Классика        03.04.2020   

Типы кристаллов и их свойства. Кристаллы и их свойства. Плавление парафина и сахара. и измерение углов между гранями кристаллов

Тема Симметрия твердых тел

1 Кристаллические и аморфные тела.

2 Элементы симметрии и их взаимодействия

3 Симметрия кристаллических многогранников и кристаллических решеток.

4 Принципы построения кристаллографических классов

Лабораторная работа № 2

Изучение структуры моделей кристаллов

Приборы и принадлежности: карточки с указанием химических элементов, имеющих кристаллическую структуру;

Цель работы: изучить кристаллические и аморфные тела, элементы симметрии кристаллических решеток, принципы построения кристаллографических классов, вычислить период кристаллической решетки для предложенных химических элементов.

Основные понятия по теме

Кристаллы – твердые тела, обладающие трехмерной периодической атомной структурой. При равновесных условиях образования имеют естественную форму правильных симметричных многогранников. Кристаллы – равновесное состояние твердых тел.

Каждому химическому веществу, находящемуся при данных термодинамических условиях (температура, давление) в кристаллическом состоянии, соответствует определенная атомно-кристаллическая структура.

Кристалл, выросший в неравновесных условиях и не имеющий правильной огранки или потерявший ее в результате обработки, сохраняет основной признак кристаллического состояния – решетчатую атомную структуру (кристаллическую решетку) и все определяемые ею свойства.

Кристаллические и аморфные твердые тела

Твердые тела чрезвычайно разнообразны по структуре своего строения, характеру сил связи частиц (атомов, ионов, молекул), физическим свойствам. Практическая потребность в тщательном изучении физических свойств твердых тел привела к тому, что примерно половина всех физиков на Земле занимается исследование твердых тел, созданием новых материалов с наперед заданными свойствами и разработкой их практического применения. Известно, что при переходе веществ из жидкого состояния в твердое возможны два различных вида затвердевания.

Кристаллизация вещества

В жидкости, охлажденной до определенной температуры, появляются кристаллики (области упорядоченно расположенных частиц) – центры кристаллизации, которые при дальнейшем отводе тепла от вещества растут за счет присоединения к ним частиц из жидкой фазы и охватывают весь объем вещества.

Затвердение вследствие быстрого повышения вязкости жидкости с понижением температуры.

Твердые тела, образующиеся при таком процессе затвердения, относятся к аморфным телам. Среди них различают вещества, у которых кристаллизация совсем не наблюдается (сургуч, воск, смола), и вещества, способные кристаллизоваться, например, стекло. Однако, вследствие того, что вязкость у них быстро растет с понижением температуры, затрудняется перемещение молекул, необходимое для формирования и роста кристаллов, и вещество успевает затвердеть до наступления кристаллизации. Такие вещества называются стеклообразными. Процесс кристаллизации этих веществ, протекает очень медленно в твердом состоянии, причем более легко, при высокой температуре. Известное явление "расстекловывания" или "затухания" стекла обусловлено образованием внутри стекла мелких кристалликов, на границах которых происходит отражение и рассеяние света, вследствие чего стекло становится непрозрачным. Похожая картина имеет место при "засахаривании" прозрачного сахарного леденца.

Аморфные тела можно рассматривать как жидкости с очень большим коэффициентом вязкости. Известно, что у аморфных тел можно наблюдать слабо выраженное свойство текучести. Если наполнить воронку кусками воска или сургуча, то через некоторое время, разное для различных температур, куски аморфного тела будут постепенно расплываться, принимая форму воронки и вытекать из нее в виде стержня. Даже у стекла обнаружено свойство текучести. Измерения толщины оконных стекол в старых зданиях показали, что за несколько веков стекло успело стечь сверху вниз. Толщина нижней части стекла оказалась немного большей верхней.

Строго говоря, твердыми телами следует назвать только кристаллические тела. Аморфные тела по некоторым свойствам, а главное по строению, аналогичны жидкостям: их можно рассматривать как сильно переохлажденные жидкости, имеющие очень большую вязкость.

Известно, что в отличие от дальнего порядка в кристаллах (упорядоченное расположение частиц сохраняется по всему объёму каждого кристаллического зерна), в жидкостях и аморфных телах наблюдается ближний порядок в расположении частиц. Это значит, что по отношению к любой частице, расположение ближайших соседних частиц является упорядоченным, хотя и выражено не так чётко, как в кристалле, но при ударении от данной частицы, расположение по отношению к ней других частиц, становится все менее упорядоченным и на расстоянии 3-х – 4 - х эффективных диаметров молекулы, порядок в расположении частиц полностью исчезает.

Сравнительные характеристики различных состояний вещества приведены в таблице 2.1.

Кристаллическая решетка

Для удобства описания правильной внутренней структуры твердых тел обычно пользуются понятием пространственной или кристаллической решетки. Она представляет собой пространственную сетку, в узлах которой располагаются частицы – ионы, атомы, молекулы, образующие кристалл.

На рисунке 2.1 изображена пространственная кристаллическая решетка. Жирными линиями выделен наименьший параллелепипед, параллельным перемещением которого вдоль трех координатных осей, совпадающих с направлением ребер параллелепипеда, может быть построен весь кристалл. Этот параллелепипед называется основной или элементарной ячейкой решётки. Атомы расположены в данном случае в вершинах параллелепипеда.

Для однозначной характеристики элементарной ячейки задается 6 величин: три ребра a, b, c и три угла между ребрами параллелепипеда a, b, g. Эти величины называются параметрами решетки. Параметры a, b, c – это межатомные расстояния в кристаллической решётке. Их численные значения порядка 10 -10 м.

Простейшим типом решёток являются кубические с параметрами a=b=c и a = b = g= 90 0 .

Индексы Миллера

Для символического обозначения узлов, направлений и плоскостей в кристалле используются так называемые индексы Миллера.

Индексы узлов

Положение любого узла в решётке относительно выбранного начала координат определяется тремя координатами X, Y, Z (рисунок 2.2).

Через параметры решетки эти координаты можно выразить следующим образом X= ma, Y= nb, Z= pc, где a, b, c – параметры решётки, m, n, p – целые числа.


Таким образом, если за единицу длин вдоль оси решетки взять не метр, а параметры решётки a, b, c (осевые единицы длины), то координатами узла будут числа m, n, p. Эти числа называются индексами узла и обозначаются .

Для узлов, лежащих в области отрицательных направлений координат, ставиться над соответствующим индексом знак минус. Например .

Индексы направления

Для задания направления в кристалле выбирается прямая, (рисунок 2.2) проходящая через начало координат. Её ориентация однозначно определяется индексом m n p первого узла, через который она проходит. Следовательно, индексы направления определяются тремя наименьшими целыми числами, характеризующими положение ближайшего от начала координат узла, лежащего на данном направлении. Индексы направления записывают следующим образом .

Рисунок 2.3 Основные направления в кубической решетке.

Семейство эквивалентных направлений обозначается ломаными скобками .

Например, семейство эквивалентных направлений включает направления

На рисунке 2.3 представлены основные направления в кубической решетке.

Индексы плоскости

Положение любой в пространстве определяется заданием трех отрезков ОА, ОВ, ОС (рисунок 2.4), которые она отсекает на осях выбранной системы координат. В осевых единицах длины отрезков будут: ; ; .


Три числа m n p вполне определяют положение плоскости S. Для получения Миллеровских индексов с этими числами нужно сделать некоторые преобразования.

Составим отношение обратных величин осевых отрезков и выразим его через отношение трех наименьших чисел h, k, l так, чтобы выполнялось равенство .

