А. Гладкий        09.08.2020   

Технология дополненная реальность в учебном процессе. Приём вкр для публикации в эбс спбгэту "лэти". Денис Пономаренко, руководитель OrdinLab

Разделы: Начальная школа

Мы уже не мыслим себя без гаджетов, постепенно заменяя живое общение общением в соцсетях. Язык интернета – это особый язык, использующий условные знаки, символы, смайлики. И в результате этого многие учащиеся перестают читать, и, как следствие, снижается способность к логической, образной, эмоциональной речи.

Совершенно понятно, что переломить существующую тенденцию невозможно, значит, необходимо использовать интерес учащихся к информационным технологиям, чтобы стимулировать их познавательную активность.

Что же такое дополненная реальность? Это - результат введения в поле восприятия любых сенсорных данных с целью дополнения сведений об окружении и улучшения восприятия информации. В своей работе мы использовали маркерную технологию: при попадании маркера в видеокамеру на нем появляется 3D объект. Для создания проекта дополненной реальности были привлечены ученики 11 класса, и использовалась программа EV Toolbox (eligovision.ru).

Для создания проектов можно использовать любую программу дополненной реальности.

Используя проекты дополненной реальности, мы провели интегрированные уроки развития речи и математики, а также сделали виртуальную постановку сказки «Гуси лебеди», что являлось первым шагом в создании виртуального театра. Для постановки мы взяли сценарий сказки «Гуси-лебеди» Олеси Емельяновой, добавили рассказчика. Автор текста очень живо и весело смогла передать содержание русской народной сказки.

Для проведения уроков и театрализованного представления потребовался проектор с экраном, ноутбук (или компьютер с видео камерой) с установленной программой EV Toolbox и проектами.

Для интегрированного урока учениками 11 класса были созданы трехмерные фигуры с помощью программы Blender 3D.

Одиннадцатиклассники подготовили игровое поле с пустыми квадратами, маркеры с фигурами, а также карточки с примерами для устного счета.

В начале урока учитель предложил провести необычную математическую разминку. В разминку можно включить любые задания для устного счета: на знание таблицы умножения, деления, примеры на сложение и вычитание. Ученик, правильно назвавший ответ, выходил к игровому полю и выставлял фигурку на нем.

Если учитель хочет, чтобы фигурки стояли на определенном месте, то можно на пустые квадраты положить карточки с правильными ответами. Обучающиеся поменяют карточку с правильным ответом на фигурку .

После того, как разминка была окончена, а фигурки стояли на своих местах, учитель предложил придумать небольшую сказку (историю), используя выставленные на игровом поле фигуры.

На этом уроке дети могут работать по одному, в парах, группах.

После выполнения задания ученик выходил к игровому полю и рассказывал свою сказку (историю). Остальные ученики помогали с места, если это было необходимо, подсказывали свой сюжет развития событий, передвигали и меняли местами маркеры. Вся игра была видна на проекторе.

Ребята с нетерпением ждали второго урока развития речи, повторяли таблицу умножения, чтобы правильно отвечать и выходить к игровому полю ставить фигуру. Подумали ребята и о сюжете новой игры (появились различные варианты сюжетных линий).

На втором уроке обучающиеся разбились на группы. Каждая группа подготовила свой рассказ, и представитель команды выходил к игровому полю и рассказывал историю, члены группы передвигали маркеры по игровому полю.

Мы провели несколько уроков развития речи с использованием дополненной реальности, и ребята с большим увлечением сочиняли и рассказывали свои сказки.

В прошлом году мы приняли участие в городском проекте «Мастерская сказки». В процессе подготовки к театрализованному представлению третьеклассники изучали традиции и обычаи русского народа на уроках окружающего мира, литературного чтения и во внеурочное время.

Между учениками третьего класса были распределены роли, и ребята с большим энтузиазмом выучили слова героев в ожидании необыкновенного исполнения сказки.

