Children's books      04/01/2020

Dictionary of English technical aviation. How to Learn Aviation English - Aviation and Computer Notes. Medical assistance to passengers


The air conditioning system is fully automatic.

It provides continuous air renewal and maintains a constant, selected temperature in the following three zones: COCPIT, FWD CABIN, AFT CABIN. These three zones are independently controlled.

Air is supplied by the pneumatic system, via:

    Two pack flow controls valves, Two packs, The unit, which mixes the air that comes from the cabin and the mixing mixing packs.

Air is then distributed to the cockpit and the cabin.

Temperature regulation is optimized via the hot air pressure regulating valve, and the trim air valves that add hot air, tapped upstream of the packs, to the mixing unit.

In an emergency, a ram air inlet can provide ambient air the mixing unit.

Temperature regulation is controlled by two Air Conditioning System Controllers, Flight deck and cabin temperature can be selected from the cockpit's AIR COND panel.

A control panel is provided on the Forward Attendant Panel. During the cruise, the cabin crew can modify each cabin zone temperature that is selected from the cockpit, with a limited authority of ± 2.5 f. (±4.5ff)

Low-pressure air is supplied to the mixing unit by a ground connection.

FDU; APU; GCU; ECAM; DC

Option 2

1. Translate into English


A318/A319/F320/A321

FLIGHT CREW OPERATING MANUAL

AIRCRAFT SYSTEMS

DESCRIPTION - GENERAL

The electrical power system consists of a three-phase 115/200 V 400 Hz constant-frequency AC system and a28 V DC system.

Electrical transients are acceptable for equipment.

Commercial supply has a secondary priority.

In normal configuration, the electrical power system provides AC power.

A part of this AC power is converted into DC power for certain applications.

Each generator can provide AC power to all electrical bus bars.

The electrical power system is constituted of 2 engine generators and 1 APU generator.

In the event that normal AC power is not available, an emergency generator can provide AC power.

In the event that all AC power is not available, the electrical power system can invert DC power from the batteries into AC power.

ENGINE-DRIVEN GENERATORS

Two three-phase AC generators (GEN 1, GEN 2), one driven by each main engine through an integrated drive, supply aircraft electrical power. Each generator can supply up to 90 KVA of power at 115 and 200 V and 400 Hz.

Two Generators Control Units (GCU) control the output of their respective generator. The main functions of each GCU are:

    Control the frequency and voltage of the generator output. Protect the network by controlling the associated generator line contactor (GLC).

APU GENERATOR AND EXTERNAL POWER

A third generator (APU GEN), driven directly by the APU and producing the same output as each main engine generators at any time.

A ground power connector near nosewheel allows ground power to be supplied to all busbars.

A Ground and Auxiliary Power Unit (GAPCU):

    Regulates, via the Apu Electronic Control Box, the frequency and voltage of APU generator when the No Break Power Transfer (NBPT) is required Protects the network by controlling the external power contactor and the APU Generator Line Contactor.

2. Make up 5 questions to the Text above

EGLC; JFR; DC; PF; FMA

Option 3

1. Translate into English


A318/A319/F320/A321

FLIGHT CREW OPERATING MANUAL

AIRCRAFT SYSTEMS

DESCRIPTION - GENERAL


EMERGENCY GENERATOR

The blue hydraulic circuit drives an emergency generator that automatically supplies emergency AC power to the aircraft electrical system, if all main generators fail. This generator supplies 5 KVA of three-phase 115 and 200 V 400 Hz power.

A generator Control Unit (GCU):

    -Keeps the emergency generator at a constant speed, Controls the generator"s output voltage, Protects the network by the controlling the emergency generator line contactor, and Controls the generator start-up.

A static inverter transforms DC power from Battery 1 into one KVA of single-phase 115 V 400 Hz AC power, which is then supplied to part of the Ac essential bus. When the aircraft speed is above 50kt, the inverter is automatically activated, if nothing but the batteries are supplying electrical power to the aircraft, regardless of the BAT 1 and BAT 2 pushbutton position.

When the aircraft speed is below 50 kt, the inverter is activated, if nothing but the batteries are supplying electrical power to the aircraft, and the BAT 1 and BAT 2 pushbuttons are both on at auto.

TRANSFORMER RECTIFIERS (TRS)

Two main transformer rectifiers, TR 1 and TR 2, supply the aircraft's system, with up to 200 F of DC current.

A third (identical) transformer rectifier, the ESS TR, can power the essential DC circuit from the emergency generator, if the engine and APU generators all fail, or if TR 1 or TR 2 fails.

Each TR controls its contactor by internal logic.

Two main batteries, each with a normal capacity of 23 Ah, are permanently connected to the two hot buses.

Each battery has an associated Battery Charge Limiter (BCL).

The BCL monitors battery charging and controls its battery contactor.

2. Make up 5 questions to the Text above

ADF; AFM; MSU; FM; ESS

Option 4

1. Translate into English


A318/A319/F320/A321

FLIGHT CREW OPERATING MANUAL

AIRCRAFT SYSTEMS

Aircraft Fire Protection Systems are comprised of;

Fire and overheat detection and extinguishing systems for the:

    Engines; APU

Smoke detection and extinguishing system for the:

    cargo compartments; lavatories

Smoke detection for the:

    avionic bay

Portable fire extinguishers for the:

    flight compartment; Passengers cabin

The engines and APUs each have a fire and overheat detection system consisting of:

    Two identical fire detection loops (A and B) mounted in parellel A fire detection Unit (FDU).

The fire detection loops of:

    Three or four sensing elements for each engine, in the pylon nacelle, in the engine core and in the engine fan section One sensing element in the APU compartment.

When a sensing element is subjected to heat, it sends a signal to the fire detection unit.

As soon as loops A and B detect temperature at a present level, they trigger the fire warning system.

A fault in one loop (break or loss of electrical supply) does not affect the warning system.

The unaffected loop still protects the aircraft.

If the system detects an APU fire while the aircraft is on the ground, it shuts down the APU automatically and discharges an extinguishing agent.

Each engine has two extinguisher bottles equipped with operated squibs to discharge their contents. Each squib has a dual electric supply. The flight crew controls the discharge from ENG FIRE panel in the cockpit.

The APU has one fire extinguisher bottle that has two electrically operated squibs to discharge its agent. The flight crew controls the discharge from the APU FIRE panel in the cockpit. This bottle also discharges automatically if there is an APU fire when the aircraft is on the ground.

2. Make up 5 questions to the Text above

C/B; BAT; FMGS; GS; TVMC

Option 5

1. Translate into English


A318/A319/F320/A321

FLIGHT CREW OPERATING MANUAL

AIRCRAFT SYSTEMS

GEARS AND DOORS - DESCRIPTION

The landing gear consists of:

    Two main gear retract inboard, A nose gear that retracts forward.

Doors enclose the landing gear bays. Gear and doors are electrically controlled and hydraulically operated.

The doors, which are fitted to the landing gear struts, are operated mechanically by the gear and close at the end of gear retraction.

All gear doors open while the gear is retracting or extending.

Two Landing Gear Control and Interface Units (LGCIUs) control the extension and retraction of the gear and operation of the doors. They also supply information about the landing gear to ECAM for display, and send signals indicating whether the aircraft is in flight or on the ground to other aircraft systems. A hand crank on the center pedestal allows the flight crew to extend the landing gear if the aircraft loses hydraulic systems or electrical power.

NORMAL OPERATION

The flight crew normally operates the landing gear by means of the lever on the center instrument panel.

The LGCIUs control the sequencing of gear and doors electrically. On LGCIU controls one complete gear cycle, then switches over automatically to the other LGCIU at the completion of the retraction cycle. It also switches over in case of failure.

The green hydraulic system actuates all gears and doors. When the aircraft is flying faster than 260 kt, a safety valve automatically cuts off hydraulic supply to the landing gear system. Below 260 kt, the hydraulic supply remains cut off as long as the landing gear lever is up.

EMERGENCY EXTENSION

If the normal system fails to extend the gear hydraulically, the flight crew can use a crank to extend it mechanically.

When a crew member turns the crank, it:

    Isolates the landing gear hydraulics from the green hydraulic system. Unlocks the landing gear doors and the main and nose main gear. Allows gravity to drop the gear into the extended position. Locking springs help the crew to crank the main gear into the locked condition, and aerodynamic assist in the locking of the nose gear.

2. Make up 5 questions to the Text above

Being a flight attendant is a profession in which it is almost impossible to do without knowing English, especially if you dream of flying on prestigious international flights. In this article, we have prepared a basic phrasebook with which to start learning English for flight attendants. You will learn how to greet passengers and resolve conflicts, as well as learn the basic English words that every crew member needs to know.

Basic concepts

Let's start with the airship's crew. The team, depending on the type of vessel, may consist of the captain of the aircraft (captain), co-pilot (co-pilot / first officer), flight mechanic (air mechanic / flight engineer), navigator (flight navigator), senior flight attendant (cabin service director / flight director ) and flight attendants (flight attendant / steward). Chief purser or purser is also used to refer to a senior flight attendant, usually on smaller flights.

There are various passengers on board. Flight attendants usually refer to them all as PAX. The word PAX is an abbreviation derived from the words Passengers Allowed in Expenses, that is, this word refers to the number of passengers who have purchased tickets for the flight. Among PAX there are categories of people whose names you need to know in English:

  • a VIP(very important person) - a very important person;
  • a CIP (commercially important person) - an influential first or business class passenger;
  • a UM (unaccompanied minors) - children who travel without adults;
  • a handicapped passenger - a passenger with a disability;
  • a standby - a passenger who redeems an unredeemed ticket right before the flight.

There are several classes of passenger service. Flight attendants must know the following names:

  • first class - first class, not available on all aircraft;
  • business class - business class, an alternative to the first class;
  • economy class (tourist class) - economy class (tourist class), the most accessible view service.

It will also be useful to find out what types of flights are available. In English they are called like this:

  • Nonstop (non-stop) flight - non-stop flight. It is the most convenient, since the plane flies to the point of arrival without landing at other airports and passengers do not need to transfer.
  • Direct flight - direct flight. The plane makes stops to "pick up" passengers at other airports.
  • Connecting flight - a flight with transfers. Passengers will need to transfer from one flight to another.
  • Scheduled flight - regular flight.
  • Non-scheduled flight - an irregular flight.

In an airplane, passenger seats can also be classified. In English it will be called like this:

  • window seats - places at the windows;
  • aisle /aɪl/ seats - seats next to the aisle;
  • exit rows - rows of seats located near emergency exits. Usually they try to give these seats to physically strong and healthy passengers who, in case of an unforeseen situation, will be able to open the exit and help people evacuate.
  • bulkhead seats - seats next to the bulkhead between passenger classes. Usually such seats have more legroom, so it is advisable to occupy them with tall passengers.
  • standard seats - standard seats.

We have also compiled a mini English dictionary for the flight attendant, study it before learning phrases to communicate with passengers.

Word/PhraseTranslation
a baggage compartmentluggage compartment
a cabinsalon
a charter flightchartered flight
a chute /ʃuːt/emergency chute
a feeder lineauxiliary airline
a fire extinguisher /ɪkˈstɪŋɡwɪʃə(r)/fire extinguisher
a first aid kitfirst aid kit
a flightflight
a forced landingemergency landing
a galley /ˈɡali/kitchen on board
ground serviceground service
a jumbo jet (jumbo)large airbus (for example: Boeing 747)
a point of destinationdestination
a public address system (PA System)Speakerphone
a reclining seatreclining seat
a routeroute
a runwayrunway strip
a timetableschedule
a traytray, cassette (aluminum container for dishes)
a tray table / meal trayfolding table in the back of the seat
a trunk airlinemain airline
air traffic controlair traffic control service
airtightnesstightness
altitude /ˈæltɪˌtjuːd/flight altitude
an air bridgetelescopic ladder between the terminal building and the aircraft
an air traffic controllerdispatcher
an aircraftaircraft (plane, helicopter)
an airplaneairplane
an aisle /aɪl/aisle between rows of seats
an alternate /ˈɔːltə(r)neɪt/ airportalternate airport
an emergency exitemergency exit
an in-flight servicein-flight service
an overhead compartment / overhead lockerupper luggage rack in saloon
an oxygen maskoxygen mask
an upright positionvertical position (seats)
cabin pressureair pressure in the cabin
cockpit / flight deckcockpit
departure timeaircraft departure time
depressurization /ˌdiːˌprɛʃərʌɪˈzeɪʃ(ə)n/depressurization
evacuationevacuation
freight (sometimes cargo /ˈkɑːɡəʊ/)the cargo carried by the aircraft
IFE (in-flight entertainment)video and audio entertainment on board
on scheduleon schedule
portthe left side of the aircraft (when viewed in the direction of the nose)
pre-packaged courseshot meals prepared before the flight and reheated on board
pre-set trayspre-flight meal kits
specialty mealsspecial meals for people on a diet
star boardstarboard side of the aircraft (when looking towards the nose)
turbulenceturbulence
veganvegan dishes
vegetarian (meal)dishes for vegetarians
to delaydetain
to ditchget on the water in case of an accident
to divertveer off course, change course
to take offtake off

Passenger boarding

Upon landing, the flight attendant greets passengers and helps them find their seats, as well as place hand luggage in the cabin. You can use these phrases to communicate.

PhraseTranslation
We are glad to see you on board.We are pleased to welcome you on board our aircraft.
Can I help you madam/sir?May I help you, madam/sir?
Can I see your boarding pass, please?May I see your boarding pass?
I am sorry, but I need to see your boarding pass.Excuse me, I need your boarding pass.
Your seat is 77A by the window.Your seat is 77A near the window.
Your seat is over there - second row on the left.Your seat is over there, second row from the left.
May I place your bag in the overhead compartment?Can I put your bag in the luggage rack?
Could I ask you to put your bag beneath the seat?May I ask you to put your bag under the seat?

After that, the flight attendants must count the passengers (passenger head-count), and the flight attendants can also offer them newspapers. This can be done with the phrase May I offer you a newspaper? (May I offer you a newspaper?) Then you should give a short welcome speech and tell the passengers where the emergency equipment is located and how to use them.

The welcome speech of the flight attendant in English may differ on different airlines, so we will give the most common phrases that you can use when briefing passengers.