Числа h, k, l являются индексами плоскости. Для нахождения индексов плоскости отношение приводят к общему наименьшему знаменателю и знаменатель отбрасывают. Числители дробей и дают индексы плоскости. Поясним это на примере: m = 1, n = 2, p = 3. Тогда . Таким образом, для рассматриваемого случая h = 6, k = 3, l = 2. Миллеровские индексы плоскостей заключаются в круглые скобки (6 3 2). Отрезки m n p могут быть и дробными, но индексы Миллера и в этом случае выражаются целыми числами.

Пусть m =1, n = , p = , то .

При параллельной ориентации плоскости относительно какой-нибудь оси координат, индекс, соответствующий этой оси, равен нулю.

Если отрезок, отсекаемый на оси, имеет отрицательное значение, то соответствующий индекс плоскости тоже будет иметь отрицательный знак. Пусть h = - 6 , k = 3, l = 2, то такая плоскость в Миллеровских индексах плоскостей запишется .

Необходимо отметить, что индексы плоскости (h, k, l) задают ориентацию не какой-то конкретной плоскости, а семейства параллельных плоскостей, то есть, по существу, определяют кристаллографическую ориентацию плоскости.


На рисунке 2.5 изображены основные плоскости в кубической решетке.

Некоторые плоскости, отличающиеся по индексам Миллера, являются

эквивалентными в физическом и кристаллографическом смысле. В кубической решетке одним из примеров эквивалентности являются грани куба . Физическая эквивалентность состоит в том, что все эти плоскости обладают одинаковой структурой в расположении узлов решетки, а следовательно, и одинаковыми физическими свойствами. Кристаллографическая эквивалентность их в том, что эти плоскости совмещаются друг с другом при повороте вокруг одной из осей координат на угол, кратный .Семейство эквивалентных плоскостей задается фигурными скобками. Например символом обозначается все семейство граней куба.

Трехкомпонентная символика Миллера применяется для всех систем решеток, кроме гексагональной. В гексагональной решетке (рисунок 2.7 №8) узлы расположены в вершинах правильных шестигранных призм и в центрах их шестиугольных оснований. Ориентация плоскостей в кристаллах гексагональной системы описывается с помощью четырех осей координат х 1 , х 2 , х 3 , z, так называемыми индексами Миллера – Браве . Оси х 1 , х 2 , х 3 расходятся из начала координат под углом 120 0 . Ось z перпендикулярна к ним. Обозначение направлений по четырёхкомпонентной символике затруднительно и применяется редко, поэтому направления в гексагональной решётке задаются по трехкомпонентной символике Миллера.

Основные свойства кристаллов

Одним из основных свойств кристаллов является анизотропия. Под этим термином понимается изменение физических свойств в зависимости от направления в кристалле. Так кристалл может иметь для разных направлений различную прочность, твердость, теплопроводность, удельное сопротивление, показатель преломления и т.д. Анизотропия проявляется и в поверхностных свойствах кристаллов. Коэффициент поверхностного натяжения для разнородных граней кристалла имеет различную величину. При росте кристалла из расплава или раствора это является причиной различия скоростей роста разных граней. Анизотропия скоростей роста обуславливает правильную форму растущего кристалла. Анизотропия поверхностных свойств также имеет место в различии адсорбционной способности скоростей растворения, химической активности разных граней одного и того же кристалла. Анизотропия физических свойств является следствием упорядоченной структуры кристаллической решетки. В такой структуре плотность упаковки атомами плоскостей различна. Рисунок 2.6 поясняет сказанное.

Расположив плоскости в порядке убывания плотности заселения их атомами, получим следующий ряд: (0 1 0) (1 0 0) (1 1 0) (1 2 0) (3 2 0) . В наиболее плотно заполненных плоскостях атомы прочнее связаны друг с другом, так как расстояние между ними наименьшее. С другой стороны, наиболее плотно заполненные плоскости, будучи удаленными друг от друга на относительно большие расстояния, чем малозаселённые плоскости, будут слабее связаны друг с другом.

На основании изложенного можно сказать, что наш условный кристалл легче всего расколоть по плоскости (0 1 0), чем по другим плоскостям. В этом и проявляется анизотропия механической прочности. Другие физические свойства кристалла (тепловые, электрические, магнитные, оптические) также могут быть различными по разным направлениям. Важнейшим свойством кристаллов, кристаллических решёток и их элементарных ячеек является симметрия по отношению к определённым направлениям (осям) и плоскостям.

Симметрия кристаллов

Таблица 2.1

Кристаллическая система Соотношение ребер элементарной ячейки Соотношение углов в элементарной ячейке
Триклинная
Моноклинная
Ромбическая
Тетрагональная
Кубическая
Тригональная (робоэдрическая)
Гексагональная

В силу периодичности расположения частиц в кристалле он обладает симметрией. Это свойство заключается в том, что в результате некоторых мысленных операций система частиц кристалла совмещается сама с собой, переходит в положение не отличаемое от исходного. Каждой операции можно поставить в соответствие элемент симметрии. Для кристаллов существует четыре элемента симметрии. Это – ось симметрии, плоскость симметрии, центр симметрии и зеркально-поворотная ось симметрии.

В 1867 году русский кристаллограф А.В. Гадолин показал, что может существовать 32 возможные комбинации элементов симметрии. Каждая из таких возможных комбинаций элементов симметрии называется классом симметрии. Опытом было подтверждено, что в природе существуют кристаллы, относящиеся к одному из 32 классов симметрии. В кристаллографии указанные 32 класса симметрии в зависимости от соотношения параметров а, в, с, a, b, g объединяют в 7 систем(сингоний), которые носят следующие названия: Триклинная, моноклинная, ромбическая, тригональная, гексагональная, тетрагональная и кубическая системы. В таблице 2.1 приведены соотношения параметров для указанных систем.

Как показал французский кристаллограф Браве всего существует 14 типов решеток, принадлежащих различным кристаллическим системам.

Если узлы кристаллической решетки расположены только в вершинах параллелепипеда, представляющего собой элементарную ячейку, то такая решетка называется примитивной или простой (рисунок2.7№№ 1, 2, 4, 9, 10, 12), если, кроме того, имеются узлы в центре оснований параллелепипеда, то такая решетка называется базоцентрированной (рисунок2.7№№ 3, 5), если есть узел в месте пересечения пространственных диагоналей, то решетка называется объемоцентрированной (рисунок2.7№№ 6, 11, 13), а если имеются узлы в центре всех боковых граней – гранецентрированной (рисунок2.7 №№ 7, 14). Решетки, элементарные ячейки которых содержат дополнительные узлы внутри объема параллелепипеда или на его гранях, называются сложными.

Решетка Браве представляет собой совокупность одинаковых и одинаково расположенных частиц (атомов, ионов), которые могут быть совмещены друг с другом путем параллельного переноса. Не следует полагать, что одна решетка Браве может исчерпать собой все атомы (ионы) данного кристалла. Сложную структуру кристаллов можно представить как совокупность нескольких реше ток Браве, вдвинутых одна в другую. Например, кристаллическая решетка повареной соли NaCl (рисунок 2.8) состоит из двух кубических гранецентрированных решеток Браве, образованных ионами Na – и Cl + , смещенных относительно друг друга на половину ребра куба.

Вычисление периода решетки.

Зная химический состав кристалла и его пространственную структуру, можно вычислить период решетки этого кристалла. Задача сводиться к тому, чтобы установить число молекул (атомов, ионов) в элементарной ячейке, выразить ее объем через период решетки и, зная плотность кристалла, произвести соответствующий расчет. Важно отметить, что для многих типов кристаллической решетки большинство атомов принадлежит не одной элементарной ячейке, а входит одновременно в состав нескольких соседних элементарных ячеек.

Для примера определим период решетки хлористого натрия, решетка которого показана на рисунке 2.8.

