом:

(p , q , t ) dp dq - это вероятность того, что система ансамбля находится в элементе объема dp dq вблизи точки (p , q ) в момент времени t .

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостоянии.

Из определения следуют элементарные свойства функции распределения:

1. Нормировка

. (10.1)

2. Положительная определенность

(p , q , t ) і 0 (10.2)

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f (p , q ) по ансамблю :

Например, внутренняя энергия - это среднее значение функции Гамильтона H (p ,q ):

Существование функции распределения составляет суть основного постулата классической статистической механики :

Макроскопическое состояние системы полностью задается некоторой функцией распределения, которая удовлетворяет условиям (10.1) и (10.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: = (p ,q ). Явный вид функции распределения зависит от типа ансамбля. Различают три основных типа ансамблей:

1) Микроканонический ансамбль описывает изолированные системы и характеризуется переменными: E (энергия), V (объем), N (число частиц). В изолированной системе все микросостояния равновероятны (постулат равной априорной вероятности ):

2) Канонический ансамбль описывает системы, находящиеся в тепловом равновесии с окружающей средой. Тепловое равновесие характеризуется температурой T . Поэтому функция распределения также зависит от температуры:

(10.6)

(k = 1.38 10 -23 Дж/К - постоянная Больцмана). Значение константы в (10.6) определяется условием нормировки (см. (11.2)).

Частным случаем канонического распределения (10.6) является распределение Максвелла по скоростям v, которое справедливо для газов:

(10.7)

(m - масса молекулы газа). Выражение (v)d v описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d v. Максимум функции (10.7) дает наиболее вероятную скорость молекул, а интеграл

Среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона H (p ,q ) используют оператор Гамильтона H , а вместо функции распределения - оператор матрицы плотности :

(10.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в i -ом энергетическом состоянии и имеет энергию E i :

(10.10)

Значение константы определяется условием нормировки: S i = 1:

(10.11)

Знаменатель этого выражения называют суммой по состояниям (см. гл. 11). Он имеет ключевое значение для статистической оценки термодинамических свойств системы Из (10.10) и (10.11) можно найти число частиц N i , имеющих энергию E i :

(10.12)

(N - общее число частиц). Распределение частиц (10.12) по уровням энергии называют распределением Больцмана , а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией E i , то их объединяют в одну группу путем суммирования больцмановских множителей:

(10.13)

(g i - число уровней с энергией E i , или статистический вес).

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

, (10.14)

3) Большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой T , а равновесие по числу частиц - химическим потенциалом . Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~ 10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

ПРИМЕРЫ

Пример 10-1. Молекула может находиться на двух уровнях с энергиями 0 и 300 см -1 . Какова вероятность того, что молекула будет находиться на верхнем уровне при 250 о С?

Решение . Надо применить распределение Больцмана, причем для перевода спектроскопической единицы энергии см -1 в джоули используют множитель hc (h = 6.63 10 -34 Дж. c, c = 3 10 10 см/с): 300 см -1 = 300 6.63 10 -34 3 10 10 = 5.97 10 -21 Дж.

Ответ . 0.304.

Пример 10-2. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . При какой температуре а) все молекулы будут находиться на нижнем уровне, б) число молекул на нижнем уровне будет равно числу молекул на верхних уровнях, в) число молекул на нижнем уровне будет в три раза меньше, чем число молекул на верхних уровнях?

Решение . Воспользуемся распределением Больцмана (10.13):

а) N 0 / N = 1; exp(-E /kT ) = 0; T = 0. При понижении температуры молекулы накапливаются на нижних уровнях.

б) N 0 / N = 1/2; exp(-E /kT ) = 1/3; T = E / [k ln(3)].

в) N 0 / N = 1/4; exp(-E /kT ) = 1; T = . При высоких температурах молекулы равномерно распределены по уровням энергии, т.к. все больцмановские множители почти одинаковы и равны 1.

Ответ . а) T = 0; б) T = E / [k ln(3)]; в) T = .

Пример 10-3. При нагревании любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с ростом температуры.

Решение . Заселенность - доля молекул, находящихся на определенном энергетическом уровне. По условию, производная от этой величины по температуре должна быть положительна:

Во второй строчке мы использовали определение средней энергии (10.14). Таким образом, заселенность возрастает с ростом температуры для всех уровней, превышающих среднюю энергию системы.

Ответ . .

ЗАДАЧИ

10-1. Молекула может находиться на двух уровнях с энергиями 0 и 100 см -1 . Какова вероятность того, что молекула будет находиться на низшем уровне при 25 о С?