PhraseTranslation
Please listen carefully to the following announcement for your own safety.Please listen carefully to the following safety rules.
Please stow your hand luggage in the overhead locker or under the seat in front of you.Please place your hand luggage on a shelf above you or under the seat in front of you.
Your phone has to be turned off for the whole flight.Your phone must be turned off during the entire flight.
Smoking is not allowed on the flight.You cannot smoke during the flight.
Your life vest is under your seat. This is how you should put it on.Your life jacket is under the seat. Here's how to put it on (show).
There are several emergency exits on this plane. They are being pointed out to you now.There are several emergency exits on this plane. Now they are showing you.
Your seat must be fully upright.Your seat must be in an upright position.
Our plane is taking off now, please fasten /ˈfɑːs(ə)n/ your safety belt.Our plane is taking off now, please fasten your seat belts.
When the seatbelt sign is on, you must fasten your seatbelt.When the "fasten seat belt" sign is on, you must fasten your seat belts.
Make sure your seat belt is fastened.Make sure your seat belt is fastened.
You can find a safety instruction card in the pocket in front of you.You can find the safety instructions in the pocket in front of you.
We wish you all an enjoyable flight.We wish you a pleasant flight.

After takeoff, flight attendants usually offer drinks, entertainment (movies, music), etc. to passengers. We suggest that you use the following phrases to communicate with aircraft passengers.

PhraseTranslation
The seatbelt sign is off and you can leave your seats if you need.The seat belt sign is off and you can leave your seat if you need to.
If you press this button, it will light up at the end of the cabin and one of us will come to your assistance.If you press this button, the indicator at the end of the cabin will light up and one of the flight attendants will come to you.
Would you like headphones?Do you need headphones?
We will serve drinks and snacks as soon as possible.We will be serving drinks and snacks soon.
May I offer you a drink, madam/sir?May I offer you a drink, madam/sir?
The drinks are free-of-charge.Are the drinks complimentary.
Would you like a blanket?Would you like a blanket?
Please press the release button to feel comfortable.Please press the button to lower the back of the chair to feel comfortable.

Passenger Complaints

Perhaps the most difficult thing in the work of a flight attendant is not to learn all the phrases indicated in our article in English, but the ability to resolve various conflict situations and respond correctly to passengers' complaints.

When the passenger has called you, approach him, say hello and ask one of the following questions.

After the person explains the grievance to you, you should try to help the person by telling them how you can solve the problem. See what English phrases a flight attendant might use when responding to a passenger complaint.

PhraseTranslation
A: It's really hot here.A: It is very hot in here.
B: Please, use this button to control the direction and amount of air conditioning.IN: Please use this button to control the ventilation direction and power.
A: It is very dark here. I can't read.A: It's very dark in here. I can not read.
B: This button controls your individual reading light.IN: This button adjusts the individual reading light.
A: This steak is too cold.A: This steak is too cold.
B: I am terribly sorry. It should have been heated. Would you like another?IN: My apologies. He had to be warm. Would you like another?
A: My neighbor is awful. Can you help me?A: My neighbor is terrible. Can you help me?
B: What exactly is he doing that bothers you?IN: Which of his actions bothers you?
A: It is cold. Can I have a blanket?A: Cold. May I have a blanket?
B: I"ll bring you one straightaway.IN: I'll bring it to you right now.
A: I need to make a phone call.A: I need to make a phone call.
B: I "m sorry, sir, but it" s a matter of safety. It interferes with the aircraft's electronic systems.IN: Sorry sir, but this is a security issue. It (the phone) interferes with the electronic system of the aircraft.

It happens that several situations arise on board at once, requiring the intervention of a flight attendant. In this case, you can ask one of the passengers to wait, the main thing is to do it politely using the following phrases.

PhraseTranslation
I am afraid I am busy now. Can you wait a moment?I'm afraid I'm busy right now. Can you wait a minute?
Can you wait until I have finished the service? I will get back to you.Can you wait while I finish the service? I will return to you.
I will ask the purser to come and speak with you, sir.I'll have the chief flight attendant come and talk to you, sir.

Medical assistance to passengers

We hope that passengers will always feel great on your flights. Still, it does not hurt to play it safe and learn useful phrases with which you can find out what happened to a person.

PhraseTranslation
What happened?What's happened?
How are you feeling?How are you feeling?
What exactly are the symptoms?What are the exact symptoms?
Do you have any pain?Do you have any pain?
Would you like a glass of water or some more air?Would you like a glass of water or a little more air?
Would you like me to get you an aspirin?Maybe I'll bring you an aspirin?
Do you feel well enough to sit up?Are you feeling well enough to get up and sit down?
Do you need medical attention?Do you need medical help?
Are you ill or injured?Are you sick or damaged something?
Do you need a prescribed medication?Do you need your prescribed medicines?

If the situation is serious and you understand that a person needs specialist help, try to find a doctor among the passengers. You can make the following declaration:

ladies and gentlemen. Your attention, please! If there is a doctor on the board, please contact a member of the cabin crew. thank you!

Ladies and Gentlemen. I ask for a moment of attention, please! If there is a doctor on board, please contact a crew member. Thank you!

Unexpected situations

We hope you will never need to use the phrases in this section in practice. And yet it is better to know them by heart, in order to be able to calm passengers in case of danger and prepare them for a hard landing or other unplanned situation.

PhraseTranslation
We are approaching an area in which air turbulence may be experienced.We are approaching an area where there may be turbulence.
Stay in your seats and remain calm.Stay where you are and stay calm.
Pull down the oxygen mask and place them over your nose and mouth.Take out the oxygen masks and put them on.
Parents should adjust their own masks first, then help their children.Parents should first put on their masks and then help their children.
We are making a controlled descent to a safer altitude.We are performing a controlled descent to a safer altitude.
Breathe through the mask until we advise to remove it.Breathe through the mask until we tell you to take it off.

Landing

So, your flight was successful, and you are preparing for landing. This should be announced to the passengers, as well as what to do before boarding. Use the following phrases.

PhraseTranslation
We'll be landing in 30 minutes.We will land in half an hour.
Please, return to your seats and ensure your baggage is safely secured in the overhead compartment.Please return to your seats and make sure your luggage is securely secured on the top bunk.
Put your seat back upright.Bring the chair back to an upright position.
Please, fold up your meal trays before landing.Please fold down the folding tables before boarding.
Thank you for flying Alfa Airlines! We hope to see you again.Thank you for using the services of Alpha Airlines! We hope to see you again.

Useful English Learning Resources for Flight Attendants

And now we want to bring you useful resources that will help you teach English to flight attendants and stewards. We recommend using the following:

  1. English textbooks for flight attendants:
    • “English for Aviation for Pilots and Air Traffic Controllers” by Sue Ellis and Terence Gerighty.
    • “English for Cabin Crew” by Terence Gerighty and Shon Davis.
    • “Thank you for flying with us” by John G. Beech.
  2. MiMi is an English-English dictionary for flight attendants. There you will find a transcript of the terms and abbreviations you need.
  3. Air Odyssey - examples of ready-made announcements for passengers on board the aircraft. The site also has various tests and interesting articles in English about aviation.
  4. LearnEnglishFeelGood.com - This page has self-tests. Choose the exercises called English for flight attendants and practice your knowledge with tests.

We hope our article will make it easier for you to learn English for flight attendants and get your dream job on good airlines. And if you want to learn professional English faster and more in-depth, we invite you to. Our teachers will help you to speak fluently and easily understand the speech of any passenger. We wish you pleasant flights!

We have compiled a document for you, which contains all the words and expressions on this topic. You can download it from the link below.

Description: This workshop is intended for students starting to study a professionally oriented aviation language. All texts and exercises for them are aimed at developing the skills of reading and understanding the specialized literature and ICAO documents.

The workshop consists of 2 parts.

Part I includes texts on general aviation topics, lexical and grammatical exercises for them.

Part II includes additional reading texts.

ENGLISH AS A WORLD LANGUAGE AND AN INTERNATIONAL AVIATION LANGUAGE 3
FROM THE HISTORY OF AVIATION 7
INTERNATIONAL CIVIL AVIATION ORGANIZATIONS 11
AERONAUTICAL INFORMATION SERVICES (AIS) 15
WEATHER 18
AIRPORT 23
AIRCRAFT 26
SAFETY 30
AIR TRAFFIC CONTROL 33
HUMAN FACTORS IN AVIATION 37

WORKSHOP on reading aviation texts (for students of the 1st and 2nd courses in the specialties of LE, VN, ATS, ANO)

PART I

Foreword
This workshop is intended for students starting to study a professionally oriented aviation language. All texts and exercises for them are aimed at developing the skills of reading and understanding the specialized literature and ICAO documents.
The workshop consists of 2 parts.
Part I includes texts on general aviation topics, lexical and grammatical exercises for them.
Part II includes additional reading texts.

ENGLISH AS A WORLD LANGUAGE AND AN INTERNATIONAL AVIATION LANGUAGE

English has become a world language because of its establishment as a mother tongue outside England, almost in all the continents of the world. This exporting of English began in the 17th century, with the first settlements in North America. Above all, the great growth of population in the United States together with massive immigration in the nineteenth and twentieth centuries has given the English language its present standing in the world. Besides, basic characteristics of English also contribute to the situation that nowadays it is the most spread language on Earth. These characteristics are: simplicity of forms (very few endings); flexibility (the same word can operate as some different parts of speech); openness of vocabulary (English words are frequently admitted by other languages). At present English is the language of business, technology, sport and aviation.
There are four working languages ​​in ICAO – English, French, Spanish and Russian. But all meetings, conferences and assemblies are conducted in English and then all materials are translated into other languages. For this purpose ICAO has a special “Language and Publications Branch” with four sections.
The most urgent problem in aviation is safety. The progress in safety is achieved by intensive efforts in various fields – engineering sciences, meteorology, psychology, medicine, economics and “last but not least” the English language. Insufficient English language proficiency often results in accidents and incidents. For example, the worst disaster in aviation history occurred in 1977 when two Boeings 747 collided at Tenerife, Canary Islands. The crew of Pan American 747 missed or misunderstood taxi instructions requiring a turn off the active runway. At the same time KLM 747 initiated a shrouded take off on the opposite direction. The two aircraft met on the active runway, with heavy loss of lives.
Between 1976-2000 more than 1100 passengers and crews lost their lives in accidents in which language played a contributory role.
Concern over the role of language in airline accidents brought real actions. So in March 2003 ICAO adopted Amendments to ICAO Annexes 1, 6, 10 and 11. These Amendments make clear and extend language requirements. In addition, they contain new more strict requirements for language testing.
Additional standards in Annex 10 demand to adhere (=follow) more closely to standard phraseology in all air-ground exchanges and to use plain language when phraseology is not sufficient. Phraseology alone is unable to cover all of the potential situations, particularly (especially) in critical or emergency situations. Therefore the PELA (Proficiency in English Language) test examines use of both ATC phraseology and plain English.

EXERCISES
I. Answer the questions:

1. When did the exporting of English begin?
2. In what spheres of life is English most widely used?
3. How many working languages ​​are there in ICAO?
4. In what language are meetings, conferences and assemblies held in ICAO?
5. How is the progress in safety achieved?
6. Could you explain why English language is so important in solving safety problem?
7. What are ICAO real actions for improving English language proficiency?
8. Will you describe the Amendments to ICAO Annexes adopted in 2003?
9. What do additional standards demand?
10. Can phraseology alone cover all of the potential situation in the air?
11. What are the PELA test requirements now?


establish-establishment

urgent - urgent
safe - unsafe - safe - safety
achieve-achievement-achievable
vary - various - variously - variety - variant - variable - variability
sufficient - sufficient - sufficiency
collide-collision
critical - uncritical - critically - criticize - criticism
require - requirement - unrequired
oppose - opposite - opposition - oppositionist
add - addition - additional - additionally
act - active - actively - activate - activity - action
heavy-heavy-heavyness
contribute-contributory-contribution
lose - loser - loss

cover-coverage-discovery-discovery
real - really - realist - realistic - realism - reality

1. What is the population of this area?
2. When did the first European settlements appear on this continent?
3. What are the main characteristics of the English language?
4. They discuss the issue of new working languages ​​in ICAO - Arabic and Chinese.
5. When was the last ICAO Assembly held?
6. Who translated these materials into Russian?
7. What is the purpose of this meeting?
8. Are there any new publications on this issue?
9. They have achieved great success in this area.
10. Great efforts are needed to solve this problem.
11. You must be fluent in English to work at an international airport.
12. Insufficient knowledge of the English language crew led to disaster.
13. The disaster occurred over the ocean.
14. At what height did the planes collide?
15. There was a great loss of life in this catastrophe.
16. ICAO will adopt new amendments to the Annexes next month.
17. We have enough fuel to fly to Copenhagen.
18. We must be proficient in both radiotelephone phraseology and ordinary English.