Период решетки равен расстоянию между ближайшими одноименными ионами. Это соответствует ребру куба. Найдем число ионов натрия и хлора в элементарном кубе, объем которого равен d 3 , d – период решетки. По вершинам куба расположено 8 ионов натрия, но каждый из них является одновременно вершиной восьми смежных элементарных кубов, следовательно, данному объему принадлежит лишь часть иона, расположенного в вершине куба. Всего таких ионов натрия весемь, которые в совокупности составляют ион натрия. Шесть ионов натрия расположены в центрах граней куба, но каждый из них принадлежит рассматриваемому кубу только наполовину. В совокупности они составляют иона натрия. Таким образом, рассматриваемому элементарному кубу принадлежит четыре иона натрия.

Один ион хлора расположен на пересечении пространственных диагоналей куба. Он целиком принадлежит нашему элементарному кубу. Двенадцать ионов хлора размещены по серединам ребер куба. Каждый из них принадлежит объему d 3 на одну четверть, так как ребро куба одновременно является общим для четырех смежных элементарных ячеек. Таких ионов хлора рассматриваемому кубу принадлежит 12, которые в совокупности составляют иона хлора. Всего в элементарном объеме d 3 содержится 4 иона натрия и 4 иона хлора, то есть 4 молекулы хлористого натрия (n = 4).

Если 4 молекулы хлористого натрия занимают объем d 3 , то на один моль кристалла придется объем , где А – число Авогадро, n – число молекул в элементарной ячейке.

С другой стороны , где - масса моля, - плотность кристалла. Тогда откуда

(2.1)

При определении числа атомов в одной параллелепипедной элементарной ячейке (подсчет содержания) нужно руководствоваться правилом:

q если центр атомной сферы совпадает с одной из вершин элементарной ячейки, то от такого атома данной ячейке принадлежит , так как в любой вершине параллелепипеда одновременно сходятся восемь смежных параллелепипедов, к которым в равной мере относится вершинный атом (рисунок 2.9);

q от атома, расположенного на ребре ячейки принадлежит данной ячейке , так как ребро является общим для четырех параллелепипедов (рисунок 2.9);

q от атома, лежащего на грани ячейки, принадлежит данной ячейке , так как грань ячейки общая для двух параллелепипедов (рисунок 2.9);

q атом, расположенный внутри ячейки, принадлежит ей целиком (рисунок 2.9).

При использовании указанного правила форма параллелепипедной ячейки безразлична. Сформулированной правилом может быть распространено на ячейки любых систем.

Ход работы

У полученных моделей реальных кристаллов

1 Выделить элементарную ячейку.

2 Определить тип решетки Браве.

3 Произвести "подсчет содержания" для данных элементарных ячеек.

4 Определить период решетки.

Лекция 16

Физические свойства кристаллов

Изучением структуры и физических свойств твердых тел занимается физика твердого тела. Она устанавливает зависимость физических свойств от атомной структуры вещества, разрабатывает методы получения и исследования новых кристаллических материалов, обладающих заданными характеристиками.

Физические свойства кристаллов определяются:

1) природой химических элементов, входящих в состав кристаллов;

2) типом химической связи;

3) геометрическим характером структуры, т. е. взаимным расположением атомов в кристаллической структуре;

4) несовершенством структуры, т. е. наличием дефектов.

С другой стороны, именно по физическим свойствам кристаллов мы обычно судим о типе химической связи.

О прочности кристаллов проще всего можно судить по их механическим и термическим свойствам. Чем прочнее кристалл, тем больше его твердость и тем выше его температура плавления. Если изучать изменение твердости с изменением состава в ряду однотипных веществ и сопоставлять полученные данные с соответствующими значениями для температур плавления, то можно заметить «параллелизм» в изменении этих свойств.

Напомню, что самой характерной особенностью физических свойств кристаллов является их симметрия и анизотропия . Анизотропная среда характеризуется зависимостью измеряемого свойства от направления измерения.

Мы уже говорили, что кристаллохимия тесно связана с кристаллографией и физикой. Поэтому, основной задачей кристаллофизики (раздела кристаллографии, изучающего физические свойства кристаллов) является изучение закономерностей физических свойств кристаллов от их строения, а также зависимости этих свойств от внешних воздействий.

Физические свойства веществ можно подразделить на две группы: структурно чувствительные и структурно нечувствительные свойства. Первые зависят от атомной структуры кристаллов, вторые - главным образом от электронного строения и типа химической связи. Примером первых могут служить механические свойства (масса, плотность, теплоемкость, температура плавления и др.), примером вторых - тепло - и электропроводность , оптические и др. свойства.

Так, хорошая электропроводность металлов, обусловленная наличием свободных электронов, будет наблюдаться не только в кристаллах, но и в расплавленных металлах.

Ионный характер связи проявляется, в частности, в том, что многие соли, например, галогениды щелочных металлов, растворяются в полярных растворителях, диссоциируя на ионы. Однако факт отсутствия растворимости не может еще служить доказательством наличия у соединения неполярной связи. Так, энергия связи, например, у оксидов настолько больше энергии связи щелочных галогенидов, что диэлектрическая постоянная воды уже недостаточна для отрыва ионов от кристалла.

Кроме того, некоторые соединения, преимущественно с гомеополярным типом связи, под влиянием большой диэлектрической постоянной полярного растворителя могут в растворе диссоциировать на ионы, хотя в кристаллическом состоянии ионными соединениями они могут и не быть (например НСl, НВr).

В гетеродесмических соединениях некоторые свойства, например механическая прочность соединений, зависят только от одного (слабейшего) типа связи.

Поэтому, кристалл можно рассматривать, с одной стороны, как прерывистую (дискретную) среду. С другой стороны – кристаллическое вещество можно рассматривать как сплошную анизотропную среду. В этом случае физические свойства, проявляющиеся в определенном направлении, не зависят от трансляций (переносов). Это позволяет описывать симметрию физических свойств с помощью точечных групп симметрии.

Описывая симметрию кристалла, мы принимаем во внимание только внешнюю форму, т. е. рассматривает симметрию геометрических фигур. П. Кюри показал, что симметрия материальных фигур описывается бесконечным числом точечных групп, которые в пределе стремятся к рассмотренным ранее семи предельным группам симметрии (семейства вращающегося конуса, неподвижного конуса, вращающегося цилиндра, скрученного цилиндра, неподвижного цилиндра, семейства шара с вращающимися точками поверхности, семейства неподвижного шара).

Предельными точечными группами ‑ группами Кюри – называются точечные группы, содержащие оси бесконечных порядков. Существует всего семь предельных групп: ¥, ¥mm, ¥/m, ¥22, ¥/mm, ¥/¥, ¥/¥mm.

Связь между точечной группой симметрии кристалла и симметрией его физических свойств сформулировал немецкий физик Ф. Нейманн: материал в отношении физических свойств обнаруживает симметрию того же рода, что и его кристаллографическая форма. Это положение известно как принцип Неймана.

Ученик Ф. Немана немецкий физик В. Фойгт существенно уточнил указанный принцип и сформулировал его следующим образом: группа симметрии любого физического свойства должна включать в себя все элементы точечной группы симметрии кристалла.

Рассмотрим некоторые физические свойства кристаллов.

Плотность кристаллов.

Плотность вещества зависит от кристаллической структуры вещества, его химического состава, коэффициента упаковки атомов, валентностей и радиусов слагающих ее частиц.

Плотность изменяется с изменением температуры и давления, т. к. эти факторы вызывают расширение или сжатие вещества.

Зависимость плотности от структуры можно продемонстрировать на примере трех модификаций Al2SiO5:

· андалузит (r = 3,14 – 3,16 г/см3);

· силлиманит (r = 3,23 – 3,27 г/см3);

· кианит (r = 3,53 – 3,65 г/см3).