Как только маркеры с героями попали в объектив камеры, и на экране появилось 3D-изображение, сказка началась. Двигая маркер по игровому полю, ребята перемещали героев, управляли их появлением или уходом со сцены. Процесс очень увлек детей. Зрителям так же было интересно следить за героями и разворачивающимися перед ними событиями.

В результате проделанной работы удалось повысить познавательную активность обучающихся. Ребята не просто озвучивали готовые роли, но и вживались в образы.

Дети получили прекрасный опыт работы в команде.

Хохлова Татьяна Юрьевна

Магистрант

НГПУ ФТП

г. Новосибирск

Аннотация: в статье показана возможность использования AR технологии в образовательной среде с целью визуального моделирования учебного материала, дополнения его наглядной информацией; преимущества и недостатки данной технологии.

Ключевые слова: , образование.

ТЕХНОЛОГИЯ ДОПОЛНЕННОЙ РЕАЛЬНОСТИ В ОБРАЗОВАНИИ

 Технология дополненной реальности в образовательном пространстве стала использоваться относительно недавно. Дискуссия о термине «дополненная реальность» и возможности использования данной технологии в предметной области «информатика» неоднозначно и позволяет говорить о несформированности самого термина. Многие эксперты называют дополненную реальность «улучшенной», «расширенной» и даже «дополнительной». Более точным все же будет название «дополненная реальность», так как данная технология может как дополнять окружающий мир объектами мира виртуального, так и устранять из него объекты.

Так для нас было продуктивным обращение к электронному ресурсу, в котором д ополненная реальность рассматривалась как «ответ современных технологий на проблемные вопросы, которые возникают у нас каждый день. Она более понятна большинству людей, ее проще воплотить, чем виртуальные миры. Дополненная реальность позволяет нам сделать ежедневную реальность богаче. В сочетании с неисчерпаемостью Интернет-ресурсов, ее возможности безграничны.»

В продолжение уточнения можно привести определение дополненной реальности (augmented reality, AR) как «среда с прямым или косвенным дополнением физического мира цифровыми данными в режиме реального времени при помощи компьютерных устройств - планшетов, смартфонов и инновационных гаджетов, а также программного обеспечения к ним» .

На вопрос о возможности использования технологии дополненной реальности в образовании можно ответить утвердительно, ибо данная технология позволяет сделать уроки увлекательными, интересными, понятными.

С помощью дополненной реальности можно «оживить» статичные страницы книг и учебных пособий, совершить прогулку по джунглям, почувствовать себя участником исторического события.

Однако почти на всех направлениях обучения чаще всего используются электронно-информативные или интерактивные средства. Практически все школы оборудуют кабинеты компьютерной техникой, проекционной аппаратурой, ЭОР и другими современными средствами обучения. Чаще всего возможности этой техники не используются в полной мере. А технология дополненной реальности либо не используется совсем, либо применяется крайне редко. Дополненная реальность может использоваться в изучении любого предмета, будь то физика или история, биология или литература. Уже сейчас можно найти много программ для юных математиков (Pocket Tutor ), начинающих биологов (AR Flashcards ) и другие.

Как и у любой новой технологии у AR есть свои преимущества и недостатки. С одной стороны она позволяет значительно расширить возможности образовательного процесса. Мнение американского философа и педагога Джон Дьюи: « Если мы будем учить сегодня так, как учили вчера, мы украдем у детей завтра», произнесенное в начале 20 века актуально и сегодня. Школа должна идти в ногу со временем и демонстрировать детям то, с чем им придется работать в самое ближайшее время.

Недостатки этой технологии выходят за рамки образовательного процесса и связаны, в первую очередь, с социальными последствиями (применение контактных линз с дополненной реальностью, проблемы, связанные с конфиденциальностью информации ).

Каким образом можно использовать технологию дополненной реальности в образовательном процессе. В первую очередь как вспомогательное средство для максимизации наглядности и интерактивности изучаемого предмета, более глубокого погружения в него, проведения виртуальных лабораторных работ. Использование дополненной реальность и 3 D моделирования совместно мотивирует учащихся к изучению программирования и 3 D моделирования. Данная технология может быть использована при выполнении проектных заданий, для визуализации результатов работы обучающихся над проектом, сделав его максимально интерактивным.