FROM THE HISTORY OF AVIATION
Men have wanted to fly for more than two thousand years. Observations of flying birds gave man the idea of ​​human flight. Every nation has many legends and tales about birdmen and magic carpets.
One of the most famous Greek legend is the legend of Daedalus and his son Icarus who made wings and fastened them on with wax. Daedalus landed in safety, Icarus was not so careful and he flew closer and closer to the sun. The wax melted, the wings came off and he fell into the sea.
The first scientific principles of human flight appeared in the 14th century. The problem was studied by the great scientist Leonardo de Vinci. He observed the flight of birds, studied the air and its currents and designed a flying machine the wings of which were operated by a man.
But the first actual flight which man made was that in the balloon. In October 1783 the Montgolfier brothers in France sent two men almost 25 meters up in a balloon which descended 10 minutes later, about 2.5 kilometers away.
The first Russian aircraft designer was Alexander Mozhaisky. His airplane, a monoplane, with two light steam engines was tested on August I, 1882. With the first Russian pilot, I.N. Golubev the plane rose into the air and flew a distance of 200 meters before it landed.
At that time the same work was being conducted by Otto Lilienthal, a remarkable German inventor. In 1891 he made his flight in a glider covering 35 metres. In 1903 two Americans, the brothers Wilbur and Orville Wright, built their airplane. It flew only 32 meters but it was the first airplane with an internal combustion engine that was a big step forward.
In the following years aviation made big advances. In 1908 Henry Farman, in France, made a circular flight of one kilometre. A year later Bleriot crossed the English Channel. In 1913 a Russian student Lobanov invented aeroplane skis and this enabled to land and take off in winter.
In 1913 the Russian designer Igor Sikorsky built the world "s first multiengined heavy aircraft. That same year the Russian pilot Nesterov executed the first loop. Another Russian pilot, Artseulov, in 1916 proved that a pilot can take his plane out of a corkscrew.
At the beginning of the 20th century the dirigible was invented. The most known inventor of a dirigible is Count Ferdinand von Zeppelin, a retired German army officer. His famous "Graf Zeppelin" in 1929 began a cruise which took 21 days 8 hours and 26 minutes to circle the world.
An outstanding event in the history of aviation took place in Petersburg in 1913. That year a heavy multiengined aircraft "Russian Vityaz" was constructed. It weighed 4,940 kg and had a 1,440 kg useful load. On August 2, 1913 with seven passengers on board it set up a world record by remaining in the air for 1 hour 34 minutes.
In 1914 an improved version of the multiengined heavy bomber of the Ilya Murometz type was built. It weighed 3,000 kg and had a 1,760 kg useful load, a maximum cruising range of 700 km and a top speed of more than 110 km/hr.
Among the pioneers of aviation are the names of aircraft designers Tupolev, Polikarpov, Sukhoi, Arkhangelsky, Ilyushin, Yakovlev and others; the pilots Vodopyanov, Doronin, Kamanin, Lyapidevsky and some others - the first Heroes of the Soviet Union who were awarded this title for saving the passengers and the crew after ice-breaker Chelyuskin had been crashed by ice. In 1937 the world applauded the daring non-stop flight by Chkalov and his crew to the USA via the North Pole on the ANT-23. In 1938 Soviet aviatrixes Grisodubova, Raskova and Osipenko made a non-stop long-distance flight to the Far East and became the first Heroes of the Soviet Union among women.
And, of course, it is necessary to mention the names of the outstanding Russian scientists who significantly contributed to aviation. It is the great Russian scientist M.V. Lomonosov who developed the scientific principles of flight of bodies weight-than-air and built the first helicopter model in the world.
The Great Russian scientist D.I.Mendeleyev is the author of man outstanding researches in aeronautics. He developed the principles of the stratostat design with a pressurized cabin.
S.A.Chaplygin, the outstanding scientist in mechanics, is one of the founders of the modern aviation theory and the pioneer in aerodynamics of high speeds.
Special services in science belong to another famous scientist who is called "father of Russian aviation". And this is N.E. Zhukovsky. He was the first to develop a scientific wing theory and the principles of airscrew design. From that time aerodynamics has been a science combining theoretical knowledge with practical experiments. All modern aerodynamic calculations are based on his outstanding theoretical works.
N.E.Zhukovsky is the founder of the Central Aero-Hydrodynamic Institute (Z.A.G.I) which became the leading center of the aeronautics and aeronautical engineering.
The rapid development of aviation began after the World War II. But this is another story.

I. Answer the questions:

1. Was it interesting for you to read this text?
2. Did you read about the history of aviation at school?
3. When did the first scientific principles of human flight appear?
4. Who was the first to study the problem of human flight?
5. Describe the flying machine designed by Leonardo de Vinchi.
6. What was the first actual flight man made?
7. Why was it impossible to fly in a balloon?
8. Who was the first Russian aircraft designer?
9. What plane was designed by him?
10. What distance did the plane cover?
11. Who designed the first glider?
12. What is glider?
13. What event took place in Petersburg in 1913?
14. How long did “Russian Vityaz” stay in the air?
15. Who is called “the father of Russian aviation”?

II. Translate the words paying attention to the word-forming elements:

observe-observer-observation
safe - safe - safety - unsafe
science - scientist - scientific
design - designer
fly - flight
invent-inventor-invention
construct - constructor - construction
improve - improvement
weigh-weight-weightless
develop - development

human flight, air flow, aircraft designer, wing design, helicopter model, world record, maximum speed, non-stop flight, steam engine, aircraft skis.

1. scientific principles human flight was studied by the great scientist Leonardo de Vinci.
2. Leonardo de Vinci studied air currents and created the first flying machine.
3. The first actual flight was made in a balloon in 1783.
4. This flight lasted only 10 minutes and the flight altitude was 25 meters.
5. The first Russian aircraft designer was Alexander Mozhaisky.
6. He designed a monoplane with two steam engines in 1882.
7. A big step forward was the creation of the first aircraft with an internal combustion engine, designed by two Americans, the Wright brothers.
8. Scientists and designers of many countries worked on the creation and improvement of aircraft.
9. The world's first multi-engine aircraft was designed by Russian designer Igor Sikorsky.
10. At the beginning of the 20th century, the airship was invented.
11. In 1913, a heavy multi-engine aircraft "Russian Knight" was designed in St. Petersburg.
12. The flight of the "Russian Knight" lasted 1 hour 34 minutes, its speed was 90 km / h.
13. In 1937, Russian pilot Chkalov and his crew made a non-stop flight to the United States via the North Pole.
14. Lomonosov built a model of the first helicopter.
15. Mendeleev developed the design of a stratospheric pressurized cabin.

INTERNATIONAL CIVIL AVIATION ORGANIZATIONS
It is known that the pioneers of aviation were men of different nationalities and of many countries: Deadalus and Leonardo de Vinci, Lilienthal and Bleriot, Mozhaiski and the Wright brothers and others. So the airplane is a creature of no one country's knowledge and efforts. A peculiarity of air transport made it clear from the start that the development of aviation was impossible without international agreement. That's why the International Civil Aviation Organization (ICAO) was created. It happened in 1944 at a conference of 52 nations held in Chicago. At present there are about 200 member States in ICAO. Its headquarters is in Canada, Montreal. The working languages ​​of ICAO are English, French, Spanish and Russian. Russia has been the member of ICAO since 1970 .
It is very difficult to describe all of ICAO's activities. ICAO solves many problems on the international level. ICAO has a coordination agency. One of its purposes is to gather knowledge widely scattered among nations and to standardize the equipment and operational techniques used in air navigation in and over the territories of its member-states. The main task of ICAO is the flight safety. The aims of the Organization are spelt out in Article 44 of the Chicago Convention. These are to develop the principles and techniques of international air navigation, to plan and develop international air transport; to encourage the arts of aircraft design and operation for peaceful purposes; to encourage the development of airways, airports and air navigation facilities for international civil aviation, and so on.
To ensure the safe and efficient worldwide aviation operation ICAO has developed technical specifications forming the basis for uniform rules and procedures. Standardization affects the air-worthiness of aircraft, facilities and services required for aircraft operations elsewhere. These include: aerodromes, communications, navigational aids, meteorology, air traffic services, .search and rescue, information services. ICAO is doing much to make the air more clear. There are special standards to reduce noise by designing new quieter aircraft. ICAO has set up standards for air crew and controllers as well. ICAO is also doing much to prepare and train aviation specialists.
The second in its importance organization after ICAO for international civil aviation is IATA - International Air Transport Association founded in 1945. It is one of the international civil aviation organizations uniting world airlines. IATA is concentrated on the safety problem. Its main objective is to contribute to safe and regular development of civil aviation and to cooperation of world airlines. Its Technical Committee deals with the problem of safety, standardization of aviation equipment, training of flying personnel, communications, meteorology, aerodromes, navigational aids, etc. All IATA members report the data on flying, taxying and other ground incidents including maintenance deficiencies. Flight safety experts, aviation specialists and scientists of the member States investigate these accidents to prevent them in the future. Russia is a member of IATA, it conforms to the IATA"s standards, procedures and documents which is of great importance for studying and solving the problems which IATA deals with.
International Federation of Air Traffic Controllers" Association (IFATCA) was founded in 1961 with the purpose to enable the national associations to study and solve the problems for the development of air traffic control art and to create a better understanding among the controllers serving international aviation.
Eurocontrol is the European organization working for air navigation safety. It was created in 1963 for better service of European airspace. Some European countries have signed the agreement of cooperation for the safety of air navigation and organized common air traffic services in the upper airspace.

I. Answer the questions:

1. What is ICAO?
2. When and where was ICAO created?
3. How many member States are there in ICAO?
4. Is Russia a member State of ICAO?
5. How long has Russia been the member of ICAO?
6. Where is the ICAO's headquarters?
7. What are the working languages ​​of ICAO?
8. What is the main task of ICAO?
9. Where are the main aims of ICAO spelt out ?
10. How does ICAO ensure the safe and efficient aviation operation?
11. What are the uniform rules and procedures required for?
12. What other international Civil Aviation Organizations do you know?
13. What is IATA? IFATCA? Eurocontrol?

II. Translate the words paying attention to the word-forming elements:

different - difference - differently
difficult-difficulty
active - activity
standard-standardize-standardization
equip-equipment
facility-facilitate
efficient - efficient - efficiently
require - requirement
reduce-reduction
control - controller
investigate - investigation - investigator

III. Find in the text the equivalent of the following phrases:

air transport, flight safety, aircraft design, navigation aids, air traffic rules, aviation specialists, security problem, information service, world airlines, air navigation, aircraft flight.

IV. Translate into English:

1. It is clear that it is impossible to ensure safe flight without international cooperation.
2. ICAO was established in 1944 at the 52 Nations Conference in Chicago.
3. The headquarters of ICAO is located in Canada, in Montreal.
4. There are currently about 200 ICAO member countries in ICAO.
5. Russia was not a member of ICAO until 1970.
6. ICAO solves many problems, but the main one is flight safety.
7. The main task of ICAO is to standardize the equipment and technology used in air navigation over the territories of its member countries.
8. There are general flight rules and procedures that all participating countries must comply with.
9. Permanent body of ICAO - Council.
10. The first President of ICAO was Edward Vaughn.
11. All aviation problems are expressed (given) in 18 Annexes to the Convention.
12. ICAO does a lot for the education and training of aviation professionals, both pilots and controllers.
13. There are several other international civil aviation organizations.
14. IATA members report data on disasters that have occurred in their country.
15. IATA experts are investigating these disasters in order to prevent them in the future.
16. IFATCA helps all controllers serving international aviation to better understand each other.
17. Eurocontrol was created to better serve European airspace.

AERONAUTICAL INFORMATION SERVICES (AIS)

Standards and Recommended practices for Aeronautical Information Services were first adopted by the Council on 15 May 1953, and were designated as Annex 15 to the ICAO Convention. This Annex became applicable on April 1, 1954.
Each country provides aeronautical information concerning its own territory. It is published in the Aeronautical Information Publication (AIP) and in Notices to Airmen (NOTAM). ICAO personnel engaged in aeronautical information services do not provide actual service, but check on whether these services are provided in ICAO’s members States. NOTAM are classified into two categories, I and II. Both classes contain information concerning the establishment, condition or change in any aeronautical facility, service procedure or hazard the timely knowledge of which is essential to personnel concerned with flight operations.
Information generated by AIS and AIP system is directed to pilots before taking off. NOTAM information might include advice that a certain airspace will be temporarily closed because of rocket launching, for example, or that a non-directional radio navigation beacon at a particular location is inoperative.
In addition to NOTAM ICAO adopted a SNOWTAM, a special series of NOTAM informing about the presence or removal of hazardous conditions at airport due to snow, ice, slush or standing water on the aircraft movement areas of airports.
A pilot planning a flight will prepare his flight plan according to the NOTAM information. What information does a pilot need? This information is quite varied. First of all he wants to know which airway to follow to the aerodrome of his destination. Further information needed by the pilot is that about facilities available en route and at the point of destination, the length of the runways, the communication frequencies, meteorological information, etc. He fills out a flight plan giving the route he is to follow and the description of the route, the name of the aerodrome of his destination and also the name of the alternate aerodrome and other information. He must indicate whether he will fly IFR (Instrument Flight Rules) or VFR (Visual Flight Rules) or, a combination of both.
Having the information received from the pilot Air Traffic Control can control the flight.

I. Answer the questions:

1. When did Annex 15 become applicable?
2. What is NOTAM?
3. What information does NOTAM contain?
4. Where is aeronautical information published?
5. Is AIP an international publication?
6. What is the task of ICAO aeronautical information services personnel?
7. When is the necessary information directed to pilots?
8. When does the pilot need the information?
9. What information does a pilot need to plan his flight?
10. How is a flight planned?
11. What flight rules are there?

II. Translate the words paying attention to the word-forming elements:

apply-appliance-applicable-applicant-application
provide-provider-provision-provisional
inform - informer - information - informal - informality - informative
direct - direction - directional - directly - director
locate - location - locally - localize - local
move - movement - movable - moveless - mover
service - serviceable - unserviceable
change - changeable - changeability - changeless
present-presence-presently-presentable-presentation
control-controllable-controller-uncontrollable
vary - variable - variability - variety - variation - variant

III. Find in the text the equivalent of the following phrases:

Standards and Recommended Practices, Aeronautical Information Service, ICAO Member States, Operations, Aircraft Movement Areas, Communication Frequencies, Missile Launching, Instrument Flight Rules, Visual Flight Rules.

IV. Translate into English:

1. Aeronautical information concerning the territory of an ICAO Member State is published in the Aeronautical Information Publication.
2. The Aeronautical Information Publication contains information on aerodromes of departure and destination.
3. NOTAM is an international collection of aeronautical information that has great importance for planning and flight operations.
4. If the destination aerodrome is closed for any reason, the pilot proceeds to the alternate aerodrome indicated in his flight plan.
5. Knowledge of aeronautical information ensures the safety and efficiency of flights.
6. Before planning a flight, the pilot must obtain all the necessary information included in the NOTAM.