С увеличением коэффициента упаковки кристаллической структуры плотность вещества возрастает. Например, при полиморфном переходе графита в алмаз с изменением координационного числа атомов углерода с 3 до 4 соответственно возрастает и плотность от 2,2 до 3,5 г/см3).

Плотность реальных кристаллов обычно меньше, чем расчетная плотность (идеальных кристаллов) из-за присутствия дефектов в их структурах. Плотность алмаза, например, колеблется в пределах 2,7 – 3,7 г/см3. Таким образом, по уменьшению реальной плотности кристаллов можно судить о степени их дефектности.

Плотность изменяется и с изменением химического состава вещества при изоморфных замещениях – при переходе от одного члена изоморфного ряда к другому. Например, в ряду оливинов (Mg , Fe 2+ )2[ SiO 4 ] плотность возрастает по мере замены катионов Mg2+ на Fe2+ от r = 3,22 г/см3 у форстерита Mg 2 [ SiO 4 ] до r = 4,39 г/см3 у фаялита .

Твердость.

Под твердостью подразумевается степень сопротивления кристалла внешнему воздействию. Твердость не является физической постоянной. Ее величина зависит не только от изучаемого материала, но и от условий измерения.

Твердость зависит от:

· типа структуры;

· коэффициента упаковки (удельного веса);

· заряда образующих кристалл ионов.

Например, полиморфные модификации CaCO3 – кальцит и арагонит – имеют плотности 3 и 4 соответственно и отличаются разной плотностью их структур:

· для структуры кальцита с КЧСа = 6 ‑ r = 2,72;

· для структуры арагонита с КЧСа = 9 ‑ r = 2,94 г/см3).

В ряду одинаково построенных кристаллов твердость возрастает у увеличением зарядов и уменьшением размеров катионов. Присутствие в структурах достаточно крупных анионов типа F-, OH-, молекул Н2О понижает твердость.

Грани разных форм кристаллов обладают различной ретикулярной плотностью и отличаются по своей твердости. Так, наибольшей твердостью в структуре алмаза обладают грани октаэдра (111), имеющие большую ретикулярную плотность по сравнению с гранями куба (100).

Способность к деформации.

Способность кристалла к пластической деформации определяется, прежде всего, характером химической связи между его структурными элементами.

Ковалентная связь , обладающая строгой направленностью, резко ослабевает уже при незначительных смещениях атомов относительно друг друга. Поэтому кристаллы с ковалентным типом связи (Sb, Bi, As, se и др.) не проявляют способность к пластической деформации.

Металлическая связь не имеет направленного характера и при смещении атомов относительно друг друга меняется слабо. Это определяет высокую степень пластичности металлов (ковкость). Наиболее ковкими являются те металлы, структуры которых построены по закону кубической плотнейшей упаковки, имеющей четыре направления плотноупакованных слоев. Менее ковки металлы с гексагональной плотнейшей упаковкой – с одним направлением плотнейших слоев. Так, среди полиморфных модификаций железа a-Fe и b-Fe ковкостью почти не обладают (решетка I типа), тогда как g-Fe с кубической плотнейшей упаковкой (гранецентрированная кубическая решетка) – ковкий металл как Cu, Pt, Au, Ag и др.

Ионная связь не имеет направленного характера. Поэтому типичные ионные кристаллы (NaCl, CaF2, CaTe и др.) такие же хрупкие, как кристаллы с ковалентной связью. Но в то же время они обладают достаточно высокой пластичностью. Скольжение в них протекает оп определенным кристаллографическим направлениям. Это объясняется тем, что в структуре кристалла можно выделить сетки (110), образованные либо одними ионами Na+, либо ионами Cl-. При пластической деформации одна плоская сетка передвигается относительно соседней таким образом, что ионы Na+ скользят вдоль ионов Cl-. Разноименность зарядов ионов в соседних сетках препятствует разрыву, и они остаются параллельными своему исходному положению. Скольжение вдоль этих слоев протекает при минимальном нарушении в расположении атомов и является наиболее легким.

Тепловые свойства кристаллов.

Теплопроводность тесно связана с симметрией. Наиболее наглядно это можно продемонстрировать на следующем опыте. Покроем тонким слоем парафина грани трех кристаллов: куба, гексагональной призмы, прямого параллелепипеда. Острием тонкой раскаленной иглы прикоснемся к каждой из граней этих кристаллов. По очертаниям пятен плавления можно судить о скорости распространения теплоты на плоскостях граней по различным направлениям.

На кристалле кубической сингонии контуры пятен плавления на всех гранях будут иметь форму круга, что указывает на одинаковую скорость распространения теплоты по всем направлениям от точки касания горячей иглой. Форма пятен в идее кругов на всех гранях кубического кристалла связана с его симметрией.

Форма пятен на верхней и нижней гранях гексагональной призмы будет также иметь форму круга (скорость распространения теплоты в плоскости, перпендикулярной главной оси кристалла средней категории одинакова по всем направлениям). На гранях гексагональной призмы пятна плавления будут иметь форму эллипсов, так как перпендикулярно этим граням проходят оси 2-го порядка.

На всех гранях прямого параллелепипеда (кристалл ортогональной сингонии) пятна плавления будут иметь форму эллипса, т. к. перпендикулярно этим граням проходят оси 2-го порядка.

Итак, скорость распространения теплоты по телу кристалла находится в прямой зависимости от того, вдоль какого линейного элемента симметрии она распространяется. В кристаллах кубической сингонии поверхность распространения теплоты будет иметь форму сферы. Следовательно, в отношении теплопроводности кристаллы кубической сингонии являются изотропными, т. е. по всем направлениям равносвойственными. Поверхность теплопроводности кристаллов средней категории выражается эллипсоидом вращения (параллельно главной оси). В кристаллах низшей категор ии все поверхности теплопроводности имеют форму эллипсоида.

Анизотропия теплопроводности тесно связана со структурой кристаллического вещества. Так, наиболее плотным атомным сеткам и рядам соответствуют большие значения теплопроводности. Поэтому слоистые и цепочечные кристаллы имеют большие различия в направлениях теплопроводности.

Теплопроводность зависит также от степени дефектности кристалла – у более дефектных кристаллов она ниже, чем у синтетических. Вещество в аморфном состоянии обладает более низкой теплопроводностью, чем кристаллы того же состава. Например, теплопроводность кварцевого стекла значительно ниже теплопроводности кристаллов кварца. На этом свойстве основано широкое применение посуды из кварцевого стекла.

Оптические свойства.

Каждое вещество с определенной кристаллической структурой характеризуется своеобразными оптическими свойствами. Оптические свойства тесно связаны с кристаллическим строением твердых тел, его симметрией.

В отношении оптических свойств все вещества можно разделить на оптически изотропные и анизотропные. К первым относятся аморфные тела и кристаллы высшей категории, ко вторым – все остальные. В оптически изотропных средах световая волна, представляющая собой совокупность поперечных гармонических колебаний электромагнитной природы, распространяется с одинаковой скоростью во всех направления. При этом колебания вектора напряженности электрического и магнитного полей происходят также по всевозможным направлениям, но в плоскости, перпендикулярной направлению луча. Вдоль его направления происходит передача световой энергии. Такой свет называется естественным или неполяризованным (рисунок а, б).

В оптически анизотропных средах скорости распространения волны в разных направлениях могут быть различными. При определенных условиях может быть получен так называемый поляризованный свет , для которого все колебания вектора электрического и магнитного полей проходят в строго определенном направлении (рисунок в, г). На поведении такого поляризованного света в кристаллах основана методика кристаллооптических исследований с помощью поляризационного микроскопа.

Двойное лучепреломление света в кристаллах.

линейно поляризованным с взаимно перпендикулярными плоскостями колебаний. Разложение света на два поляризованных луча называется двойным лучепреломлением или двупреломлением.