Таким образом, технология дополненной реальности позволяют педагогу вовлечь учащихся в исследование, разрабатывая для этого учебные ситуации, использовать современные технологии, инструменты и способы деятельности для достижения качественного результата.

По мнению Катхановой И.Ф. и Бестыбаевой К. И. на данный момент нет возможности применения AR в образовательном процессе, так как нет какой-либо единой методологии применения технологии дополненной реальности в образовательной среде . Не так уж и много приложений, которые можно использовать в образовании, но, тем не менее, дополненная реальность – это наиболее результативный способ познания окружающего нас мира, и путь, по которому мы рано или поздно пойдем, потому что живем в стремительно развивающийся век информационных технологий.

Список литературы

    Дополненная реальность=школа будущего [Электронный ресурс] http :// evtoolbox . ru / ev - toolbox / education (дата обращения 20.12.16)

    Что такое дополненная реальность? [Электронный ресурс] (дата обращения 20.12.16)

    Как технология дополненной реальности помогает в образовании детей. [Электронный ресурс] (дата обращения 20.12.16)

    Социальные последствия дополненной реальности [Электронный ресурс]

    Технология дополненной реальности в образовании. Интерактив плюс. [Электронный ресурс] (дата обращения 20.12.16)

Успешных проектов, позволяющих использовать технологии дополненной реальности в образовании, совсем немного. Вот несколько удачных примеров:

PhysicsPlayground - пособие по физике, представляющее собой трехмерную среду, с помощью которой можно совершенствовать знания о строении Вселенной.


Dow Day совмещает современный план Виксонсинского университета с тем, что там происходило в 1967 году. Студенты, преподаватели и гости вуза могут стать свидетелями акции против войны во Вьетнаме, наблюдая ее через собственные смартфоны.


Elements 4D – набор из 6 кубиков, на каждом из которых изображен химический элемент. Если навести камеру смартфона на кубик, на экране он станет стеклянным, а внутри появится образец вещества.


Несмотря на видимую эффектность и эффективность решений, есть немало проблем. Во-первых, нет технологичной базы, стандартов разработки ПО и применения технологий дополненной реальности. Во-вторых, неудобно каждый раз наводить гаджет на маркер и держать его продолжительное время. Если же для использования приложения нужны «умные» очки, возникает другая сложность – их малодоступность.

Сейчас дополненная реальность находится на стадии избавления от иллюзий: выявляются недостатки технологии, восторженных публикаций становится всё меньше, зато начинается работа над ошибками. О том, как эта отрасль будет развиваться и чем пригодится образованию, я узнал у сотрудников ведущих агентств.

Олег Юсупов, руководитель MaaS Agency:

MaaS Agency — отраслевое маркетинговое агентство, которое решает проблемы позиционирования, презентации продукта или услуги в инновационном цифровом формате, а также внедряет цифровые решения в сфере архитектуры.

Пока мы не сможем сказать, что благодаря такому-то решению школа сэкономила столько-то денег, дополненная и виртуальная реальность будут оставаться нишевым рынком. Можно говорить лишь о единичных случаях – в первую очередь, это касается виртуальной реальности. Например, проект Discipulus , открытый в Университетском колледже Лондона, позволяет создавать «медицинские аватары» пациентов, собирая информацию с носимых датчиков. Курсы лечения можно будет тестировать прямо на них, до того как начать лечить самого пациента.

В виртуальной реальности приходится решать множество моральных дилемм. Именно психологи чаще всего задействуют эмпирический материал виртуальной реальности и активно пользуются возможностями симуляторов. Многие психотерапевты открыли в Second Life кабинеты , где успешно лечат пациентов.

Люди начинают по-новому ощущать окружающе пространство. Лучше всего это видно на примере маленьких детей, для которых журнал – «это сломанный iPad», а взаимодействие с телевизором по умолчанию должно быть жестовым.