Weather is composed of a number of elements such as the temperature and humidity of the air, atmospheric pressure, the speed and direction of the wind, air visibility and of special phenomena such as fog, storms and others.
Pilots need the information about weather conditions along the route of flight and at the destination aerodrome. The object of the meteorological service is to contribute to safety, efficiency and regularity of air traffic.
There exist some sources of aviation weather information: surface observation, radar observation, automatic meteorological observation, pilot reports and others.
At every airport there is a meteorological station which is equipped with special instruments recording all changes in the atmosphere. They indicate air pressure and temperature, record wind speed and direction as well as the movements of clouds. All the observations are summed up on special weather charts. The observations at the airports are made every 30 minutes and every 15 minutes if the weather suddenly gets worse or better.
Preparing for the flight the pilot is to get the latest weather information and weather forecasts along the planned route and at the point of destination and the alternates.
At a great number of met. stations located along the airways complete weather observations are made and then transmitted to weather forecast centers by telephone, telegraph, radio and thousands of miles of teletype circuits. Thus, the pilot has a complete picture of the weather.
20-30 minutes before entering the aerodrome area the controller gives the pilot full information about the terminal weather. At many airports the information helpful for landing and take off is continuously broadcast on a navigational aid frequency. Prior to descent the pilot requests the actual weather and aerodrome conditions for the airport he is going to land.
It is considered that landing of an aircraft is probably the most difficult operation which a pilot has to perform and the standards of visibility required are higher than for any other phase of flight.
It is known that fog, rain and clouds often affect the aircraft operation. For many decades attempts were made to make flying independent of weather conditions or, in other words, to allow an aircraft to land under very low or zero visibility.
Now there exist several categories set up by ICAO:
Category I - 200 ft ceiling and 1/2 mile visibility;
Category II- 100 ft ceiling and I/4 mile visibility;
Category III - landing under zero-zero conditions.
Met. services for aviation require much work to collect data and prepare weather charts. This work is especially difficult for long-distance flights over vast areas with different climatic conditions.
Nowaday met. services for aviation are almost fully automated. Automated Surface Weather Systems are installed at the airports of many countries. The System provides for the measurements, processing and display of the following meteorological parameters: wind direction and speed, air temperature and dew point t°, runway visual range, minimum cloud height, barometric pressure.
The use of lazers makes it possible to give pilots all the necessary information when they land under low visibility conditions. The introduction of these systems has greatly increased the reliability and safety of flights.
Satellite meteorology has become an independent area of ​​science. Weather forecasts based on information from outer space forecasts make more accurate and help to save a great sum of money annually.
At present the work of meteorologist becomes easier thanks to computers which make calculations quicker and due to them the weather forecast service is becoming more reliable. The use of satellites and computers greatly increases the accuracy of weather forecasts.

I. Answer the questions:

1. What elements are included in the weather report?
2. What is the object of meteorological service?
3. How often is weather observation made at the airport?
4. What do the instruments at the meteorological stations indicate?
5. What weather information does the pilot get before the flight?
6. Do the pilots obtain weather information while in flight?
7. When does the controller give the pilot full information about the terminal weather?
8. What phase of flight does especially depend on weather conditions?
9. What weather phenomena affect the aircraft operation?
10. What categories are set up by ICAO?
11. What does Automated Surface Weather System provide?
12. When do lazers help the pilots?
13. What is the advantage of satellite meteorology?
14. What other instruments make weather forecast service more reliable?

II. Translate the words paying attention to the word-forming elements:

direct-direction
visual-visually-visibility
observe-observation-observer
equip-equipment
transmit - transmission - transmitter
regular - regularity
depend - dependence - dependent - independent
provide-provision
accurate - accurate - accuracy - inaccurate
rely - reliable - reliability - unreliable

III. Find in the text the equivalent of the following phrases:

weather reports, weather, air pressure, wind speed, wind direction, cloud base, weather forecast, weather forecast center, forecast maps, flight support station, landing airport weather

IV. Translate into English:

1. Weather consists of such elements as air temperature and humidity, atmospheric pressure, wind speed and direction, visibility.
2. Rain, thunderstorm, fog, storm and other phenomena are dangerous for flying.
3. Before the flight, the pilot goes to the weather office to get a weather report and forecast not only for his route, but also for his destination.
4. Each airport has a weather station with special instruments that record all changes in the atmosphere.
5. Having all the weather data, weather forecasters make a weather map.
6. At many airports, weather information is continuously broadcast on a specific frequency.
7. Landing an airplane is the most difficult operation.
8. Visibility standards for landing are higher than for any other phase of flight.
9. Now most weather stations are almost completely automated.
10. Automatic weather system shows wind speed and direction, air temperature, dew point, visibility range on the runway, cloud height.
11. Weather forecast received from satellites makes it more accurate.
12. The use of satellites and computers improves the accuracy of weather forecasts.

AIRPORT
There are airports in every country.
In theory, an aircraft can fly an infinite number of paths through the air from any surface point to any other. In practice, paths of flight lead from airport to airport. Aircraft not only need proper landing and take off facilities. Moreover, those who use aircraft need services and accommodations which the airport must provide.
In the early days of aviation when airplanes were small a cow pasture could be used as a "flying field". But with the continuous increase of air traffic and the introduction of high-capacity aircraft it became necessary to expand airport facilities, to build new terminal buildings and to construct new airports.
In the interest of aviation safety and air traffic assistance and control air traffic rules were established. The rules relate chiefly to weather minima, flight altitudes and traffic patterns which are to be used under different circumstances. Much can be learned about the nature of a specific airport from aeronautical charts which pilots use. For example, the chart reveals the type and size of an airport, the radio facilities it uses and its altitude and location.
The modern airport is a complex structure, a center of most diversified services. Millions of passengers and thousands of tons of airfreight are handled by modern airports. Thousands of people are working at airports.
In practical any airport can be divided into two main parts: the landing area (runways and taxiways) and the terminal area (aprons, buildings, car parking areas, hangars, etc.). There is also a third part - terminal air traffic control. The landing area includes runways and taxiways. The number of runways, their length and location depend on the volume and character of traffic, the prevailing wind direction and other factors.

Aprons are required for aircraft to make final checks prior to departure.
The main function of the terminal buildings is to handle the departing and arriving passengers and their baggage.
Among the airport services are: flight assistance service, air traffic control services - airport traffic control, approach control, air route traffic control, radio communications and weather observation and forecasting service.
At every airport there is a number of supplementary services such as rescue and security services, an airport clinic, a fire brigade, special vehicles and equipment units (water trucks, tow tractors, etc.).

The facilities include runways, air navigational aids, passenger and cargo terminals. The airport has a hotel, a post office, bank offices, restaurants, car rental firms, etc. In the terminal there is everything for quick passenger handling: check-in desks, electronic flight information board of departure and arrival times, the baggage claim carousel and many others.
Nowadays there exists one more pressing problem - that of air piracy. The number of acts of unlawful interference resulted in deaths and injures of some hundreds of persons. So the ICAO Council has adopted Amendment 8 to Annex 17 (Security). The Amendment covers security screening and inspecting passengers, checked baggage, security control over cargo, courier and express parcels and mail. Every airport has new specific detection systems capable of screen airline passengers and their baggage within less than 8 seconds.

I. Answer the questions:
1. Why was it necessary to build new terminal buildings and construct new airports?
2. Why were air traffic rules established?
3. What do these rules relate to?
4. What does the aeronautical chart reveal?
5. What are the main two parts of the airport?
6. What is the third part of the airport?
7. What factors influence the number of runways, their length and location?
8. What does the aircraft crew do on the apron?
9. What is the main function of the terminal building?
10. What airport services do you know?
11. What supplementary services are there at the airport?
12. What does the electronic information board indicate?
13. What equipment is used at the airport for preventing piracy?
14. How many airports are there in Petersburg?
15. What is the distance between the center of the city and Pulkovo-1?
16. How can you get to the airport?
17. Is there an airport in your native city?
18. Is it an international or domestic?

II. Translate the words paying attention to the word-forming elements:

continue-continuation-continuous-continuous

necessary - necessity - necessitate
divide – division – divider
depend - dependent - dependence
prevent-prevention-preventive
detect - detection - detective - detector
depart - departure
arrive -arrival

III. Find in the text the equivalent of the following phrases:

landing and takeoff aids, air traffic control regulations, traffic pattern, radio facilities, landing area, prevailing wind direction, airport services, approach control, weather observation, search and rescue service, passenger service, cargo terminal.

IV. Translate into English:

1. Almost every city has an airport, large or small.
2. The size of the airport depends on the volume of passengers and cargo carried.
3. Modern airports serve millions of passengers and carry a huge amount of cargo.
4. With the increase in air transport and with the introduction of new modern aircraft, old airports are being expanded and reconstructed.
5. To ensure flight safety, there are air traffic rules.
6. Arriving and departing passengers are served in the terminal building.
7. The number of runways depends on traffic volume.
8. The location of the runway depends on the prevailing wind directions.
9. The pilot uses aeronautical charts.
10. These charts indicate the type and size of the airport, its radio facilities, the length and location of the runway, and so on.

During those years which have passed since the first airplane was built, aviation has enjoyed phenomenal progress. At present aviation influences many aspects of social life.
In the dynamic world of today, aviation provides a rapid transportation link between different population centres. In many places the airplane is the only known vehicle for the large-scale movement of passengers and freight over large distances. The airplane has made it possible to patrol the forests, to fight their fires, to assess their timber resources and to plan their harvesting. It has made an enormous contribution to the photographing and mapping of the vast territories, to exploring and prospecting for mineral wealth and to studying and assessing the water resources.
As for the helicopter, besides its use for passenger transportation, this type of aircraft has proven its value in special applications where vertical take off-landing are required. Helicopters are widely used in search and rescue operations in emergency situations or when some accident occurs.
The main components of airplanes are as follows:
1. The fuselage is the main body of the airplane and contains the pilot's compartment (cockpit) and passenger and baggage compartments. The cockpit contains the flight controls and instruments.
2. The wings are the main lifting surfaces which support the aircraft in flight. Aircraft may be divided into monoplanes and biplanes.
3. The tail unit or empennage consists of a vertical stabilizer and rudder and the horizontal stabilizer and elevators to provide the necessary stability in flight.
4. The three basic flight control surfaces are the ailerons, the elevators and the rudder.
5. The power plant is the heart of the airplane. There are many types of engines: turboprop, turbojet, turbofan, rocket engines, etc.
6. The landing gear or undercarriage is used during manoeuvering of the aircraft on the ground while taxying, taking off and landing. In flight the retractable landing gear is retracted into the wing or the fuselage structure.
AIRCRAFT INSTRUMENTS
Aircraft instruments are basically devices for obtaining information about the aircraft and its environment and for presenting that information to the pilot. Their purpose is to detect, measure, record, process and analyze the variables encountered in flying an aircraft. They are mainly electrical, electronic or gyroscopic. Modern aircraft have a computer on board. They are concerned with the behavior of the engines, the speed, height and attitude of the aircraft and its whereabouts. Instruments concerned with the whereabouts of an aircraft are navigation instruments.
An aircraft usually takes the name of the designer or manufacturer. Here are some of the Russian designers: Tupolev, Ilyushin, Antonov, Yakovlev. Manufacturer "s names are represented by Boeing, Douglas, Lockheed and others. The name of the designer or manufacturer is followed by a type code, known in some airlines as a class. For example: Ilyushin-96 (designer" s name and type code), Boeing-747 (manufacturer's name and type code).
EXERCISES

I. Answer the questions:
1. What does aviation provide?
2. Where are helicopters used?
3. What types of aircraft do you know?
4. Name the main parts of the aircraft.
5. What does the fuselage contain?
6. What are the wings required?
7. What are the components of the wing?
8. What does the tail unit provide?
9. What is the power plant?
10. What types of engines do you know?
11. When are the landing gears used?
12. What is the purpose of aircraft instruments?
13. What do you know about Russian and foreign designers?
14. What name does the aircraft take?

II. Translate the words paying attention to the word-forming elements:
transport - transportation
move-movement-movable
possible - possibility - impossible
apply - application
power - powerful
retract - retraction - retractable - unretractable
require - requirement
provide-provision
measure-measurement
contribute - contribution

III. Find in the text the equivalent of the following phrases:

population center, mineral and water resources, aviation applications, passenger transportation, passenger and cargo compartments, aircraft instruments, navigation instruments, aircraft control rudders, pilot's cabin, fuselage structure, emergency, search and rescue operations.

IV. Translate into English:
1. Enormous progress has been made in aviation over the past decade.
2. Aviation is used in many aspects of public life.
3. Aviation provides fast transportation of passengers and cargo from one point to another.
4. In some places, aviation is the only means of transportation.
5. Helicopter is a convenient means of transportation due to vertical takeoff and landing.
6. The fuselage is the main part of the aircraft.
7. The bearing surfaces of the aircraft are the wings.
8. The wings and tail are made up of moving parts such as elevator, rudder, rudder, stabilizer, aileron.
9. Landing gear is used when taxiing on the ground and retracts into the wing after takeoff.
10. There are many instruments in the cockpit that show the speed and altitude of the flight, engine operation and other information.
11. Modern aircraft have a computer on board.

Safety is the most important issue in aviation. The prevention of collisions between aircraft in the air and on the ground is the main task of aviation specialists.
The achievement of aviation safety is the result of progress in many sciences and disciplines including engineering, aerodynamics, meteorology, psychology, medicine and economics.
Safety is ensured by thousands of ICAO and governmental regulations, by high standards in the design and manufacture of an aircraft and by rigid (strict) procedures of airline safety practices.
The aviation industry is constantly taking steps to prevent accidents but the crashes do occur time after time. They result from different causes: failure in the aircraft structure, human errors, navigational failures, malfunctioning of airborne and ground aids, hazardous weather conditions and so on.

Poor knowledge of English can also contribute to or result in an accident or incident. Therefore, ICAO revised the provisions related to the use of the language for radiotelephony communications and demands good discipline to follow more closely to standard phraseology in all air-ground exchanges.
Experience has shown that phraseology alone is not sufficient to cover all of the potential situations, particularly in critical or emergency situations. That's why proficiency in common or plain language is also of great importance.
One of ICAO's chief activities is standardization in all spheres of aviation operations. The main ICAO document is SARPs (International Standards and Recommended Practices). Its main task is to provide the necessary level of standardization for safe and regular air operations.

I. Answer the questions:

1. What is the most important problem in aviation?
2. What is the main task of aviation specialists?
3. By what means is safety ensured?
4. What factors may cause accidents?
5. What can you say about the role of language in the problem of safety?
6. Can radiotelephony alone cover all of the potential situations?
7. What is the main document of ICAO?
8. What is the main task of SARPs?