Двупреломление света наблюдается в кристаллах всех сингоний, за исключением кубической. В кристаллах низшей и средней категории двупреломление происходит по всем направлениям, за исключением одного или двух направлений, называемых оптическими осями .

Явление двупреломления связано с анизотропией кристаллов. Оптическая анизотропность кристаллов выражается в том, что скорость распространения света в них различна по разным направлениям.

В кристаллах средней категории среди множества направлений оптической анизотропии существует одно единичное направление – оптическая ось , совпадающее с главной осью симметрии 3-го, 4-го, 6-го порядков. Вдоль этого направления свет идет не раздваиваясь.

В кристаллах низшей категории имеется два направления, вдоль которых свет не раздваивается. Сечения кристаллов, перпендикулярные этим направлениям, совпадают с оптически изотропными сечениями.

Влияние структурных особенностей на оптические свойства.

В кристаллических структурах со слоями из плотноупакованных атомов расстояние между атомами внутри слоя превышают расстояние между ближайшими атомами, расположенными в соседних слоях. Подобная упорядоченность приводит к более легкой поляризации, если вектор напряжения электрического поля световой волны будет параллелен плоскости слоев.

Электрические свойства.

Все вещества можно разделить на проводники, полупроводники и диэлектрики.

Некоторые кристаллы (диэлектрики) поляризуются под влиянием внешних воздействий. Способность диэлектриков поляризоваться – одно из их фундаментальных свойств. Поляризация – это процесс, связанный с созданием в диэлектрике под действием внешнего электрического поля электрических диполей.

В кристаллографии и физике твердого тела важное теоретическое практическое значение получили явления пьезоэлектричества и пироэлектричества.

Пьезоэлектрический эффект – изменение поляризации некоторых диэлектрических кристаллов при механической деформации. Величина возникших зарядов пропорциональна приложенной силе. Знак заряда зависит от типа кристаллической структуры. Пьезоэлектрический эффект возникает только в кристаллах, лишенных центра инверсии, т. е. имеющих полярные направления. Например, кристаллы кварца SiO2, сфалерита (ZnS).

Пироэлектрический эффект – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении. Пироэлектрический эффект возникает только в диэлектрических кристаллах с единственным полярным направлением, противоположные концы которого не могут быть совмещены ни одной операцией данной группы симметрии. Появление электрических зарядов может происходить только по определенным, полярным направления. Грани, перпендикулярные этим направлениям, получают разные по знаку заряды: одна – положительный, а другая – отрицательный. Пироэлектрический эффект может возникнуть в кристаллах, относящихся к одному из полярных классов симметрии: 1, 2, 3, 4, 6, m, mm2, 3m, 4mm, 6mm.

Из геометрической кристаллографии следует, что направления, проходящие через центр симметрии, не могут быть полярными. Не могут быть полярными и направления, перпендикулярные плоскостям симметрии или осям четного порядка.

В классе пироэлектриков выделяют два подкласса. К первому относятся линейные пироэлектрики, у которых во внешнем поле электрическая поляризация линейно зависит от напряженности электрического поля. Например, турмалин NaMgAl3B3.Si6(O, OH)30.

Кристаллы второго подкласса называются сегнетоэлектриками. У них зависимость поляризации от напряженности внешнего поля носит нелинейный характер и поляризуемость зависит от величины внешнего поля. Нелинейная зависимость поляризации от напряженности электрического поля характеризуется петлей гистерезиса. Эта особенность сегнетоэлектриков предполагает сохранение у них электрической поляризации в отсутствии внешнего поля. Благодаря этому кристаллы сегнетовой соли (отсюда название сегнетоэлектрики) оказались надежными хранителями электрической энергии и регистраторами электрических сигналов, что позволяет их использовать в «ячейках памяти» ЭВМ.

Магнитные свойства.

Это способность тел взаимодействовать с магнитным полем, т. е. намагничиваться при помещении их в магнитное поле. В зависимости от величины магнитной восприимчивости различают диамагнитные, парамагнитные, ферромагнитные и антиферромагнитные кристаллы.

Магнитные свойства всех веществ зависят не только от особенностей их кристаллической структуры, но и от природы слагающих их атомов (ионов), т. е. магнетизм определяется электронным строением оболочек и ядер, а также орбитальным движением вокруг них электронов (спинами).

При внесении атома (иона) в магнитное поле изменяется угловая скорость движения электронов на орбите за счет того, что на первоначальное вращательное движение электронов вокруг ядра накладывается дополнительное вращательное движение, в результате чего атом получает дополнительный магнитный момент. При этом если все электроны с противоположными спинами в атоме сгруппированы попарно (рисунок А), то магнитные моменты электронов оказываются скомпенсированными и их суммарный магнитный момент будет равен нулю. Такие атомы называются диамагнитными, а вещества, состоящие из них – диамагнетиками . Например, инертные газы, металлы В-подгрупп – Cu, Ag, Au, Zn, Cd, большинство ионных кристаллов (NaCl, CaF2), а также вещества с преобладающей ковалентной связью – Bi, Sb, Ga, графит. В кристаллах со слоистыми структурами магнитная восприимчивость для направлений, лежащих в слое, значительной превышает таковую для перпендикулярных направлений.

При заполнении электронных оболочек в атомах электроны стремятся быть неспаренными. Поэтому существует большое количество веществ, магнитные моменты электронов, в атомах которых, расположены беспорядочно и при отсутствии внешнего магнитного поля в них не происходит самопроизвольная ориентация магнитных моментов (рисунок Б). Суммарный магнитный момент, обусловленный несвязанными попарно и слабо взаимодействующими друг с другом электронами, будет постоянным, положительным или несколько большим, чем у диэлектриков. Такие атомы называются магнитными, а вещества – парамагнетиками . При внесении парамагнетика в магнитное поле разориентированные спины приобретут некоторую ориентировку, в результате чего наблюдаются три типа упорядочения нескомпенсированных магнитных моментов – три типа явлений: ферромагнетизм (рисунок В), антиферромагнетизм (рисунок Г) и ферримагнетизм (рисунок Д).

Ферромагнитными свойствами обладают вещества, магнитные моменты атомов (ионов) которых направлены параллельно друг другу, в результате чего внешнее магнитное поле может усилиться в миллионы раз. Название группы связано с присутствием в ней элементов подгруппы железа Fe, Ni, Co.

Если магнитные моменты отдельных атомов антипараллельны и равны, то суммарный магнитный момент атомов равен нулю. Такие вещества называются антиферромагнетиками. К ним относятся оксиды переходных металлов – MnO, NiO, CoO, FeO, многие фториды, хлориды, сульфиды, селениды и др.

При неравенстве антипараллельных моментов атомов структуры кристаллов суммарный момент оказывается отличным от нуля и такие структуры обладают спонтанной намагниченность. Подобными свойствами обладают ферриты (Fe3O4, минералы группы граната).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Общие свойства кристаллов

Введение

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц.

В основе физики твердого тела лежит представление о кристалличности вещества. Все теории физических свойств кристаллических твердых тел основываются на представлении о совершенной периодичности кристаллических решеток. Используя это представление и вытекающие из него положения о симметрии и анизотропии кристаллов, физики разработали теорию электронной структуры твердых тел. Эта теория позволяет дать строгую классификацию твердых тел, определяя их тип и макроскопические свойства. Однако она позволяет классифицировать только известные, исследованные вещества и не позволяет предопределить состав и структуру новых сложных веществ, которые обладали бы заданным комплексом свойств. Эта последняя задача является особо важной для практики, так как ее решение позволило бы создавать материалы по заказу для каждого конкретного случая. При соответствующих внешних условиях свойства кристаллических веществ определяются их химическим составом и типом кристаллической решетки. Изучение зависимости свойств вещества от его химического состава и кристаллической структуры обычно разбивается на следующие отдельные этапы 1) общее изучение кристаллов и кристаллического состояния вещества 2) построение теории химических связей и ее применение к изучению различных классов кристаллических веществ 3) изучение общих закономерностей изменения структуры кристаллических веществ при изменении их химического состава 4) установление правил, позволяющих предопределять химический состав и структуру веществ, обладающих определенным комплексом физических свойств.