Иван Юницкий, креативный директор MaaS Agency:

Если судить объективно, рынок дополненной реальности в образовании находится на зачаточной стадии. Основная проблема – минимальное взаимодействие тех, кто разрабатывает технологии и их внедряет в обучение. Среди причин можно назвать недостаток финансирования учебных заведений и низкий уровень осведомленности об эффективности таких технологий.

Пока технологии виртуальной и дополненной реальности наиболее активно используются в медицинском образовании. Существует множество программ, моделирующих внутреннее строение организма, нервную и кровеносную систему и др. Эффективность такого формата обучения доказана давно: человек быстрее воспринимает и лучше запоминает визуальные образы.

Денис Пономаренко, руководитель OrdinLab:

OrdinLab – инженерная команда, основанная в 2014 году, занимающаяся IT-технологиями в сфере образования и бизнеса. На сегодня реализовано 12 проектов в области дополненной реальности и интерактивных инсталляций.

Если говорить о ближайшем будущем (2-4 года), то нас ждет бум технологий дополненной реальности в полиграфии. Можно будет просто навести камеру смартфона на страницы учебника и получить красочную 3D-модель Бородинского сражения, историческую сводку, важные факты. На высших уровнях образования такие технологии пригодятся, чтобы сканировать сложные технические агрегаты и создавать наглядные пособия по работе с ними.

В далеком будущем (10-15 лет) мы увидим совмещение виртуальной дополненной реальности: люди будут сидеть на месте и моделировать целые вселенные с помощью носимых гаджетов. Компании, которые занимаются разработкой подобных продуктов в России, слишком торопятся создать гарнитуру дополненной реальности именно сейчас. Пока технический прогресс не позволяет создать именно такие носимые гаджеты, которых хочет потребитель, нужно сосредоточиться на разработке и тестировании программных продуктов для мобильных устройств. Нужно показать, что это реально работает, что это помогает получать информацию в новом и удобном виде. Потом можно будет перейти к новому этапу: человек будет готов и примет это как должное. При этом пользователь должен принимать прямое участие в разработке – в конце концов, именно ему этим пользоваться.

1

В статье приводятся результаты многочисленных опытов, научных исследований, публикаций, внедрения в образовательный процесс виртуальных средств обучения, а также опыт авторов, полученный в ходе реализации проекта. Основательно описывается необходимость внедрения «ReaEye» в образовательный процесс, основываясь на анализах научных исследований в области средств, методов и форм организации образовательной деятельности, в которых в доступной форме излагается тот факт, что мысль, полученная с помощью зрительных анализаторов, учащимися и студентами усваивается намного лучше. В доступной форме изложена структура и принцип работы электронного приложения «RealEye», созданного авторами для реализации проекта. Работа имеет очень большую теоретическую и практическую значимость, и будет востребована среди учащихся, студентов, преподавателей.

архитектура компьютера

трехмерная графика

flash-модуль

3D-моделирование

информационно-коммуникационные технологии

средство обучения

«Дополненная реальность»

1. Евтихов, О.В., Адольф, В.А. Современное представление об образовательной среде ВУЗа как педагогическом феномене // Вестник КГПУ им. В.П.Астафьева. – 2014. – №1. – С.30-34.

2. Захарова, Т.В., Киргизова, Е.В., Басалаева, Н.В. Методические аспекты использования электронного учебника в обучении математике // Глобальный научный потенциал. – 2013. – № 10(31). – С.18–21.

3. Петрова, О.А. Дополненная реальность для целей образования / О.А. Петрова // Intel® EducationGalaxy, Literatura. – 2013 [Электронный ресурс]. – Режим достуупа: https://edugalaxy.intel. ru/?automodule=blog&blogid=.

4. Шакиров, И.Ш. Дидактические возможности организации обучения с использованием трехмерной графики, на примере технологии «Дополненная реальность». // Достижения и проблемы современной науки - Уфа: РИО МЦИС ОМЕГА САЙНС, - 2014. - С.42-44.