II. Translate the words paying attention to the word-forming elements:

terror - terrible - terribly - terrific
danger - dangerous - dangerously
care - careful - careless - carelessness
safe - safety - unsafe
prevent - preventive - prevention
collide-collision
special - special - specialist - specialty - specialize - specialization
achieve-achievement
ensure - insurance
govern - governor - government - governmental
regular - regularly - regulation - regularity - irregular
differ - different - differently - difference
fail - failure
navigate - navigator - navigation - navigational
hazard - hazardous
know - knowledge - unknown
provide-provision-provider
relate - relation - relative - relatively - relativity
communicate - communication - communicative - community
sufficient - sufficient - sufficiency - insufficient
proficient - proficiently - proficiency
necessary - necessarily - necessity - unnecessary
critical - critically - criticize - criticism - uncritical
close - closely

III. Translate into English:

1. The most important issue in aviation is safety.
2. To ensure flight safety, ICAO has established special rules and procedures.
3. All ICAO Member States must strictly comply with all rules and procedures adopted by ICAO.
4. One of the most important tasks of aviation specialists is to prevent collisions between aircraft in the air and on the ground.
5. Advances in engineering, aerodynamics and other sciences improve aviation safety.
6. Another condition that ensures aviation security is standardization in all aviation operations.
7. It is very important for all aviation specialists to know English.
8. Good knowledge of English is essential for flight safety.
9. The cause of the disaster is human error.
10. The plane was unable to take off due to dangerous weather conditions.
11. Engine failure led to disaster.
12. There is an emergency in the airport area.
13. One of the main tasks of ICAO is to provide the necessary level of security.

AIR TRAFFIC CONTROL

The ATC's first concern is safety, that is the prevention of collision between aircraft in the air and orderly flow of traffic.
To perform their exacting duties air traffic controllers need adequate facilities. The introduction of radars greatly assists in expediting the flow of traffic reducing the separation minima. Computers are also a powerful tool. They give assistance by taking over routine tasks but they must not dominate the system. The human controller is much more efficient than any current system because it is he who takes responsibility for controlling aircraft and it is he who takes final decisions in all situations including conflicting and emergency.
During periods of heavy traffic controllers work under high stress. They may control several aircraft simultaneously, their number sometimes exceeding 15 and even more. Controllers’ slightest error may cause loss of human lives and property.
Top physical and mental condition is a vital requirement for ATC controllers. Therefore they undergo strict medical examination which are repeated at periodic intervals.
The problem of the selection and training of ATC personnel is extremely important. The controllers should possess a number of qualities which are absolutely necessary for them: a high degree of morality, a very good nervous and emotional balance, a sound critical judgment, a readiness for decisions and an instinct for team work. To become a highly professional controller one must be proficient not only in specialized aviation English but also in plain language because aviation safety depends on accurate pilot – controller communications.
The training of ATC personnel is carried out by different methods using various teaching aids, systems and simulators. Modern simulators can reproduce the whole ATC task from take-off to landing including all manoeuvers even the dangerous ones.

I. Answer the questions:
1. What is the main task of ATC activity?
2. How can controllers expedite the flow of traffic?
3. What aids and systems do controller use to control air traffic?
4. Can any aids or systems substitute a human controller? If not, then why?
5. What are the working conditions of controllers?
6. How many aircraft may controllers control at peak traffic periods?
7. What is one of the vital requirements for ATC controllers?
8. How often do they undergo medical examinations?
9. What qualities should a person possess to become a controller?
10. What can you say about the role of the English language in controller’s work?
11. How are controllers trained?
12. Can modern simulators reproduce conflicting and emergency situations?

II. Translate the words paying attention to word-formation elements:
prevent-prevention-preventive
provide-provision-provider-provisional
order - orderly
perform – performance
exact - exactly - exactness
introduce-introduction-introductory
reduce-reduction
power - powerful - powerless
efficient - efficient - efficiency
responsible-responsibility-response-response
decide - decision - decision
strict - strictly - strictness
necessary - unnecessary - necessity
depend - dependent - dependence - independent
train-trainer-trainee-training
carry-carrier-carriage
differ - different - indifferent - differently
simulate-simulator-simulation

III. Translate into English:
1. There are many technical tools that help controllers in their work.
2. The main element in the ATC system is the controller, because he makes the final decision in any situation.
3. Since the work of the controller is very responsible, strict selection and training of ATC personnel is necessary.
4. The dispatcher must have a good physical health ability to make decisions and work in a team.
5. Various training aids, systems and special simulators are used to train ATC personnel.
6. Modern simulators make it possible to simulate all stages of flight, including emergencies.
7. 15 or more aircraft are under controller control during a busy period.
8. Electronic means cannot replace the dispatcher. They can only help him.
9. The dispatcher must not make mistakes, as this can lead to the loss of human lives.
10. Separation minima will be reduced in the near future.
11. Which European center trains dispatchers?
12. This simulator cannot reproduce emergency situations.

HUMAN FACTORS IN AVIATION

Human factors is a critical aspect of aviation safety, one that ICAO began to address more than a decade ago.
ICAO convened the first in a series of global symposia on flight safety and human factors in 1990. From the beginning, when the first event was held in a city known then as Leningrad, there was a conviction that international aviation could make enormous progress in improving safety through the application of human factors knowledge.
The first symposium was a turning point and the stage for following meetings in the United States in 1993, in New Zealand in 1996 and, finally in Chile in 1999. There have been encouraging developments since 1990, but we still have challenges to pursue: after the Leningrad symposium, human error remains a significant safety concern.
The purpose of the worldwide symposia and 10 regional seminars which were held in the past decade was to increase the awareness of States, industry and organizations in all ICAO regions about the importance of human factors. The ongoing implementation of the ICAO communication, navigation, surveillance and air traffic management (CNS/ATM) systems concept has introduced new challenges, and also new possibilities for human factors. The reason the community must respond to is, of course, to ensure that civil aviation continues to achieve its ultimate goal: the safe and efficient transportation of passengers and goods.
The ICAO flight safety and human factors program is safety–oriented and operationally relevant. Moreover, it is practical since it must deal with real problems in a real world. Through the programme, ICAO has provided the aviation community with the means and tools to anticipate human error and contain its negative consequences in the operational environment. Furthermore, ICAO’s efforts are aimed at the system – not the individual.
The global aviation safety plan (GASP) was developed by the ICAO Air Navigation Commission in 1997 and subsequently approved by the ICAO Council and endorsed by the ICAO Assembly. GASP was designed to coordinate and provide a common direction to the efforts of the States and the aviation industry to the extent possible in safety matters. It is a tool that allows ICAO to focus resources and set priorities giving emphasis to those activities that will contribute the most to enhancing safety. Therefore, the flight safety and human factors program is among the six major activities that comprise the plan.

I. Answer the questions:

1. When did ICAO begin to address the aspect of human factors?
2. When and where was the first symposium on flight safety held?
3. What can improve aviation safety?
4. How many symposia on flight safety were held by ICAO?
5. What was the purpose of the symposia and seminars?
6. Where can the knowledge of human factors be applied?
7. What is the ultimate goal of civil aviation?
8. What is the ICAO flight safety and human factors programme?
9. What was the global aviation safety plan developed for?
10. Why is the flight safety and human factors program so important?

II. Translate the words paying attention to the word-forming elements:
safe - safety - safely - unsafe
navigate-navigation-navigator-navigable-navigability
operate - operation - operative - operator - operational - operationally
industry - industrial - industrious - industrialist - industrialization
communicate - communication - communicative - communicable - communicator
progress – progressive – progression – progressionist
improve - improvement - improvable - improver
organize - organization - organizer - disorganization
efficient - efficiency - inefficient - efficiently - inefficiency

III. Find in the text the equivalent of the following phrases:

knowledge of the human factor; an important matter for safety; the idea of ​​communication systems, navigation, surveillance and control of airspace and air traffic; the ICAO Safety and Human Factors Programme; global aviation security plan; ICAO Air Navigation Commission; security questions.

IV. Translate into English:

1. The human factor is one of the most important aspects of aviation security.
2. During the last decade, ICAO has hosted several symposiums and seminars related to human factors in aviation.
3. Knowledge of the human factor can significantly improve flight safety.
4. To improve safety, new communication, navigation and surveillance systems are constantly being widely introduced.
5. The improvement of air traffic control will continue.
6. The Flight Safety and Human Factors Program is a tool to prevent human error in flight operations.
7. Aviation safety issues and the human factor are the most important in terms of aviation security on a global scale.

PART II

LANGUAGE PROBLEMS IN AVIATION

Nowadays many people of different tongues are using airplanes everywhere. And this is the language problem for an airport, airspace user and navigation personnel.
It is known that the working languages ​​of ICAO are those of English, French, Spanish and Russian. But it is known as well that many aviation specialists in the world are very limited in the knowledge of one of these languages ​​or even do not undergo sufficient training in English to master radio communication. These results in some problems facing both pilots and controllers, namely: accent, mispronunciation, inaccurate grammar, speed of delivery, the persistent use of non-standard radio-telephony (RT) phraseology and some others.
A prerequisite to becoming a controller or a pilot should be a high standard of spoken English. A non-native speaker monitoring another speaking English over the RT may be confused by inaccurate grammar or pronunciation.
Speed ​​of delivery is another frequently head complaint, especially about aerodrome terminal information services (ATIS) and meteorological broadcasts to aircraft in flight (VOLMET).
It is not less important to speak without pauses and stumbles over words. The best recommendation is the rate of 100-120 words per minute.
Another difficulty is that of accent which is not easily rectified. This problem is connected with the peculiarities of pronunciation. For example, there exist peculiarities in pronunciation inherent in certain geographical regions in the South Pacific.
The ICAO RT phraseology has been designed to limit each instruction to the minimum number of words. It is for this reason that a controller does not want to waste time listening to extraneous language, particularly at busy times when the traffic flow is heavy.
It sometimes happens that the user may be able to speak the limited number of phrases quite well and may react to them correctly. But it does not mean that he is really speaking the language. He is treating it as a code without being aware of adequate meaning of the words spoken. This will do in a standard situation, but in an emergency communication is absolutely impossible. It follows that any course of teaching RT phraseology by rote without language teaching is dangerous as the student is unable to cope with emergencies.
These are several recommendations to improve the situation:
1. A high standard of English is essential as a precondition for qualification either a controller or a pilot. Proficiency is required both in speaking and comprehension.
2. In service tuition in English should be mandatory for both controllers and pilots with stress on pronunciation.
3. Radio traffic should be monitored, either regularly or from time to time by a qualified assessor.
4. English speakers should abstain non-standardized chat and especially from developing regional jargon.
5. Language training should take place in the area in which the trainee will be operating, i.e. teachers should go where the trainees will work.
6. ATISs and VOLMETs should be subject to specified word flow rates.
7. On purely logic grounds and without any nationalistic bias English should be made the primary official language for all RT communications relating to air traffic control. This would greatly enhance flight safety.

SOME WORDS ABOUT EARLY FLYING
It is known that the desire to fly is as old as humanity. Observations for flying birds gave man the idea of ​​human flight. Every nation has many legends and tales about birdmen and magic carpets. The earliest of these legends comes from China.
One of the most famous Greek legends is the legend of Daedalus and Icarus who made wings and fastened them on with wax. Daedalus landed in safety. Icarus was not so careful as his father and he flew closer and closer to the sun. The closer he was the hotter it became. The wax melted, his wings came off and he fell into the sea.
It is clear that in those old days people knew little about nature. They could not understand much about the air and its nature and were unable to explain most of the phenomena of nature.
As time went on there came a stage when people no longer regarded flight as a supernatural phenomenon. The desire to fly was the desire to control nature. People imitated birds when they used wings. They had to fight against many prejudices because there was a common belief that man could not fly.
The first scientific principles of human flight appeared in the 14th century. The great scientist Leonardo de Vinci recorded a few of them. He found that a knowledge of the air and its currents helped to understand the phenomenon of flight.
Daedalaus was a Greek; Garuda was Indian; Leonardo de Vinci Italian; Lilienthal was German; Montgolfier and Bleriot were French; Hargrake was Australian; Captain Mozhaiski was a Russian; the Wright brothers were American. They were the pioneers. Nor is this the end of this truly international story. The air captured the imagination of all. It was the efforts of men of many countries who pioneered civil aviation, who brought it to the art that we know today, and who now help its rapidly developing growth. The airplane is a creature of no one country's knowledge and effort. So it became clear from the very start that without international agreement the development of aviation would be greatly limited. The most successful attempt came in 1944 at a Conference of 52 nations held in Chicago, at the invitation of the United States.

ICAO
In November 1944 in Chicago 52 nations signed the Convention on International Civil Aviation. The 96 Articles of the Convention provide for the adoption of international standards and recommended practices. It was decided that ICAO would come into being (start working) after the Convention was ratified by 26 states. It happened on the 4th of April in 1947. Montreal was chosen as the headquarters of the Organization.
The ICAO activities are numerous. The main task is to provide the necessary level of standardization for the safe and regular air operations. SAHRS (International Standard and Recommended practices) regulate air navigation, recommend installation of navigation facilities and suggest the reduction of customs formalities. International standards must be strictly observed by all member States. Recommended practices are desirable but not essential.
ICAO has a Sovereign body, the Assembly, and a governing body, the Council. The Assembly meets once in 3 years and reviews the work in the technical, economic and legal fields in detail.
The Council is a permanent body composed of representatives of the Contracting states. Its first President was Edward Warner.
The Council is assisted by the Air Navigation Committee, the Legal Committee, the Committee on Unlawful Interference and some others. One of the major Council duties is to adopt International Standards and Recommended Practices. It may act as an arbiter between Member States. And, in general, it may take any steps necessary to maintain the safety and regularity of air operations.
There are 18 Annexes to the Convention, they cover all aviation problems.
The Secretariat staff, headed by the Secretary General, provides the permanent organizational work. ICAO has 6 regional offices. The working languages ​​of ICAO are English, French, Spanish and Russian.
In 1958 the Warner Awards were established by ICAO for outstanding contributions to international civil aviation.
SOME CIVIL AVIATION ORGANIZATIONS
1. IATA - International Air Transport Association is the second in its importance organization after ICAO for international civil aviation. It was founded in 1945 and is uniting world airlines. The main objective of this organization is to provide safe and regular development of civil aviation and cooperation of world airlines. The IATA Technical Committee deals with the problem of safety, standardization of aviation equipment, training of flying personnel, communications, meteorology, aerodromes, navigational aids, etc.
2. International Civil Airports Association (ICAA) is the major international airports association. It is an organization permitting a constant exchange of experience, information and documentation among airports as well as contacts between airport managements. Founded in 1962 ICAA is doing much to help countries in developing both domestic and international airports providing specialists and equipment.
3. International Federation of Air Traffic Controllers" Associations (IFATCA) was founded in 1963 with the purpose to enable the national associations to study and solve the problems for the development of air traffic control art and to create a better understanding among the controllers serving the international aviation.
4. Eurocontrol is the European organization working for air navigation safety. It was created in 1963 for better service of European airspace. The increase of fast flying civil transport aircraft brought a number of difficulties and resulted in the necessity of new operating methods and use of advanced technology. Some European countries signed an agreement to organize common air traffic control in the upper airspace.