Основные свойства кристаллов - анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления.

1. Анизотропность

кристалл анизотропность самоогоранение

Анизотропность - выражается она в том, что физические свойства кристаллов неодинаковы по разным направлениям. К физическим величинам можно отнести такие параметры - прочность, твердость, теплопроводность, скорость распространения света, электропроводность. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки слюды - легко расщепляются лишь по плоскостям. В поперечных же направлениях расщепить пластинки этого минерала значительно труднее.

Примером анизотропности-является кристалл минерала дистена. В продольном направлении, у дистена твердость равняется 4,5, в поперечном - 6. Минерал дистен (Al 2 O), отличающийся резко различной твердостью по неодинаковым направлениям. Вдоль удлинения кристаллы дистена легко царапаются лезвием ножа, в направлении перпендикулярном удлинению, нож не оставляет никаких следов.

Рис. 1 Кристалл дистена

Минерал кордиерит (Mg 2 Al 3 ). Минерал, алюмосиликат магния и железа. Кристалл кордиерита по трем различным направлениям представляется различно окрашенным. Если из такого кристалла вырезать куб с гранями, то можно заметить следующее. Перпендикулярными этим направлениям, то по диагонали куба (от вершины к вершине наблюдается серовато-синяя окраска, в направлении вертикальном - индигово-синяя окраска, и в направлении поперек куба - желтая.

Рис. 2 Куб, вырезанный из кордиерита.

Кристалл поваренной соли, которая имеет форму куба. Из такого кристалла можно вырезать стерженьки по различным направлениям. Три из них перпендикулярно граням куба, параллельно диагонали

Каждый из примеров исключительны по своей характерности. Но путём точных исследований, ученым пришли к такому выводу, что все кристаллы в том или ином отношении обладают анизотропностью. Так же твёрдые аморфные образования могут быть и однородными и даже анизотропными (анизотропность, к примеру, может наблюдаться при растягивании или сдавливании стёкол), но аморфные тела не могут сами по себе принимать многогранную форму, ни при каких условиях.

Рис. 3 Выявление анизотропии теплопроводности на кварце (а) и ее отсутствия на стекле (б)

В качестве примера (рис. 1) анизотропных свойств кристаллических веществ прежде всего следует упомянуть про механическую анизотропность, которая заключается в следующем. Все кристаллические вещества раскалываются не одинаково вдоль различных направлений (слюда, гипс, графит и др.). Аморфные же вещества-во всех направлениях раскалываются одинаково, потому что аморфность характеризуются изотропностью (равносвойственностью) - физические свойства по всем направлениям проявляются одинаково.

Анизотропию теплопроводности легко пронаблюдать на следующем простом опыте. На грань кристалла кварца нанести слой цветного воска и поднести к центру грани накаленную на спиртовке иголку. Образовавшийся талый круг воска вокруг иголки примет форму эллипса на грани призмы или же форму неправильного треугольника на одной из граней головки кристалла. На изотропном же веществе, например, стекле - форма талого воска всегда будет правильным кругом.

Анизотропность проявляется и в том, что при взаимодействии на кристалл какого-либо растворителя, скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении в итоге приобретает свои характерные формы.

В конечном итоге причиной анизотропности кристаллов - является то, что при упорядоченном расположении ионов, молекул или атомов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, электропроводность или поляризуемость) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул, хотелось бы отметить что все аминокислоты, кроме простейшей - глицина, асимметричны.

Любая частичка кристалла имеет строго определенный химический состав. Это свойство кристаллических веществ используется для получения химически чистых веществ. Например, при замораживании морской воды она становится пресной и пригодной для питья. Теперь угадайте, морской лед пресный или соленый?

2. Однородность

Однородность - выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело. Однородным считается тело, в котором на конечных расстояниях от любой его точки найдутся другие, эквивалентные ей не только в физическом отношении, но и геометрическом. Другими словами, находятся в таком же окружении, как и исходные, поскольку размещением материальных частиц в кристаллическом пространстве «управляет» пространственная решетка, можно считать, что грань кристалла - это материализованная плоская узловая решетка, а ребро - материализованный узловой ряд. Как правило, хорошо развитые грани кристалла определяются узловыми сетками с наибольшей густотой расположения узлов. Точка, в которой сходятся три и более граней, называется вершиной кристалла.

Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.

Ведутся разработки, которые могут повысить коэффициент однородности кристаллов.

Это изобретение запатентовано нашими русскими учеными. Изобретение относится к сахарной промышленности, в частности к получению утфелей. Изобретение обеспечивает повышение коэффициента однородности кристаллов в утфеле, а также способствует увеличениею скорости роста кристаллов на завершающем этапе наращивания за счет постепенного роста коэффициента пересыщения.

Недостатками известного способа являются низкий коэффициент однородности кристаллов в утфеле первой кристаллизации, значительная длительность получения утфеля.

Технический результат изобретения заключается в повышении коэффициента однородности кристаллов в утфеле первой кристаллизации и интенсификации процесса получения утфеля.

3. Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

К механическим свойствам кристаллов относятся свойства, связанные с такими механическими воздействиями на них, как удар, сжатие, растяжение и прочее - (спайность, пластическая деформация, излом, твердость, хрупкость).

Способность самоограняться, т.е. при определенных условиях принимать естественную многогранную форму. В этом также проявляется его правильное внутреннее строение. Именно это свойство отличает кристаллическое вещество от аморфного. Иллюстрацией этому служит пример. Два выточенных из кварца и стекла шарика опускают в раствор кремнезема. В результате шарик кварца покроется гранями, а стеклянный останется круглым.

Кристаллы одного и того же минерала могут иметь разную форму, величину и число граней, но углы между соответствующими гранями всегда будут постоянными (рис. 4 а-г) - это закон постоянства гранных углов в кристаллах. При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры. Углы между гранями кристаллов измеряются при помощи гониометра (угломера). Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу.

У идеально образованных кристаллов наблюдается симметрия, которая у природных кристаллов встречается чрезвычайно редко из-за опережающего роста граней (рис. 4 д).

Рис. 4 закон постоянства гранных углов в кристаллах (а-г) и рост опережающих граней 1,3 и 5 растущего на стенке полости кристалла (д)

Спайностью называется такое свойство кристаллов при котором раскалываться или расщепляться по определенным кристаллографическим направлениям в итоге образовываются ровные гладкие плоскости, называемые плоскостями спайности.

Плоскости спайности ориентированы параллельно действительным или возможным граням кристаллов. Это свойство всецело зависит от внутреннего строения минералов и проявляется в тех направлениях, в которых силы сцепления между материальными частицами кристаллических решеток наименьшие.

Можно выделить в зависимости от степени совершенства несколько видов спайности:

Весьма совершенная - минерал легко расщепляется на отдельные тонкие пластинки или листочки, расколоть его в другом направлении очень трудно (слюды, гипс, тальк, хлорит).

Рис. 5 Хлорит (Mg, Fe) 3 (Si, Al) 4 O 10 (OH) 2 ·(Mg, Fe) 3 (OH) 6)

Совершенная - минерал сравнительно легко раскалывается преимущественно по плоскостям спайности, причем отбитые кусочки часто напоминают отдельные кристаллы (кальцит, галенит, галит, флюорит).