5. Alternativa Platform, Урок «Дополненная реальность» для 7 версии [Электронный ресурс]. – Режим доступа: http://wiki.alternativaplatform.com.

Быстро развивающая научно-техническая революция, основанная на процессе глобальной информатизации всех сфер общественной жизни, требует информатизации и сферы образования. Значимость и актуальность работы заключается в разработке и внедрении ИКТ, включающих инструментальные среды для реализации обучающих программ .

Использование информационно-коммуникационных технологии должно в полной мере соответствовать современному уровню технического развития, зрительным, интеллектуальным, конструктивным и что немаловажно программным возможностям современных достижений в области ИКТ. В большинстве случаев результат деятельности обучаемого зависит от того, насколько информативно и интересно выстроен процесс передачи знаний, в какой мере реализованы его потребности в познании и какими средствами достигнута его дальнейшая направленность на углубление своих знаний .

«Дополненная реальность» (англ. Augmentedreality, AR) одна из последних достижений науки и техники. К технологиям дополненной реальности относятся те проекты, которые направлены на дополнение реальности виртуальными объектами. Данная технология имеет широкое применение в архитектуре, в маркетинге, в компьютерных играх, военном деле.

Нами были рассмотрены, изучены, проанализированы исследования и разработки в области технологии дополненной реальности, такие как: «A Serveyof Augmented Reality»; «Semapedia»; «Artag»; «Layar»; «Arget», в которых в той или иной мере используется поток видео с дальнейшей цифровой обработкой и наложением компьютерной графики. Многие из них, для реализации используют машинное зрение, посредством камер (вебкамер) .

Анализ учебно-педагогической и научной литературы по данной теме, позволил нам сделать вывод о малой применимости данной технологии в организации образовательного процесса.

Внедрение в систему образования современных виртуальных средств обучения является важнейшим условием усиления обучающего эффекта, которое заключается в интерактивности 3D-моделирования и использовании эффекта дополненной реальности. Имея под рукой набор бумажных маркеров, мы можем в любой момент представить учебный объект не только в объеме, но и проделать с ним ряд манипуляций, посмотреть на него «изнутри» или разрезе. Актуальность внедрения технологии дополненной реальности в образовательный процесс заключается в том, что использование настолько инновационного средства несомненно повысит мотивацию учащихся при изучении информатики и других дисциплин, а также повысит уровень усваивания информации, синтезируя различные формы ее представления. Огромным плюсом использования технологии дополненной реальности является ее наглядность, информационная полнота и интерактивность .

Эффективность учебного процесса полностью зависит от уровня его организации. Необходимый уровень может быть достигнут при четком, последовательном, логически связанном построении всех элементов деятельности учителя и учащихся .

Для успешного внедрения данной технологии в образовании, нами было разработано электронное приложение RealEye, основанный на технологии дополненной реальности, предоставляющий широкий функционал как для учителя, так и для ученика. Применяя данную технологию, учитель может доносить необходимый для изучения материал в более интересной и доступной для учеников форме, строя урок на основе увлекательных игр, демонстраций и лабораторных работ. Удобство использования виртуальных 3D-объектов упрощает процесс объяснения нового материала. При этом, осваивая технологию дополненной реальности, повышается уровень информационной грамотности учителя и учеников. Схематической изображение RealEye показано на рисунке 1.

Рис.1. Устройство RealEye

Технология «RealEye» состоит из программной среды - интерфейса и устройства - контроллера дополненной реальности (рисунок 2). Ядром (сердцем) приложения является Flash-модуль, основанный в среде программирования Flash Develop, объединяющий в себе следующие файлы:

    Файл с расширением 3DS - трехмерная модель какого-либо предмета, объекта или явления созданная в среде трехмерной графики 3dsmax;

    Файл Ipg - текстура («одежда») модели, выполненная в Photoshop;

    Файл с расширением Png- маркер, реализованный в CorelDraw;

Помимо этого, подключена платформу Alternativa3D 7 и использован трекер FLAR Manager. Alternativa3D 7 обеспечивает поддержку графики, FLAR Manager производит отслеживание маркера в пространстве и прорисовку 3D-объекта .