10-2. Молекула может находиться на двух уровнях с энергиями 0 и 600 см -1 . При какой температуре на верхнем уровне будет в два раза меньше молекул, чем на нижнем?

10-3. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . Найдите среднюю энергию молекул: а) при очень низких температурах, б) при очень высоких температурах.

10-4. При охлаждении любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с уменьшением температуры.

10-5. Рассчитайте наиболее вероятную скорость молекул углекислого газа при температуре 300 К.

10-6. Рассчитайте среднюю скорость атомов гелия при нормальных условиях.

10-7. Рассчитайте наиболее вероятную скорость молекул озона при температуре -30 о С.

10-8. При какой температуре средняя скорость молекул кислорода равна 500 м/с?

10-9. При некоторых условиях средняя скорость молекул кислорода равна 400 м/с. Чему равна средняя скорость молекул водорода при этих же условиях?

10-10. Какова доля молекул массой m , имеющих скорость выше средней при температуре T ? Зависит ли эта доля от массы молекул и температуры?

10-11. Пользуясь распределением Максвелла, рассчитайте среднюю кинетическую энергию движения молекул массой m при температуре T . Равна ли эта энергия кинетической энергии при средней скорости?

Пусть имеются два одинаковых сосуда, соединённых между собой таким образом, что газ из одного сосуда может перетекать в другой и пусть в начальный момент все молекулы газа находятся в одном сосуде. По истечении некоторого времени произойдёт перераспределение молекул, приводящее к возникновению равновесного состояния, характеризующегося равной вероятностью нахождения молекул в обоих сосудах. Самопроизвольный переход в исходное неравновесное состояние, при котором все молекулы сосредоточены в одном из сосудов, практически невозможен. Процесс перехода из равновесного в неравновесное состояние оказывается очень маловероятным, так как размер относительных флуктуаций параметров при больших количествах частиц в сосудах очень мал.

Этот вывод соответствует второму началу термодинамики, утверждающему, что термодинамическая система самопроизвольно переходит из неравновесного состояния в равновесное, тогда как обратный процесс возможен только при внешних воздействиях на систему.

Энтропия и вероятность

Термодинамической величиной, характеризующей направление протекания самопроизвольных термодинамических процессов, является энтропия. Наиболее вероятному равновесному состоянию соответствует максимум энтропии.

Пусть имеется сосуд объёмом V 0 , внутри которого находится одна молекула. Вероятность того, что частица будет обнаружена внутри некоторого объёма V < V 0 , выделенного внутри сосуда, равна . Если в сосуде находится не одна, а две частицы, то вероятность их одновременного обнаружения в указанном объёме определяется как произведение вероятностей нахождения в этом объёме каждой из частиц:

.

Для N частиц вероятность их одновременного обнаружения в объёме V составит

.

Если в этом сосуде выделить два объёма V 1 и V 2 то можно записать отношения вероятностей того, что все молекулы находятся в указанных объёмах:

.

Определим приращение энтропии в изотермическом процессе

расширения идеального газа от V 1 до V 2 :

Используя отношение, вероятностей получаем:

.

Полученное выражение не определяет абсолютное значение энтропии в каком-либо состоянии, а только даёт возможность найти разность энтропий в двух различных состояниях.

Для однозначного определения энтропии используют статистический вес G , значение которого выражается целым положительным числом и пропорционально вероятности: G ~ P .

Статистическим весом макросостояния называется величина, численно равная количеству равновесных микросостояний, с помощью которых может быть реализовано рассматриваемое макросостояние.

Переход к статистическому весу позволяет записать соотношение для энтропии в виде формулы Больцмана для статистической энтропии :

Лекция 15

Явления переноса

Термодинамические потоки

Термодинамические потоки , связанные с переносом вещества, энергии или импульса из одной части среды в другую, возникают в случае, если значения тех или иных физических параметров отличаются в объёме среды.

Диффузией называют процесс самопроизвольного выравнивания концентраций веществ в смесях. Скорость диффузии сильно зависит от агрегатного состояния вещества. Быстрее диффузия происходит в газах и очень медленно в твёрдых телах.

Теплопроводностью называют явление, приводящее к выравниванию температуры в различных точках среды. Большая теплопроводность металлов связана с тем, что в них перенос теплоты осуществляется не вследствие хаотического движения атомов и молекул, как, например, в газах или жидкостях, а свободными электронами, имеющими гораздо большие скорости теплового движения.