Рис. 6 Кальцит

Средняя - при раскалывании образуются как плоскости спайности, так и неровные изломы по случайным направлениям (пироксены, полевые шпаты).

Рис. 7 Полевые шпаты ({К, Na, Ca, иногда Ba} {Al 2 Si 2 или AlSi 3 } О 8))

Несовершенная - минералы раскалываются по произвольным направлениям с образованием неровных поверхностей излома, отдельные плоскости спайности обнаруживаются с трудом (самородная сера, пирит, апатит, оливин).

Рис. 8 Кристаллы апатита (Са 5 3 (F, Cl, ОН))

У некоторых минералов при раскалывании образуются только неровные поверхности, в этом случае говорят о весьма несовершенной спайности или отсутствии ее (кварц).

Рис. 9 Кварц(SiO 2)

Спайность может проявляться в одном, двух, трех, редко более направлениях. Для более детальной характеристики ее указывают направление, в котором проходит спайность, например по ромбоэдру - у кальцита, по кубу - у галита и галенита, по октаэдру - у флюорита.

Плоскости спайности нужно отличать от граней кристаллов: Плоскость, как правило, обладает более сильным блеском, образуют ряд параллельных друг другу плоскостей и в отличие от граней кристаллов на которых мы не можем наблюдать штриховки.

Таким образом, спайность может прослеживаться по одному (слюды), двум (полевые шпаты), трем (кальцит, галит), четырем (флюорит) и шести (сфалерит) направлениям. Степень совершенства спайности зависит от строения кристаллической решетки каждого минерала, так как разрыв по некоторым плоскостям (плоским сеткам) этой решетки из-за более слабых связей происходит гораздо легче, чем по другим направлениям. В случае одинаковых сил сцепления между частицами кристалла, спайность отсутствует (кварц).

Излом - способность минералов раскалываться не по плоскостям спайности, а по сложной неровной поверхности

Отдельность - свойство некоторых минералов раскалываться с образованием параллельных, хотя чаще всего не совсем ровных плоскостей, не обусловленных строением кристаллической решетки, которое иногда принимают за спайность. В отличие от спайности отдельность - свойство лишь некоторых отдельных экземпляров данного минерала, а не минерального вида в целом. Главным отличием отдельности от спайности является то, что получившиеся выколки невозможно расщеплять далее на более мелкие обломки с ровными параллельными сколами.

Симметрия - наиболее общая закономерность, связанная со строением и свойствами кристаллического вещества. Она является одним из обобщающих фундаментальных понятий физики и естествознания в целом. «Симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением». Для удобства изучения пользуются моделями кристаллов, передающих формы идеальных кристаллов. Для описания симметрии кристаллов необходимо определить элементы симметрии. Таким образом, симметричным является такой объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями (рисунок 10).

1. Плоскость симметрии - это воображаемая плоскость, которая делит кристалл на две равные части, причем одна из частей является как бы зеркальным отражение другой. В кристалле может быть несколько плоскостей симметрии. Плоскость симметрии обозначается латинской буквой Р.

2. Ось симметрии - это линия, при вращении вокруг которой на 360° кристалл n-ое количество раз повторяет свое начальное положение в пространстве. Обозначается буквой L. n - определяет порядок оси симметрии, которые в природе могут быть только 2, 3, 4 и 6-го порядка, т.е. L2, L3, L4 и L6. Осей пятого и выше шестого порядка в кристаллах нет, а оси первого порядка не учитываются.

3. Центр симметрии - воображаемая точка, расположенная внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие соответствующие точки на поверхности кристалла1. Центр симметрии обозначается буквой С.

Все многообразие встречающихся в природе кристаллических форм объединяется в семь сингоний (систем): 1) кубическую; 2) гексагональную; 3) тетрагональную (квадратную); 4) тригональную; 5) ромбическую; 6) моноклинальную и 7) триклинную.

4. Постоянная температура плавления

Плавление - переход вещества из твердого состояния в жидкое.

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Причиной этого явления, считается что основная часть энергия нагревателя, подводимая к твердому телу, идет на уменьшение связей между частицами вещества, т.е. на разрушение кристаллической решетки. При этом возрастает энергия взаимодействия между частицами. Расплавленное вещество обладает большим запасом внутренней энергии, чем в твердом состоянии. Оставшаяся часть теплоты плавления расходуется на совершение работы по изменению объема тела при его плавлении. Температура, при которой начинается плавление, называется температурой плавления.

При плавлении объем большинства кристаллических тел увеличивается (на 3-6%), а при отвердевании уменьшается. Но, существуют вещества, у которых при плавлении объем уменьшается, а при отвердевании - увеличивается.

К ним относятся, например, вода и чугун, кремний и некоторые другие. Именно поэтому лёд плавает на поверхности воды, а твердый чугун - в собственном расплаве.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления (янтарь, смола, стекло).

Рис. 12 Янтарь

Количество теплоты, необходимой для плавления вещества, равно произведению удельной теплоты плавления на массу данного вещества.

Удельная теплота плавления показывает, какое кол теплоты необходимо для полного превращения 1 кг вещества из твердого состояния в жидкое, взятого при темп плавления.

Единицей удельной теплоты плавления в СИ служит 1Дж/кг.

В процессе плавления температура кристалла остается постоянной. Эта температура называется температурой плавления. У каждого вещества своя температура плавления.

Температура плавления для данного вещества зависит от атмосферного давления.

У кристаллических тел при температуре плавления можно наблюдать вещество одновременно в твердом и жидком состояниях. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.

Список литературы

1. Справочник химика 21 «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ» стр. 10 (http://chem21.info/info/1737099/)

2. Справочник по геологии (http://www.geolib.net/crystallography/vazhneyshie-svoystva-kristallov.html)

3. «УрФУ имени первого Президента России Б.Н. Ельцина», раздел Геометрическая кристаллография (http://media.ls.urfu.ru/154/489/1317/)

4. Глава 1. Кристаллография с основами кристаллохимии и минералогия (http://kafgeo.igpu.ru/web-text-books/geology/r1-1.htm)

5. Заявка: 2008147470/13, 01.12.2008; МПК C13F1/02 (2006.01) C13F1/00 (2006.01). Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (RU) (http://bd.patent.su/2371000-2371999/pat/servl/servlet939d.html)

6. Тульский государственный педагогический университет им Л.Н. Толстого Кафедра экологии Голынская Ф.А. «Понятие о минералах как о кристаллических веществах» (http://tsput.ru/res/geogr/geology/lec2.html)

7. Компьютерный обучающий курс «Общая геология» Курс лекций. Лекция 3 (http://igd.sfu-kras.ru/sites/igd.institute.sfu-kras.ru/files/kurs-geologia/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D0% B8/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D1% 8F_3.htm)

8. Класс физика (http://class-fizika.narod.ru/8_11.htm)

Подобные документы

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    Жидкие кристаллы как фазовое состояние, в которое переходят некоторые вещества при определенных условиях, их основные физические свойства и факторы, на них влияющие. История исследования, типы, использование жидких кристаллов в производстве мониторов.

    контрольная работа , добавлен 06.12.2013

    Особенности и свойства жидкокристаллического состояния вещества. Структура смектических жидких кристаллов, свойства их модификаций. Сегнетоэлектрические характеристики. Исследование геликоидальной структуры смектика C* методом молекулярной динамики.

    реферат , добавлен 18.12.2013

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Рассмотрение истории открытия и направлений применения жидких кристаллов; их классификация на смектические, нематические и холестерические. Изучение оптических, диамагнитных, диэлектрических и акустооптических свойств жидкокристаллических веществ.

    курсовая работа , добавлен 18.06.2012

    Определение жидких кристаллов, их сущность, история открытия, свойства, особенности, классификация и направления использования. Характеристика классов термотропных жидких кристаллов. Трансляционные степени свободы колончатых фаз или "жидких нитей".