Рис. 2. Схема RealEye

Приложение имеет простой и удобный интерфейс, в котором легко может работать даже новичок без всяких инструкций (рисунок 3). Универсальная программная оболочка для операционной системы Windows была разработана в среде объектно-ориентированного программирования Boorland Delphi 7, с подключением всех необходимых расширений (например, Shockwave Flash player).

Рис. 3. Интерфейс приложения RealEye

Интерфейс приложения дает возможность выбора режима работы программы:

    Автоматический - flash-модули изучаемых объектов прикреплены к кнопкам. Запуск, смена объектов осуществляется нажатием всего одной кнопки;

Имея набор flash-модулей и маркер (рисунок 1), можно в любой момент представить учебный объект как в объеме, так и с использованием различных манипуляций. Для успешной реализации проекта, нами были разработаны Flash-модули устройств архитектуры системного блока (материнская плата, блок питания, оперативная память, видеокарта, кулер, дисковод, процессор, звуковая карта, жесткий диск).

Для того чтобы программа правильно работала, необходимо выполнить ряд действий:

1. Запустить приложение RealEye;

2. Выбрать режим работы;

3. При автоматическом режиме, необходимо нажать на кнопку с именем модели, при ручном режиме нажать кнопку «Выбрать» и указать путь к нему. Убедившись, что flash-модуль успешно добавлен (В строке «Расположение файлов» появится полный адрес на flash-модуль) нажать кнопку «Запустить» .

4. Навести контроллер на маркер;

5. Для окончания просмотра нажать кнопку «Завершить», а для завершения работы программы нажать «Завершить работу программы».

На рисунке 4 изображен процесс выполнения программы

Рис. 4. Выполнение программы RealEye

В окне предварительного просмотра хорошо прослеживается, как созданное нами приложение, используя алгоритмы компьютерного зрения, определяет положение маркера, создавая в поле вывода трехмерное пространство для размещения модели. Это пространство накладывается на реальное изображение с камеры и изменяется в зависимости от положения маркера или камеры в реальном времени. В последствие, по координатам наложенного пространства происходит размещение 3D-модели на реальном изображении. В правом окне отображается краткая информация о рассматриваемом объекте.

Помимо этого, имеется возможность работать с маркером, расположенном в учебнике (в разработанной нами брошюре по теме «Архитектура и структура компьютера») (рис. 5).

Рис. 5. Маркер в странице учебника

Маркер считывается компьютером вне зависимости от размеров, поэтому после обработки изображения с контроллера мы получаем трехмерную модель CD/DVD дисковода на странице учебника.

В процессе организации изучения темы «Архитектура компьютера», демонстрация может быть использована как непосредственно самим учителем, так и индивидуально каждым учеником на своих рабочих местах. Использование такой технологии обеспечивает эффективность образовательного процесса и позволяет повысить интерес учащихся к предметной области «Информатика».

Таким образом, обучение, построенное на основе технологии «Дополненная реальность» должно осуществляться в ходе решения учебно-познавательных задач. Это обеспечит овладение учащимся не только специфическими для данной области действиями, но и системой универсальных учебных действий. В ходе решения этих задач учащийся добывает необходимые знания и применяет их на практике.

Приложение позволяет учителю при организации образовательного процесса сделать уроки более наглядными, информативными, и самое главное интересными для учащихся, что будет оказывать на детей стимулирующее воздействие.

Таким образом, организация обучение на основе технологии «Дополненная реальность» будет оказывать положительное воздействие как для ученика (способствовать лучшему усвоению знаний), так и для учителя (поможет организовать образовательный процесс).

Работа выполнена при финансовой поддержке Красноярского краевого фонда науки.