WEATHER FORECASTING
There are very many met. stations all over the country. They are of great help for aviation. There is a met. ground at every airport too, which is equipped with special instruments. These grounds have to be located not far from the landing and take off areas at a distance of about 300 m. from the end of the runway. At the airports which have no landing systems these met. stations are located not far from the dispatch office. But if it is difficult to watch the horizontal visibility from this point, then the observations must be made from another place which is the most suitable one for observations. These met. observations are made every 30 minutes at the airports; but sometimes when the weather is dangerous for safe flights the observers give met. information every 15 minutes. All flights must be provided with met. information about the actual weather and weather forecast.
The chief pilot studies the data obtained during preflight preparation. Besides, the pilot receives met. report while in flight. 20-30 minutes before entering the aerodrome area the controller gives full information about the weather for the aerodrome to the plane. For the planes approaching for landing met. report is constantly given with the help of a tape-recorder or by a controller.
Short-flight forecasts are provided by continuous Transcribed Weather Broadcasts and the Pilot's Automatic Telephone Weather Answering Service.
For longer flights a telephone call or visit to the nearest Flight Service Station or Weather Bureau Airport is necessary.
After receiving weather information either for short or long-range flights, the pilot considers carefully if weather conditions are suitable for his flight. If not, it is better to delay the flight.
At many terminals information helpful to landing and take off is continuously broadcast on a navigational aid frequency. Prior to descent the pilot requests current weather for terminal area as well as field conditions at destination.

THE EFFECTS OF THE WEATHER ON AVIATION
Except perhaps for local or very short flights, a pilot, before taking off, obtains a weather forecast giving him the weather conditions which are expected along the route of his flight and at his destination. Because weather conditions affect aircraft in flight, to a considerable extent, special aviation forecasts are provided by meteorologists at weather offices all over the world.
The meteorologist, or forecaster, prepares a weather chart which shows the current weather conditions over the whole country. The current weather chart is called a synoptic chart. This synoptic chart shows the areas of low pressure, the areas of high pressure, where precipitation is falling, and all other weather conditions across the country.
From this weather map, the forecaster can inform pilots of the weather conditions they can expect to encounter during their flights. A high pressure area, for instance, usually means good weather while a low pressure area usually involves one or more fronts producing clouds and precipitation over many hundreds of miles.
A pilot needs to know the wind direction and speed. A headwind will obviously delay the arrival of flights and is to be avoided if at all possible. A tailwind on the other hand, can be of great advantage as it increases the ground speed and results in a reduction in fuel consumption. Winds vary with altitude, and also from one place to another, so information on winds is very important.
Pilots will pay particular attention to a low pressure which lies en route, and the weather conditions associated with that low pressure area. The associated cold or warm fronts could involve clouds, thunderstorm, snow, rain, and turbulence. From his charts, the meteorologist can forecast where this weather will be at a certain time in the future, and with the help of these predictions, the pilot will decide which route to fly and when and he will know what weather conditions to expect. Should the forecast be very bad, for example, dense fog or poor visibility due to snow, the pilot may decide to postpone his flight. A pilot flying VFR would also cancel his flight because of low ceiling or low overcast conditions on route.

AIR NAVIGATION
Air navigation came into existence alongside air traffic. It had a humble beginning, but in a little more than 50 years has come today's extensive aircraft industry, a vast network of global airlines.
In the early days of flying, serious accidents often occurred because men were not thoroughly familiar with the new medium of transportation.
Today pilots are familiar with the construction of the aircraft, its controls, and its limitations. Competent instructors are available to give this information as well as to give actual flight instructions. The manuals are based not only on sound theory but also on long experience. They should be obtained and carefully studied.
The directing of aircraft from one place to another is the science of air navigation.
In fair weather and during daylight, it is usually not difficult to fly from one place to another by visual reference to landmarks noted in the charts. In bad weather and in the hours of darkness, the usual landmarks are often lost to view. Even the airport of the destination may be closed.
If air transportation is to function safely and with any degree of regularity, some aids to navigation, including instrument landing facilities, must be made available.
With the installation of instrument landing systems at principle terminals, and with other equipment such as radar and radar beacons, we may confidently expect that air transportation soon will become independent of all but the most severe weather conditions.

METHODS OF NAVIGATION
Learning to fly occupied the minds of men almost from the beginning of recorded history. Legend tells of magic carpets and winged sandals. History brings us stories of flying machines, but man's first powered flight in a heavy-than-air machine was made in 1903.
This flight lasted for 12 seconds and covered a distance over the ground of only 120 feet. This flight was made against wind of 24 mph and was equal to a flight of 540 feet in still air. The maximum altitude attained was 12 feet above the ground.
In the old days pilots listened to the winds in the wires and were happy to fly at any speed. But now a fast flying aircraft pushes through the atmosphere so rapidly that the air can't get out fast enough, because the air is compressed and heated by the compression. At such great speeds it's not so easy as before to pilot the plane , to determine the geographical position and to maintain the desired directions to navigate.
Through the centuries 4 principal methods of navigation have been developed. They may be briefly described as follows:
1. Pilotage, by which the pilot is directing the aircraft with the reference to visible landmarks.
2. Dead reckoning, by which the distance and direction are determined between two known positions, or in which position is determined from the distance and direction from a known position.
3. Radio navigation , or the determination of position by means of radio bearings, distances or time intervals.
4. Celestial navigation, in which position is determined by means of sextant observations of the sun, moon, planets, or stars, with exact time of the observations.
NAVIGATOR'S ROLE
Ever since the time when people found their way by using a column of smoke by day and fire by night, navigation, navigational techniques, and navigational aids have been the subject of discussion.
What is navigation? - Navigation is the art of determining the geographical position and maintaining the desired direction of an aircraft relative to the earth's surface.
A navigator belongs to the flying staff of the crew. He performs his duties by means of navigational aids and different instruments installed along the airways as well as in a plane and by making numerous calculations. That's why a navigator must know technical aids of air navigation and methods of their application during flight perfectly well. He should make navigational preparations for flight in good time. The navigator's duties performed by him during flight, are rather numerous: he must navigate the plane according to the flight plan from take off to touch down; control the progress of the aircraft by means of all established navigational methods and technical aids. He must know and observe the rules of radio communication and keep watch on airborne aids. The navigator has to get flight charts prepared personally and in advance. In addition to all mentioned duties above, he must make a correct estimate of the meteorological situation.
In the course of preliminary preparation of the crew for flight the navigator together with other members of the flying staff studies the order of conducting flight on a given airway and radio aids available. Navigator's task is to determine aircraft's position, direction and speed of flight.
Usually navigators fly on heavy planes. As aircraft become larger and faster, requirements to navigator's work increase. Longer flights sends out radio waves and then measures the amount of time that it takes for the waves to return.
A radar set includes a transmitter and a receiver. The transmitter sends out at regular intervals short pulses of high-frequency waves. These can penetrate clouds and darkness. They move out in a straight line. Having met some object they are reflected back to the radar set and are translated into a spot of light on the screen.
Ground radar is used to guide planes to a landing in bad weather.

CO-PILOT'S DUTIES
Co-pilot should:
1. Master piloting technique and aeronavigation to ensure safe flying.
2. Observe pre-flight rest.
3. Be able to analyze and correctly assess the meteorological and aeronautical environment situation.
4. Get ready for the flight to the full extent.
5. Control the condition and readiness of the aircraft and its proper loading.
6. Know radiotelephone phraseology and the rules of communication.
7. Inform the captain about all malfunctions of aircraft systems and instruments and make suggestions of their removal.
8. Make decisions and act according to the situation if the captain cannot perform his duties due to various reasons.
9. Inspect the aircraft after landing and taxying to the stand.
Co-pilot has the right:
1. To pilot the aircraft at all stages of the flight with the captain's permission.
2. To fulfil the captain's instructions when the captain cannot perform his duties.
Co-pilot is responsible for:
1. Meeting the requirements of all regulation documents of Civil Aviation.
2. Discretion while taxing and in flight.
3. Timely and correct actions at the decision height together with the captain.
4. Maintaining flight parameters given by the captain.
5. Safe completion of the flight while piloting when the captain cannot fulfill his duties.
CONTROLLER'S ROLE
To talk about the air traffic controller's role is, of course, important. Controller's functions are very numerous and rather difficult. It is known that great technological achievements have been reached. But speaking about full automation in the field of aircraft operations and air traffic control one must remember that electronic devices cannot replace man. They can only be an auxiliary to the human operator. Increasing air safety is the main task of controllers. Some people see the answer to ATC problems in large radars with enormous coverage (range). This will require navigation system with air-ground data links so that position information is the same in the air and on the ground. The task of the controller will then be separating aircraft from each other and maintaining a safe and orderly flow of traffic. The role of the controller in the future is that becoming of a monitor, he will interfere only when needed. So he will be a necessary element in the air traffic control process.
RADIO NAVIGATION AIDS – VOR/DME
Navigation is the directing of aircraft from one place to another along a particular line of travel. To navigate a pilot uses radio navigation aids. There are a variety of different types of radio navigation aids. Here are some of them.
VOR (omnidirectional radio range) and DME (distance measuring equipment) are often located at the same site. They operate on VHF (very high frequency) and UHF (ultra high frequency) respectively and are not affected by static or other interferences. The maximum range of VOR is about 200 nautical miles. By flying VOR the pilot ensures he is flying directly to the station. Also by measuring radials from more than one VOR station, a pilot can check his position.
The function of DME is to measure distance. The DME measures, electronically, the time it takes for a signal, transmitted from an aircraft interrogator, to reach the ground base station transponder, and return. This elapsed time is converted to miles and appears on a digital indicator on the flight deck. The indicator actually seems to rapidly count the number of miles between the aircraft and the station giving the pilot a continuous digital reading of how far he is from or to a station.
With the many VOR/DME stations along the route, a pilot can make good his desired track; is constantly aware of his distance to or from a DME station; or, by using two VOR radials, establish his exact position.

ILS (INSTRUMENT LANDING SYSTEM)

The ILS is designed to provide an approach path for exact alignment and descent of an aircraft on final approach to a runway.
The ground equipment consists of two highly directional transmitting systems along with three (or fewer) marker beacons. The directional transmitters are known as the localizer and glide path transmitters.
The system may be divided functionally into three parts: guidance information - localizer, glidepath Range information - marker beacons, Visual information - approach lights, touchdown and centerline lights, runway lights.
1. The localizer transmitter, operating on one of the twenty ILS channels emits signals which provide the pilot with course guidance to the runway centerline.
2. The UHF (ultra high frequency) glidepath transmitter, operating on one of the twenty ILS channels radiates the signals principally in the direction of the final approach.
3. Ordinarily, there are two marker beacons associated with an ILS; the outer marker and middle marker. However, some locations may employ a third beacon – the inner marker.
The outer marker normally indicates a position at which an aircraft at the appropriate altitude on the localizer course will intercept the ILS glide path.
The middle marker indicates a position at which an aircraft is approximately 3500 feet from the landing threshold. This will also be the position at which an aircraft on the glidepath will be at an altitude of approximately 200 feet above the elevation of the touchdown zone.
The inner marker, where installed, will indicate a point at which an aircraft is at a designated decision height on the glidepath between the middle marker and landing threshold.

RADAR
The principles of radar are not new: in fact, some early experiments were made back in the 1880s. In 1904 a German engineer had invented, as he explained, a “radio-echo collision prevention device”
The word “radar” was originally derived from the descriptive phrase “Radio Detection and Ranging”.
The application of radar in the air traffic control system consists of two basic designs. The initial type of radar, called primary radar, began to be used for advanced air traffic control. When the word “radar” is used alone it usually includes both primary and secondary radar.
There are three additional forms associated with primary and secondary radar:
Radar Echo – the visual indication on display of a radar signal transmitted from an object.
Radar Response – the visual indication on display of a radar signal transmitted from an object in reply to an interrogation.
Radar Blip – the collective term meaning either echo or response.

PRIMARY RADAR
In primary radar a beam of individual pulses of energy is transmitted from the ground equipment. These pulses hit the aircraft from 16 to 34 times each scan. An aircraft in the path of this radar beam will reflect back some of the pulses which are picked up by a receiver. This reflected energy produces a bright “echo” or “target” on a cathode ray tube.

SECONDARY SURVEILLANCE RADAR (SSR)
The SSR system provides for six modes; only two modes are used in civil aviation:
Mode A for civil and military identification.
Mode C for automatic pressure altitude information.
The SSR is a valuable tool for automatically identifying aircraft. Identification is achieved by providing the controller with a specific radar beacon target identity of aircraft. A total of 4096 discrete reply codes are available for special position identification to be transmitted on request of a controller.
With SSR display, the controller sees aircraft returns on his PPI (plan position indicator) as two slashes, clearly distinguishing them from primary targets which are single blips.
In modern systems different synthetic symbols are used to indicate a lot of additional information.

VISUAL AIDS FOR NAVIGATION
Additional visual aids to navigation consist of markings on the aerodromes. These markings comprise single lines or rows of lines which, for the pilot, are very important for holding positions, runway thresholds, the runway center lines, the sides of the runways, etc.
However, at night or during poor visibility by day, lights are required. To be effective lights must be of adequate intensity. At certain aerodromes the controller can vary the intensity of some of the lights so that they can be reduced not to blind the pilot and strong enough so that he can see them in bad weather.
The first lights a pilot sees on approach is generally the aerodrome beacon. It may rotate and can be seen at a great distance. There might be an identification beacon which shows green flashes of light. Red lights, the usual danger signal, warn pilots of the obstacles such as hangars and other high buildings, telephone poles, etc. Runway edge lights identify the runway and approach lights assist the pilot to align himself with the runway.
Lights may also be used to provide a glidepath similar to what an ILS provide electronically. The Visual Approach Slope Indicator System (VASIS) is a beam of light having a white color in its upper part and a red color in its lower part. A pilot of an airplane during an approach will:
a) when above the approach slope, see the lights to be white in colour;
b) when on the approach slope, see the lights to be pink in colour; and
c) when below the approach slope, see the lights to be red in colour.
By reference to VASIS, combined with ILS, the pilot can bring an aircraft down safely almost to touchdown by day or night.
After landing, he follows the blue taxi lights along the taxiway to the apron and the service areas.
At the service area a marshaller, with illuminated wands, directs the aircraft with signals to its proper position for unloading and, finally, signals pilot to cut the engines.