    реферат , добавлен 28.12.2009

    Кристаллы - реальные твердые тела. Термодинамика точечных дефектов в кристаллах, их миграция, источники и стоки. Исследование дислокации, линейного дефекта кристаллической структуры твёрдых тел. Двумерные и трехмерные дефекты. Аморфные твердые тела.

    доклад , добавлен 07.01.2015

    презентация , добавлен 29.09.2013

    Понятие и основные черты конденсированного состояния вещества, характерные процессы. Кристаллические и аморфные тела. Сущность и особенности анизотропии кристаллов. Отличительные черты поликристаллов и полимеров. Тепловые свойства и структура кристаллов.

    курс лекций , добавлен 21.02.2009

    Оценка вязкостно-температурных свойств (масел). Зависимость температуры вспышки от давления. Дисперсия, оптическая активность. Лабораторные методы перегонки нефти и нефтепродуктов. Теплота плавления и сублимации. Удельная и молекулярная рефракция.

Топ 10 кристаллов и их целительные свойства.

В каждом кристалле живет некая сущность, которая несет определенную энергетику. Есть камни, которые обладают целебной силой. Их нужно держать при себе, чтобы улучшить самочувствие. Я советую вам обратить внимание на десять камней, которые способны поправить ваше здоровье. Купите подходящий вам камень или украшение с ним, и через некоторое время сами убедитесь, что кристаллы действительно способны на многое.

Аметист

Этот камень является символом преданности, а также чистоты и непорочности. Аметист помогает избавиться от тревоги, душевной боли и переживаний, он успокаивает и очищает мысли, придает своему обладателю уверенности в себе и направляет его мышление в максимально положительное русло. Также камень помогает при бессоннице и нервном истощении. Благодаря связи аметиста с лобной чакрой, он развивает интуицию, позволяет легко погружаться в медитативное состояние.

Бирюза

Это минерал, как правило, небесно-голубого цвета, иногда с зеленоватым или желтоватым оттенком. Бирюза укрепляет зрение, избавляет от ночных кошмаров, а также головных болей. Бирюза связана с горловой чакрой, поэтому носить украшения с этим камнем лучше на шее, и он, таким образом, также будет благотворно воздействовать на голосовые связки и щитовидную железу.

Горный хрусталь

Кристально-прозрачный камень обладает уникальным свойством очищения вашей ауры. Все дело в том, что его энергетика легко настраивается на частоту вибраций человека, регулирует и стабилизирует их. Благодаря связи с коронной чакрой, горный хрусталь стимулирует мозговую деятельность, развивает память, помогает концентрации внимания, улучшает речь. Кроме того, именно горный хрусталь способствует развитию духовности, а также связи с высшими силами.

Гранат

Считается камнем любви, способным радовать и дарить счастье влюбленным, усиливая их вибрации. Помимо этого, у людей, что носят украшения с гранатом, повышается самооценка, укрепляется сила воли и выносливость. Этот камень связан с корневой чакрой, именно поэтому положительно влияет на пищеварение, опорно-двигательный аппарат, а также на кровообращение и иммунную систему.

Дымчатый кварц

Кварц считают камнем, способным избавить своего владельца от темных мыслей, пессимизма и совершить настоящую чистку его ауры. Помимо этого, талисманы с таким камнем благотворно влияют на корневую и пупочную чакры, могут помочь избавиться от сильной боли, стресса и головокружения и дадут вам прекрасную защиту от недоброжелателей.

Изумруд

Этот камень необыкновенно притягательного зеленого цвета считается камнем мудрости, надежды и хладнокровия. Его сила способна успокоить человека при излишнем волнении, снять напряжение и даже понизить повышенную температуру тела. Изумруд является прекрасным талисманом для тех, кто часто отправляется в различные поездки и дальние путешествия. Он гармонизирует чакру солнечного сплетения, а также сердечную чакру.

Коралл

Украшения с кораллом благотворно влияют на психику, способствуют развитию логики, а также мыслительных способностей человека. Этот камень положительно влияет на горловую чакру и является незаменимым для тех людей, чья деятельность связана с проведением переговоров и постоянной коммуникацией.

Лунный камень

Считается, что сила этого камня увеличивается в полнолуние, однако это не негативное воздействие этого явления, а как раз наоборот: лунный камень поглощает все плохие эмоции и ощущения, связанные с полнолунием. Кроме того, лунный камень раскрывает чувства, пробуждает в людях мечтательность и нежность, и благодаря связи с сердечной чакрой, привлекает в вашу жизнь любовь и тепло в отношениях.

Малахит

Недаром с этим зеленым камнем связано столько легенд – положительные свойства его сложно переоценить. Малахит помогает очистить все чакры, устранить блокировки и произвести всестороннюю чистку энергетики человека. Малахит способен поглощать негативную энергию, создавать в организме человека физическую и эмоциональную гармонию. Если вы чувствуете сильное эмоциональное напряжение, положите малахитовое украшение на солнечное сплетение, и очень скоро вы почувствуете себя значительно легче.

Розовый кварц

Он прекрасно борется с негативной энергией, как вас самих, так и окружающих, помогает настроиться на волну любви и положительных эмоций. Этот камень связан с сердечной чакрой, а, следовательно, улучшает кровообращение и стимулирует работу сердца. Этот талисман улучшает связи своего хозяина с другими людьми, причем это касается как дружеских, партнерских, так и любовных отношений.

При покупке камня, ориентируйтесь на ваши внутренние ощущения. Пусть он даже будет замысловатой формы или не такой идеальный, но если вам понравился, берите именно его. На самом деле, камень выбирает вас, а не вы.

Основные свойства кристаллов – анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления определяются их внутренним строением.

Рис. 1. Пример анизотропности — кристалл минерала дистена. В продольном направлении его твердость равна 4,5, в поперечном – 6. © Parent Géry

Это свойство называется еще неравносвойственностью. Выражается она в том, что физические свойства кристаллов (твердость, прочность, теплопроводность, электропроводность, скорость распространения света) неодинаковы по разным направлениям. Частицы, образующие кристаллическую структуру по непараллельным направлениям, отстоят друг от друга на разных расстояниях, вследствие чего и свойства кристаллического вещества по таким направлениям должны быть различными. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки этого минерала легко расщепляются лишь по плоскостям, параллельным его пластинчастости. В поперечных же направлениях расщепить пластинки слюды значительно труднее.

Анизотропность проявляется и в том, что при воздействии на кристалл какого-либо растворителя скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении приобретает свои характерные формы, носящие название фигур вытравливания.

Аморфные вещества характеризуются изотропностью (равносвойственностью) – физические свойства по всем направлениям проявляются одинаково.

Однородность

Выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело.

Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.

Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

Кристаллы одного и того же вещества могут отличаться друг от друга своей величиной, числом граней, ребер и формой граней. Это зависит от условий образования кристалла. При неравномерном росте кристаллы получаются сплющенными, вытянутыми и т.д. Неизменными остаются углы между соответственными гранями растущего кристалла. Эта особенность кристаллов известна как закон постоянства гранных углов . При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры.

Закон постоянства гранных углов было установлен в конце XVII века датским ученым Стено (1699) на кристаллах железного блеска и горного хрусталя, впоследствии этот закон был подтвержден М.В. Ломоносовым (1749) и французским ученым Роме де Лиллем (1783). Закон постоянства гранных углов получил название первого закона кристаллографии.

Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу. На этом основан один из методов диагностики кристаллов.

Для измерения у кристаллов двугранных углов были изобретены специальные приборы – гониометры.

Постоянная температура плавления

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Температура, при которой начинается плавление, называется температурой плавления.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.