Вязкостью или внутренним трением называют процесс возникновения силы сопротивления при движении тела в жидкости или газе и затухания звуковых волн при прохождении их через различные среды.

Для количественного описания термодинамического потока вводят величину

, где

Термодинамика. Работы Майера, Джоуля, Гельмгольца позволили выработать так называемый. “закон сохранения сил” (понятия «сила» и «энергия» в то время еще строго не различались). Однако первая ясная формулировка этого закона была получена физиками Р. Клаузиусом и У. Томсоном (лордом Кельвином) на основе анализа исследования работы тепловой машины, которое провел С. Карно. Рассматривая превращения теплоты и работы макроскопических системах С. Карно фактически положил начало новой науке, которую Томсон впоследствии назвал термодинамикой. Термодинамика ограничивается изучением особенностей превращения тепловой формы движения в другие, не интересуясь вопросами микроскопического движения частиц, составляющих вещество.

Термодинамика, таким образом, рассматривает системы, между которыми возможен обмен энергией, без учета микроскопического строения тел, составляющих систему, и характеристик отдельных частиц. Различают термодинамику равновесных систем или систем, переходящих к равновесию (классическая, или равновесная термодинамика) и термодинамику неравновесных систем (неравновесная термодинамика). Классическая термодинамика чаще всего называется просто термодинамикой и именно она составляет основу так называемой Термодинамической Картины Мира (ТКМ), которая сформировалась к середине 19 в. Неравновесная термодинамика получила развитие во второй половине 20-го века и играет особую роль при рассмотрении биологических систем и феномена жизни в целом.

Таким образом, при исследовании тепловых явлений выделились два научных направления:

1. Термодинамика, изучающая тепловые процессы без учета молекулярного строения вещества;

2. Молекулярно-кинетическая теория (развитие кинетической теории вещества в противовес теории теплорода);

Молекулярно-кинетическая теория. В отличие от термодинамики молекулярно-кинетическая теория характеризуется рассмотрением различных макроскопических проявлений систем как результатов суммарного действия огромной совокупности хаотически движущихся молекул. Молекулярно-кинетическая теория использует статистический метод, интересуясь не движением отдельных молекул, а только средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда второе название молекулярно-кинетической теории – статистическая физика.

Первое начало термодинамики. Опираясь на работы Джоуля и Майера, Клаузнус впервые высказал мысль, сформировавшуюся впоследствии в первое начало термодинамики. Он сделал вывод, что всякое тело имеет внутреннюю энергию U . Клаузиус назвал ее теплом, содержащимся в теле, в отличие от “тепла Q, сообщенного телу”. Внутреннюю энергию можно увеличить двумя эквивалентными способами: проведя над телом механическую работу -А, или сообщая ему количество теплоты Q.



В 1860 г. У. Томсон окончательно заменив устаревший термин “сила” термином “энергия”, записывает первое начало термодинамики в следующей формулировке:

Количество теплоты, сообщенное газу, идет на увеличение внутренней энергии газа и совершение газом внешней работы (рис.1).

Для бесконечно малых изменений имеем

Первое начало термодинамики, или закон сохранения энергии, утверждает баланс энергии и работы. Его роль можно сравнить с ролью своеобразного «бухгалтера» при взаимопревращения различных видов энергии друг в друга.

Если процесс циклический, система возвращается в исходное состояние и U1 = U2 , a dU = 0. В этом случае все подведенное тепло идет на совершение внешней работы. Если при этом и Q = 0, то и А = 0, т.е. невозможен процесс, единственным результатом которого является производство работы без каких-либо изменений в других телах, т.е. работа «вечного двигателя» (perpetuum mobile).

Майер в своей работе составил таблицу всех рассмотренных им “сил” (энергий) природы и привел 25 случаев их превращений (тепло ® механическая работа ® электричество, химическая «сила» вещества ® теплота, электричество). Майер распространил положение о сохранении и превращении энергии и на живые организмы (поглощение пищи ® химические процессы ® тепловые и механические эффекты). Эти примеры впоследствии были подкреплены работами Гесса (1840 г.), в которых исследовалось превращение химической энергии в теплоту, а также Фарадея, Ленца и Джоуля, в результате которых был сформулирован закон Джоуля-Ленца (1845) о связи электрической и тепловой энергии Q = J2Rt.

Таким образом, постепенно, на протяжении более четырех десятилетий сформировался один из самых великих принципов современной науки, приведший к объединению самых различных явлений природы. Этот принцип заключается в следующем: Существует определенная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Исключений из закона сохранения энергии не существует.