Рецензенты:

Пак Н.И., д.п.н., профессор, профессор, заведующий кафедрой ИИТвО Красноярского государственного педагогического университета им. В.П. Астафьева, г. Красноярск;

Адольф В.А., д.п.н., профессор, заведующий кафедрой педагогики Красноярского государственного педагогического университета им. В.П. Астафьева, г. Красноярск.

Библиографическая ссылка

Киргизова Е.В., Шакиров И.Ш., Захарова Т.В., Рубцов А.В. «ДОПОЛНЕННАЯ РЕАЛЬНОСТЬ»: ИННОВАЦИОННАЯ ТЕХНОЛОГИЯ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ИНФОРМАТИКЕ // Современные проблемы науки и образования. – 2015. – № 2-2.;
URL: http://science-education.ru/ru/article/view?id=21827 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Одним из наиболее популярных направлений развития виртуальной и дополненной реальности является образование. Существует много различных вариантов применения современных технологий в этой области — от простых школьных туров по Древнему Египту на уроках географии до обучения специалистов для работы на сверхскоростном поезде или на космической станции. Своими замечаниями о том, какими возможности обладает виртуальная реальность в образовании, поделился Дмитрий Кириллов, руководитель VRAR lab и Cerevrum Inc .

Плюсы использования VR в образовании

Использование виртуальной реальности открывает много новых возможностей в обучении и образовании, которые слишком сложны, затратны по времени или дороги при традиционных подходах, если не всё одновременно. Можно выделить пять основных достоинств применения AR/VR технологий в образовании.

Наглядность. Используя 3D-графику, можно детализированно показать химические процессы вплоть до атомного уровня. Причем ничто не запрещает углубиться еще дальше и показать, как внутри самого атома происходит деление ядра перед ядерным взрывом. Виртуальная реальность способна не только дать сведения о самом явлении, но и продемонстрировать его с любой степенью детализации.

Безопасность. Операция на сердце, управление сверхскоростным поездом, космическим шатлом, техника безопасности при пожаре — можно погрузить зрителя в любое из этих обстоятельств без малейших угроз для жизни.

Вовлечение. Виртуальная реальность позволяет менять сценарии, влиять на ход эксперимента или решать математическую задачу в игровой и доступной для понимания форме. Во время виртуального урока можно увидеть мир прошлого глазами исторического персонажа, отправиться в путешествие по человеческому организму в микрокапсуле или выбрать верный курс на корабле Магелланна.

Фокусировка. Виртуальный мир, который окружит зрителя со всех сторон на все 360 градусов, позволит целиком сосредоточиться на материале и не отвлекаться на внешние раздражители.

Виртуальные уроки. Вид от первого лица и ощущение своего присутствия в нарисованном мире — одна из главных особенностей виртуальной реальности. Это позволяет проводить уроки целиком в виртуальной реальности.

Форматы VR в образовании

Использование новых технологий в образовании предполагает, что учебноый процесс должен быть перестроен соответствующим образом.

ОЧНОЕ ОБРАЗОВАНИЕ

Виртуальные технологии предлагают интересные возможности для передачи эмпирического материала. В данном случае классический формат обучения не искажается, так как каждый урок дополняется 5–7-минутным погружением. Может быть использован сценарий, при котором виртуальный урок делится на несколько сцен, которые в включаются в нужные моменты занятия. Лекция остается, как и прежде, структурообразующим элементом урока. Такой формат позволяет модернизировать урок, вовлечь учеников в учебный процесс, наглядно иллюстрировать и закрепить материал.

ДИСТАНЦИОННОЕ ОБРАЗОВАНИЕ

При дистанционном обучении ученик может находиться в любой точке мира, равно как и преподаватель. Каждый из них будет иметь свой аватар и лично присутствовать в виртуальном классе: слушать лекции, взаимодействовать и даже выполнять групповые задания. Это позволит придать ощущение присутствия и устранить границы, которые существуют при обучении через видеоконференции. Также преподаватель сможет понять, когда ученик решит покинуть урок, так как шлемы Oculus Rift и HTC Vive оборудованы датчиком освещения, позволяющим распознать, используется шлем в данный момент или нет.