AIRPORT
There are airports in every country. In theory, an aircraft can fly an infinite number of paths through the air from any surface point to any other. In practice, paths of flights lead from airport to airport. As a rule the airport is to be situated not far from the city. If it is a long way to the airport there is a special bus service to take passengers from the city Agency to the airport.
Aircraft not only need proper landing and take off facilities. Moreover, those who use aircraft need services and accommodations which the airport must provide. The modern airport is a complex structure, a center of most diversified services. Millions of passengers and thousands of tons of air freight are handled by modern airports. Thousands of people are working at airports.
Any airport can be divided into main parts: the landing area (runways and taxiways) and the terminal area (aprons, buildings, car parking areas, hangars etc.). The number of runways, their length and location depend on the volume and character of traffic, the prevailing wind directions and other factors.
The runways and taxiways should be arranged so that to prevent delays on landing, taxying and take off operations.
Aprons are required for aircraft to make final checks prior to departure. The main function of the terminal buildings is to handle departing and arriving passengers and their baggage. In the reception halls at the check-in desks passengers register their tickets, their suitcases are weighed and labeled here too. Baggage check-in facilities utilize conveyors to move baggage without delays.
In the terminal there is an electronic flight information board to list departure and arrival times. If any delay takes place such information is also indicated on the board.
The airport has to maintain a number of supplementary services. There must be an airport clinic, fire brigade, special vehicles and equipment units (water and catering trucks, tow tractors, refuellers, etc.).
Other services include maintenance, overhaul and repair of stationary and mobile equipment, the supply of electricity, water, heat and air conditioning.
Among the airport services are: flight assistance service, air traffic control, airport traffic control, approach control, air route traffic control; radio communications and weather service observation and forecasting.
Nowadays there exists one more pressing problem – that of air piracy. Now every airport has new specific detection systems capable of screen passengers and their baggage, cargo parcels and mail.

EMERGENCY
Emergency is a serious event that needs immediate action. The type of emergency that may occur is completely unpredictable. No official documents examine the classification of emergencies. Each of them is an event on its own. It may be similar to other emergencies, but it is rare to have two which are identical in every respect. The exception to this for working radar controllers is a mid-air explosion, and although the actual cause of the explosion might well differ, its effect on the controller will be the same.
It is impossible to define instructions for all cases and write such a document as phraseology for emergencies. Nevertheless there are some standard procedures which help to prevent chaos and make the controller’s work organized and regulated. Some types of emergencies have specific instructions as to the actions which the pilot and ATC controller must make.
An aircraft under emergency gets priority over other aircraft. There exist instructions concerning the use of special radiotelephony signals. Pilots must inform ATC by sending established signals (May Day, PAN, Securite) and the controller must impose silence.
There are certain actions which are common to a controller handling of all occurrences.
1. Don't keep it to yourself.
2. Get help. And get it early enough to be of practical value.
3. Inform your supervisor. In most cases he will be able to do most of the liaison which will be needed.
4. Don't forget your other traffic. It may become necessary to transfer all traffic except the emergency flight to another frequency. The whole of the air traffic team on duty will be very busy to provide the best possible service to the flight in the difficulty. Emergencies are where all of the controllers training and expertise are vital.
5. Keep calm. Never let your voice portray nervousness or unease.
Sometimes the controller does not fully understand what the precise problem is. That’s why a controller (as well as a pilot) must know not only radiotelephony phraseology but also possess knowledge of the general English. Reading aviation magazines and accident reports can greatly help to understand problems which may occur.

EMERGENCY DEFINITIONS
ICAO has some definitions concerning emergency procedures.
emergency phase. A generic term meaning, as the case may be, uncertainty phase, alert phase or distress phase.
Uncertainty phase. A situation under uncertainty exists as to the safety of an aircraft and its occupants.
alert phase. A situation where apprehension exists as to the safety of an aircraft or its occupants.
Distress phase. A situation where there is reasonable certainty that an aircraft and its occupants are threatened by grave and imminent danger or require immediate assistance.
emergency procedures.
Emergency is a serious event that needs immediate action.
Summarizing aeronautical experience a list of most common reasons for the crew to declare an emergency can be made: mid-air explosion, serious fire in the cabin or engine, oil or door warning lights, loss of an engine, bird strikes, illness on board . However, this list will never be comprehensive and complete. Thus, each emergency must be treated as an event of its own. It may be similar to other emergencies, but there could hardly be two identical in every respect. That is why it is totally impossible to define instructions for all cases and write such a document as phraseology for emergencies. Nevertheless, there are some standard procedures which help to prevent chaos and make controller's work organized and regulated.
An aircraft under emergency gets priority over other aircraft. An aircraft in distress informs ATC using radiotelephony signal MAYDAY, radiotelegraphy signal SOS. The aircraft in distress sets its transponder mode A code 7700.
An aircraft having some difficulties but which does not need immediate assistance can inform about it switching on and off its landing lights or flashing its navigation lights in a way different from the normal one.
An aircraft which has an urgent message concerning people safety, other aircraft or vehicle transmits radiotelegraphy signal XXX or radiotelephony signal PAN.
In some cases it can be difficult to determine into which of the categories a particular incident falls and in other cases it is quite clear. The English used in these events can be confusing and often does not give the information a controller needs to make a reasonable assessment of the situation. The pilot may not be proficient in the use of English outside the standard laid down phraseology. And there are no laid down phraseologies for emergencies. If in doubt as to the exact nature of the problem, then ask for clarification. Never forget that one unusual situation can lead to another, and they can overlap.
Inform your supervisor. He will be able to do most of the liaison which will be needed. Do not forget your other traffic. The necessity of transferring all the rest traffic to another frequency may arise. Radio silence may be imposed on all traffic except the flight in emergency.

SPECIFIC PROCEDURES FOR THE NORTH ATLANTIC AIRSPACE
If the pilot is unsure of the vertical or lateral position of the aircraft or the aircraft deviates from its assigned altitude or track without prior clearance, then the pilot must take action to minimize the potential for collision with aircraft on adjacent routes or flight levels.
In this situation the pilot must alert adjacent aircraft by making maximum use of aircraft lights and broadcasting position, flight level and intentions on 121.5 MHz (or 131.8 as a back up).
The pilot should advise ATC as soon as possible of a situation and if possible request an ATC clearance before deviating from assigned route of the flight or flight level.
If a revised ATC clearance cannot be obtained timely and action is required to avoid potential conflict with other aircraft, then the aircraft should fly at an altitude or on a track where other aircraft are least likely to be encountered.

ICAO'S GLOBAL AVIATION SECURITY STRATEGY
Since the events of 11 September 2001, the world aviation community has initiated a wide range of measures to increase security. New international security standards and a program of aviation security audits were adopted by all 188 Contracting States of ICAO.
ICAO Contracting States reinforced security measures and procedures, particularly at airports.
The 33rd Session of its Assembly, which was opened after the September 2001 terrorist attack, initiated immediate action aimed at preventing, combating and eradicating future acts of terror against civil aviation. Annex 17 to the Convention on civil aviation was strengthened and many new standards adopted. In November 2001, The Council convened to consider specific proposals for inclusion in Amendment 10 to Annex 17. These proposals were unanimously agreed and the following issues were adopted in December 2001:
- Applicability of Annex 17 to domestic operations.
- Certification of screeners.
- Access control relating to air crew and airport personnel.
- In-flight security personnel and protection of the cockpit.
- Joint response to acts of unlawful interference.
- Definition of aircraft security check and security restricted area.

The Ministerial Conference, held in February 2002 reviewed and endorsed the ICAO Plan of Action for Strengthening Aviation Security, which was approved by the ICAO Council in June 2002. A major component of the Plan, aviation security audits in all ICAO Contracting States, commenced in October 2002.
The long term component of ICAO’s global aviation security strategy is focused on three critical areas. One is to assess new and emerging threats to aviation security so as to develop an ability to initiate pre-emptive action.
The second is to continuously monitor and upgrade the existing security process.
And the third is to expedite the clearance of passengers whilst maintaining the highest level of security.
A central element of the ICAO strategy is the Aviation Security Plan of Action which include regular, mandatory and systematic audits to enable evaluation of aviation security in all 187 Member States.

AVIATION SECURITY EQUIPMENT
Airport screening was established in the USA in January 1973. The equipment was primitive in comparison with today’s screening tools. Since then the equipment has been improved and new technology has been developed.
Introduced in 1972 the walk-through metal detector has become a standard screening tool at airports. This equipment has provided high quality detection but it has some disadvantages. The alarm system remains unchanged. Security agent must constantly watch and listen for an alarm to ensure detection. At busy airports there are multiple units resulting in multiple alarms and it is easy for a screener to become confused as to which unit has sounded an alarm. It is not only confusing for the operator but also noisy and confusing for passengers.
Some time later another equipment was offered by manufactures, that is a gate system. If no metal is detected the gate remains open. But if metal is detected the gate operates to divert the passenger to a secondary screening point.
The primary tool for searching hand luggage is the X-ray machine. The system operator must be well-trained to identify not only guns and knives, but improvised explosive devices. Many dangerous items cannot be identified with X-ray technology. This is because basic X-ray images only show shadows. Many dangerous items cannot be identified solely with X-ray equipment. If an operator clearly sees and identifies dangerous item the only way is to open the bags and to conduct a hand search.
Another security equipment, called Explosives Trace Detector (ETD) was installed at some airports. ETD is easier to use than any other screening equipment because all that is required of the operator is to take a sample. The equipment automatically analyzes this sample and notifies the operator when explosive item is detected.
One more equipment for screening checked baggage was installed at many airports. It is the Explosives Detection System (EDS). EDS technology is extremely effective in the detection of the presence of explosives.
The latest security systems such as Machine Readable Travel Documents and biometric identification are being introduced at many airports to prevent civil aviation from becoming a terrorist target and to provide absolute security for air passengers.

HOW AIRCRAFT FLY
The word “aircraft” means any kind of aircraft or vehicle which air can support. Airplanes, helicopters and gliders are heavier–than-air craft. They are supported by the dynamic action of the air upon their aerodynamic surfaces. Free and captive balloons and airship are supported by their own buoyancy*. They are called lighter-than-air craft. Rockets do not need air support. They use the power of their reaction engine to propel them through space, and are called “spacecraft”.
All heavier-than-air craft use aerodynamic surfaces or airfoils to develop the necessary supporting force. These airfoils* are usually in the form of fixed or rotary wings. In order to develop the required lift, the airfoils must move through the air with sufficiently high speed. This speed is imparted to the aircraft by the thrust of its powerplant. The thrust may be developed by rotating the pulling or pushing propellers, or by throwing back masses of air by means of gas turbine engines.
To change the attitude and direction of flight aircraft use control surfaces or controls. These comprise the rudder, the elevator, and ailerons. The rudder is used to deflect the movement of the aircraft to the left or to the right. The elevator makes the aircraft climb or dive. The ailerons produce rolling movement.
The aircraft must also be able to see and hear. Aircraft sensors are those devices, such as radars, direction finders and position plotters*, communication equipment, attitude gyros, air speed indicators and others, which enable the crew to know position, orientation and speed of aircraft.

*buoyancy - aerostatic lift
* airfoil - aerodynamic surface
* position plotter - path plotter

SOME WORDS ABOUT PILOT TRAINING
The professional training system must be based on the criteria of the reliable flight deck activity in piloting and operating the airborne systems.
The main criteria of basic pilot training is timely and faultless procedure execution in anticipated flight conditions and in abnormal situations.
Professional training of flight personnel faces the problem to organize the instruction process so as to provide acquisition of the necessary knowledge only and enable logical execution of a great number of procedures.
The formation of professional intellect is a complex process. The creation of professional intellect cannot be achieved as a result of observations of some phenomena without serious thinking over them. One of the peculiarities of professional intellect acquisition is that the trainee should individually study the correlated functioning of aircraft systems in case of failures, the instruments readings and position of the controls.
Special-purpose simulators used at the stage of simulator training contributes to more extensive acquisition and strengthening abilities and skills both as crew members and in teamwork. The phase of so called “pre-simulator” phase starts with the study of airport systems functioning principles and specific nature of their operation in anticipated conditions and abnormal situations. The necessity of special technical aids of instruction for “pre-simulator” training is due to the existing time gap between the process of studying various airborne systems interaction in anticipated and abnormal situations and the process of developing skills required for operating these systems. In the instruction devices at the phase of “pre-simulator” training similarity is not considered to be obligatory. It is considered that instruction effectiveness to a great extent is the function of the action image which the trainee uses rather than similarity of an instruction device. Graphic displays of up-to-date universal computers are widely used in the process of basic (theoretical) training of aviation specialists.

AIR TRAFFIC SIMULATOR
The increase in air traffic has resulted in the installation of a vast number of radar control systems. Technical progress not only has improved the performance of these systems but also has made them more complex. This has required to train new controllers and to provide continuous refresher training for operational controllers.
The use of simulators provides a solution of safety and efficiency problems. The simulators can be used to train future controllers in the civil aviation educational establishments and to prepare experienced controllers.
A simulator can be used to establish new flight procedures and controls in complete safety.
Nowadays airways are continuously congested, aircraft attain higher speeds and air traffic is characterized by growing complexity. This results in a steadily increasing workload on ATC controllers. They have to be provided with highly sophisticated technical aids and must be trained so perfectly that they can cope with any traffic situation.
Therefore training should be carried out under very realistic conditions.
Simulators are the ideal solution to this problem, since they allow trainees to meet any traffic situation without interference with actual operations. They can realistically simulate the flight of aircraft over any specified area. The trainee controllers are presented with primary and secondary video outputs representing the aircraft as seen from independent radar sites. Over the radiotelephony they talk to “pilots” who have the facility change position, height and speed in accordance with instructions from a trainee or as dictated by the exercise program.