Контрольные вопросы

1. Почему исследование тепловых явлений и фазовых переходов выявило несостоятельность лапласовского детерминизма?

2. Что такое микропараметры, макропараметры при исследовании тепловых явлений?

3. С чем было связано изучение тепловых явлений и когда оно началось?

4. Назовите ученых, чьи труды легли в основу физики тепловых явлений.

5. Что такое консервативные силы? Диссипативные силы? Приведите примеры.

6. Для каких систем справедлив закон сохранения механической энергии?

7. Что такое потенциальная энергия? Только ли к механическим системам применимо понятие потенциальной энергии? Поясните.

8. Объясните кратко теорию теплорода.

9. Какие опыты, опровергающие теорию теплорода, были проведены Румфордом?

10. Почему теплоемкости газа в процессах при постоянном давлении (Ср) и при постоянном объеме (Сv) неодинаковы? Кто из ученых впервые обнаружил этот факт?

11. Что такое термодинамика? Что она изучает?

12. Что изучает молекулярно-кинетическая теория?

13. Что такое статистическая физика? Откуда такое название?

14. Сформулируйте первое начало термодинамики.

15. С чем (кем) можно образно сравнить первое начало термодинамики?

Литература

1. Дягилев Ф.М. Концепции современного естествознания. – М.: Изд. ИМПЭ, 1998.

2. Концепции современного естествознания./ под ред. проф. С.А. Самыгина, 2-е изд. – Ростов н/Д: «Феникс», 1999.

3. Дубнищева Т.Я.. Концепции современного естествознания. Новосибирск: Изд-во ЮКЭА, 1997.

4. Ремизов А.Н. Медицинская и биологическая физика. – М.: Высшая школа, 1999.

Раздел физики, посвящённый изучению св в макроскопич. тел, т. е. систем, состоящих из очень большого числа одинаковых ч ц (молекул, атомов, эл нов и т. д.), исходя из св в этих ч ц и вз ствий между ними. Изучением макроскопич. тел занимаются и др … Физическая энциклопедия

- (статистическая механика), раздел физики, изучающий свойства макроскопических тел (газов, жидкостей, твердых тел) как систем из очень большого (порядка числа Авогадро, т.е. 1023 моль 1) числа частиц (молекул, атомов, электронов). В статистической … Современная энциклопедия

- (статистическая механика) раздел физики, изучающий свойства макроскопических тел как систем из очень большого числа частиц (молекул, атомов, электронов). В статистической физике применяют статистические методы, основанные на теории вероятностей.… … Большой Энциклопедический словарь

Статистическая физика - (статистическая механика), раздел физики, изучающий свойства макроскопических тел (газов, жидкостей, твердых тел) как систем из очень большого (порядка числа Авогадро, т.е. 1023 моль 1) числа частиц (молекул, атомов, электронов). В… … Иллюстрированный энциклопедический словарь

Сущ., кол во синонимов: 2 статы (2) физика (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

СТАТИСТИЧЕСКАЯ ФИЗИКА - раздел теоретической физики, изучающий свойства сложных систем газов, жидкостей, твёрдых тел и их связь со свойствами отдельных частиц электронов, атомов и молекул, из которых эти системы состоят. Основная задача С. ф.: нахождение функций… … Большая политехническая энциклопедия

- (статистическая механика), раздел физики, изучающий свойства макроскопических тел как систем из очень большого числа частиц (молекул, атомов, электронов). В статистической физике применяют статистические методы, базирующиеся на теории… … Энциклопедический словарь

Раздел физики, задача которого выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.… … Большая советская энциклопедия

статистическая физика - statistinė fizika statusas T sritis fizika atitikmenys: angl. statistical physics vok. statistische Physik, f rus. статистическая физика, f pranc. physique statistique, f … Fizikos terminų žodynas

- (статистическая механика), раздел физики, изучающий свойства макроскопич. тел как систем из очень большого числа частиц (молекул, атомов, электронов). В С. ф. применяют статистич. методы, базирующиеся на теории вероятностей. С. ф. разделщотла… … Естествознание. Энциклопедический словарь

Книги

  • Статистическая физика , Климонтович Ю.Л.. Данный курс отличается от существующих как по содержанию, так и по характеру изложения. Весь материал излагается на основе единого метода - теория неравновесного состояния служит стержнем…
  • Статистическая физика , Л. Д. Ландау, Е. М. Лифшиц. Издание 1964 года. Сохранность хорошая. В книге дано ясное изложение общих принципов статики и по возможности более полное изложение их многочисленных применений. Второе издание дополняет…