СМЕШАННОЕ ОБРАЗОВАНИЕ

При наличии обстоятельств, мешающих посещать занятия, ученик может делать это удаленно. Для этого класс должен быть оборудован камерой для съемки видео в формате 360-градусов с возможностью трансляции видео в режиме реального времени. Ученики, посещающие урок дистанционно, смогут наблюдать происходящее в классе от первого лица (например, прямо со своего места), видеть своих одноклассников, общаться с преподавателем и принимать участие в совместных уроках.

САМООБРАЗОВАНИЕ

Любой из разработанных образовательных курсов может быть адаптирован для самостоятельного изучения. Сами уроки могут размещаться в онлайн-магазинах (например, Steam, Oculus Store, App Store, Google Play Market), чтобы у всех была возможность осваивать или повторять материал самостоятельно.

Минусы использования VR в образовании

Однако пока использование технологий и сами устройства не будут максимально «отточены», будут существовать минусы и потенциальные проблемы использования виртуальной реальности в образовании.

Объем. Любая дисциплина довольно объемна, что требует больших ресурсов для создания контента на каждую тему урока — в виде полного курса или десятков и сотен небольших приложений. Компании, которые будут создавать такие материалы, должны быть готовы заниматься разработкой довольно продолжительное время без возможности ее окупить до выхода полноценных наборов уроков.

Стоимость. В случае с дистанционным обучением нагрузка по покупке устройства виртуальной реальности ложится на пользователя, или этим устройством может быть его телефон. Но образовательным учреждениям понадобится закупать комплекты оборудования для классов, в которых будут проходить занятия, что также требует существенных инвестиций.

Функциональность. Виртуальная реальность, как и любая технология, требует использования своего, специфического языка. Важно найти верные инструменты для того, чтобы сделать контент наглядным и вовлекающим. К сожалению, многие попытки создания обучающих VR-приложений не используют все возможности виртуальной реальности и, как следствие, не выполняют своей функции.

Пример: урок физики в VR

Для того, чтобы проверить эффективность и жизнеспособность использования виртуальной реальности в образовании, компания VRAr lab разработала экспериментальный урок по физике. В исследовании приняли участие 153 человека: подростки 6-17 лет, их родители и родственники. После просмотра участников попросили ответить на три вопроса: насколько хорошо усваивается учебный материал, поданный таким образом; каково отношение детей к обучению в виртуальной реальности; какие школьные предметы (по мнению школьников) предпочтительны для создания уроков в виртуальной реальности.

Урок был посвящен теме электрического тока в простейшей электрической цепи. Надев очки, пользователь оказывался в комнате перед столом, на котором была визуализирована простейшая электрическая цепь. Далее пользователь попадал внутрь проводника, где ему предстояло изучить его строение (визуализация строения атома, кристаллической решетки, условная визуализация течения электрического тока в связке с источником питания). Урок рассчитан на шесть учеников, сопровождается лекцией учителя и длится от 5 до 7 минут.

После лекции респонденты заполнили анкеты.

Усвоение материала и отношение к урокам в VR

Респондентам было предложено ответить на три закрытых вопроса анкеты: какая из перечисленных частиц не является частицей атома; из чего состоит ядро атома; какая частица отвечает за передачу электрического заряда. Результат оказался отличным – лишь 8,5% респондентов не усвоили материал.

Что касается отношения к подобным урокам, то по данным VRAR lab, 148 респондентов из 153 (97,4%) желали бы и дальнейшего применения технологий виртуальной реальности на школьных уроках, причем в качестве дисциплин большинство указало физику и химию.

В целом, эксперимент, проведенный VRAR lab, показал успешность применения VR в образовании. Современные технологии, несмотря на долгий путь развития, еще молоды, но всё же виртуальная реальность – это следующий большой рывок в развитии сферы образования. И в ближайшее время нам предстоит увидеть множество интересных открытий в этой области.