ALFRED NOBEL - A MAN OF CONTRASTS
Alfred Nobel, the great Swedish inventor and industrialist, was a man of many contrasts. He was the son of a bankrupt, but became a millionaire; a scientist with a love of literature, an industrialist who managed to remain an idealist. He made a fortune but lived a simple life, and although cheerful in company he was often sad in private. A lover of mankind, he never had a wife or family to love him; a patriotic son of his native land, he died alone on foreign soil. He invented a new explosive, dynamite, to improve the peacetime industries of mining and road building, but saw it used as a weapon of war to kill and injure his fellow men. During his useful life he often felt he was useless. World-famous for his works he was never personally well known, for throughout his life he avoided publicity. "I do not see," he once said, "that I have deserved any fame and I have no taste for it," but since his death his name has brought fame and glory to others.
He was born in Stockholm on October 21, 1833 but moved to Russia with his parents in 1842, where his father, Immanuel, made a strong position for himself in the engineering industry. Immanuel Nobel invented the landmine and made a lot of money Crimea from government orders for it during then War, but went bankrupt soon after. Most of the family returned to Sweden in 1859, and Alfred rejoined them in 1863, beginning his own study of explosives in his father's laboratory. He had never been to school or university but had studied privately and by the time he was twenty was a skilful chemist and excellent linguist, speaking Swedish, Russian, German, French and English. Like his father, Alfred Nobel was imaginative and inventive, but he had better luck in business and showed more financial sense. his scientific inventions and built up over 80 companies in 20 different countries.
But Nobel's main concern was never with making money or even making scientific discoveries. Seldom happy, he was always searching for a meaning to life, and from his youth had taken a serious interest in literature and philosophy. Perhaps because he could not find ordinary human love - he never married - he loved the whole of mankind.
His greatest wish was to see an end to wars and peace between nations. He spent much time and money working for this cause until his death in Italy in 1896. His famous will, in which he left money for prizes for outstanding work in Physics, Chemistry, Physiology, Medicine, Literature and Peace, is a memorial to his interests and ideals.

AIRBUS A-380
The 555 seat, double deck Airbus A380 is the most ambitious civil aircraft program yet. When it enters service in March 2006, the A380 will be the world's largest airliner.
Airbus first began studies on a very large 500 seat airliner in the early 1990s. The European manufacturer saw developing a competitor and successor to the Boeing 747 as a strategic play to end Boeing"s dominance of the very large airliner market and complete Airbus" product line-up.
Airbus began engineering development work on such an aircraft, then designated the A3XX, in .June 1994. Airbus studied numerous design configurations for the A3XX and gave serious consideration to a single deck aircraft which would have seated 12 abreast and twin vertical tails. However, Airbus settled upon a twin deck configuration, largely because of the significantly lighter structure required.
Key design aims include the ability to use existing airport infrastructure with little modifications to the airports, and direct operating costs per seat 15-20% less than those for the 747-400. With 49% more floor space and only 35% more seating than the previous largest aircraft, Airbus is ensuring wider seats and aisles for more passenger comfort. Using the most advanced technologies, the A380 is also designed to have 10-15% more range, lower fuel burn and emissions, and less noise.

The A380 would feature an advanced version of the Airbus common two crew cockpit, with pull-out keyboards, for the pilots, extensive use of composite materials such as GLARE, and four turbofan engines now under development.
Several A380 models are planned: the basic aircraft is the 555 seat A380-800 and high gross weight A380-800, with the longer range A380-800R planned. The A380-800F freighter will be able to carry a 150 tonne payload5 and is due to enter service in 2008. Future models will include the shortened, 480 seat A380-700, and the stretched, 656 seat, A380-900. (The -700, -800, and -900 designations were chosen to reflect that the A380 will enter service as a "fully developed aircraft" and that the basic models will not be soon replaced by more improved variants).
With orders and options from nine world-renowned customers (Air France, Emirates (the first customer), Federal Express, International Lease Finance Corporation, Lufthansa, Qantas, Qatar Airways, Singapore Airlines, and Virgin Atlantic), the Airbus A380 was officially launched on December 19, 2000, and production started on January 23, 2002. More airlines have placed orders since. The out of sequence A380 designation was chosen as the "8" represents the twin decks. The entry into commercial service, with Singapore Airlines, is scheduled for March 2006.
A380 final assembly will take place in Toulouse, France, with interior fitment in Hamburg, Germany. Major A380 assemblies will be transported to Toulouse by ship, barge and road.

FALCONS HELP PULKOVO STAY FREE OF BIRD STRIKES
Mid-air collisions of planes with birds often have fatal consequences. A bird hitting the engine or other important mechanism can have a serious effect on a plane's ability to fly.
But some birds can be friends.
At St. Petersburg "s Pulkovo airport those friends are the four falcons "hired" by the airport operator this summer to guard the runways from other birds.
When the falcons rise into the sky over the airport, they act as red traffic lights to all those seagulls, crows and ducks that dare to fly near the landing and take-off routes.
Every year Pulkovo airport has incidents in which planes landing or taking off ram into birds flying above the airfield," said Andrei Sokolov, head of Pulkovo"s ornithology service. "Everything we tried previously to counter this produced little result."
The airplane industry estimates at least 350 people have been killed as a result of bird strikes since the dawn of aviation. The problem is growing worse because of increasing numbers of birds and planes.
The deadliest bird-plane collision was in 1960, when an Eastern Airlines jet struck a flock of starlings and crashed into Boston Harbor, killing 62 people.
In 1995, an Air Force plane crashed in Alaska, killing 24 crewmen, after geese were sucked into one of the plane's engines.
Most bird strikes occur at low altitude during the most dangerous time of any flight, the take-off or landing.
When the falcons arrived at Pulkovo from a nursery in the city of Voronezh in early July there was a noticeable difference.
The falcons don "t chase birds that approach the airport; they simply frighten other birds off with their presence because all other birds are by instinct afraid of the birds of prey.
Similar falcon or hawk services operate at airports in other countries, including the U.S., Germany, Britain and Poland.
Falcons are being introduced to quite a few other Russian airports.

FARNBOROUGH AIR SHOW PROVES A SUCCESS FOR RUSSIAN COMPANIES
The Farnborough air show which was held in Britain on July 19-24.2004 proved to be an even greater success for the Russian defense industry companies than the Russian Expo Arms 2004, which was held in Nizhny Tagil a week earlier.
The largest contract of the show was a $1 billion deal signed between Sukhoi Civil Aircraft (a division of Sukhoi construction bureau) and Russia's Siberia Airlines. The deal is for a delivery of 50 Russian Regional Jet civil aircraft, which will begin in 2007 Each plane costs approximately $20 million, can seat from 60 to 95 passengers and is capable of flying up to 5,000 kilometers.
The planes are designed jointly by Russia's Sukhoi Civil Aircraft and Ilyushin Aircraft and U.S. Boeing Corporation. The aircraft will be powered by SM146 engines designed jointly by French Snecma Moteurs and Russian research and production company Saturn. Saturn and Snecma have already announced an establishment of a joint venture that will oversee the production of these engines.
Among other achievements of the fair, which showed 180 items of military equipment and aircraft from Russia, was a great interest expressed by several countries towards a unique Ka-31 radar picket helicopter. The helicopter, produced by the Kamov construction bureau, is capable of carrying out both military and civil tasks and is an economy-priced surveillance machine.

LANGUAGE AND AVIATION SAFETY
In December 1995 a Boeing 757 flew into a mountainside near Cali, Columbia, killing 160 people. The inquiry revealed that the pilots were confused about their location, a situation that resulted from their misinterpretation of the air traffic controller’s clearance to Cali. Less than one year after this accident*, in November 1996, a Boeing 747 collided with an Ilyushin Il-76 near Delhi, India, killing everyone on board aircraft. The inquiry into this accident revealed that there had been some confusion among the IL-76 flight crew, most of whom were not proficient in English, concerning the level to which the aircraft had been cleared to descend.
These two accidents illustrate how the lack of proficiency in a common language and poor comprehension of appropriate phraseology by flight crews and air traffic controllers, can contribute to or result in an accident*.
ICAO has been involved in language training for a good number of years. During the 1980s, ICAO prepared standardized training guideline entitled Aviation English for Air Traffic Controllers. A recent development in this area is ICAO’s decision to review radiotelephony phraseology. This process will involve a comprehensive review of the existing provisions for air-ground and ground-ground voice communications in international civil aviation with the ultimate goal of developing enhanced communication procedures. New provisions would address both routine and non-routine communications, standardized English language testing requirement and procedures, and minimum skill-level requirements in the use of common English.
Safety may also be at risk when the language of the documentation on board cannot be understood by the local inspection authorities. A proposal by the ICAO Air Navigation Commission to amend several annexes by introducing a requirement to translate on board documents into English was adopted by the ICAO Council early 2001.
The same requirements are just essential for air-ground radio communications. The proper use of aeronautical phraseology is an important element in reducing the risk of misunderstandings, there by enhancing flight safety. regardless of the language used. The lack of knowledge of the English language can be a burden to pilots and air traffic controllers, and continues to be a problems in international operations.
There is a need, therefore, to establish requirements enhancing the minimum performance standards for radiotelephony phraseology and use of the English language by air traffic controllers and pilots engaged in international operations.

accident - aviation accident (catastrophe)
incident - a prerequisite to an aviation accident

Commercial use of the book is prohibited! The book is taken from open sources on the Internet and is provided for information only. If you are the author of this book and do not want to see it on our site - write about it to us and we will immediately remove it from the site.

The collection contains more than 50 thousand terms and terminological expressions, 158 illustrations on the design, equipment, flight operation, ground handling of aircraft and helicopters.
The structure of the Collection is made according to the following nested scheme:
1) Main term, for example: "Chassis".
2) Basic term with definition, for example: "Chassis, non-retractable".
3) The most common phrases containing this term, for example: "chassis extension".
4) Expressions with a verb containing the main term, for example: "release the chassis."

UNIT.
auxiliary units and assemblies that perform a common specific function, for example, motors, gearboxes, actuators.
accessories and components that collectively perform a specific functional operation. Examples: engines, control packages, actuators and equipment.

- (device to work in conjunction with other main unit or as an additional unit)
accessories
A part, sub-assembly or assembly designed for use in conjunction with or to supplement another assembly or a unit.

- (part, assembly, block, installation) e.g. pipeline, tap, switchgear, switch, switch, etc.)
component
A self-contained unit of a sub-assembly of relatively simple design which is replaceable as a unit. Examples: tubing, valves, junction boxes, switches, etc. ground power unit (GPU).


Free download e-book in a convenient format, watch and read:
Download the book Russian-English collection of aviation technical terms, Afanasiev G.I., 1995 - fileskachat.com, fast and free download.

  • The course of effective grammar of the English language, Afanasiev A.V., 2015 - The task of this textbook is to make the assimilation and understanding of the language step-by-step and as clear as possible, and therefore effective. For this you will need… English language books
  • Alice's Adventures in Wonderland, Level 1, Carroll L., 2017 - Alice runs after the White Rabbit and falls down the rabbit hole! This is where her amazing adventure begins. Now read about them... English language books
  • Complex Object, Complex Subject, Gurikova Yu.S., 2019 - This manual presents the basic rules for using infinitive constructions in English. Each lesson contains an explanation, followed by examples of use, and ... English language books
  • Project 5, Workbook, Fourth edition, Hutchinson T. - Project fourth edition uses the proven methodology of Project in a new engaging format. This new refreshed edition of the … English language books

The following tutorials and books:

  • English words that we know from Russian, Litvinov P.P., 2006 - There are many words in English that seem familiar and similar to Russian words to a Russian-speaking student. These words are easy to recognize...
  • English, Schoolchildren's Handbook, Shalaeva G.P., Khaskin V.P., 1997 - Given educational edition compiled in accordance with the new program for teaching foreign languages ​​to schoolchildren recommended by the Ministry of Education of the Russian Federation. It represents… English-Russian, Russian-English dictionaries
  • English, Grammar guide with exercises, Grade 2, Kuzovlev V.P., Pastukhova S.A., 2012 - Grammar guide with exercises is a component of the English language teaching kit for students in grade 2 of educational institutions. It contains grammar rules... English-Russian, Russian-English dictionaries
  • English, Practical guide, grades 1-4, Vakulenko N.L., 2012 - A unique practical guide has been prepared in full accordance with the modern requirements of the program for elementary school. Each spread of the publication is dedicated to one of ... English-Russian, Russian-English dictionaries
- The grammar guide is intended for students of ESHKO who are studying (or have completed their studies) at the second (intermediate) level. This guide will help you organize your grammar... English-Russian, Russian-English dictionaries
  • English, Grammar Reference, For Beginners, 1992 - The purpose of this manual is to systematize the studied grammatical material in the scope of the course for beginners offered by ESHKO. In addition, the Grammar Reference, ... English-Russian, Russian-English dictionaries
  • Let's figure it out

    Aviation specialists are a special category of students. Such students face specific tasks, the deadlines for their implementation are compressed. The teacher needs to have time in a short period of time to present the material in an accessible, concise and practical way, and most importantly with a focus on flight safety. After all, the aircraft crew is responsible for the safety of people and must be able to conduct radio communications in English in normal and emergency situations.

    Imagine: even one wrong pretext - such a tiny and seemingly minor one - can play a fatal role and lead to irreversible consequences. As, for example, in the case of the dispatcher's command Descend two four zero zero feet, which the pilot understood as descent to four zero zero feet, and, having descended to an incorrectly accepted altitude, caused the aircraft to collide with the ground.

    What do we offer our listeners?

    At the heart of our methodology is a communicative approach. It is not as important for pilots to be able to read or write in English as it is to speak and listen to speech. That is why in the classroom we pay so much attention to oral speech. Our students spend a lot of time working in pairs and groups; perform tasks, discussing videos, audio recordings, photos.

    The material is very concise - we leave only the most important, we attach great importance not to quantity, but to quality. Many materials are adapted for specific categories of aviation specialists, taking into account their experience and the aircraft in operation.

    We do not set ourselves the task of growing linguists and "embracing the immensity" in a limited period of time. The main thing is to work out the basic material so that the listener speaks English clearly, does not experience a language barrier in emergency situations, and can quickly, calmly and clearly convey the message.

    As a rule, each school day lasts 6 academic hours and is divided into categories: vocabulary (aviation English), radio phraseology and grammar. Moreover, the grammar is worked out in the aviation context.

    We teach aviation English on topics recommended by ICAO (doc 9835):

    • "Misunderstanding Avoidance"
    • "Unauthorized Runway Entry"
    • "Airplane Structure"
    • "Pre-flight inspection of the aircraft"
    • "Icing"
    • "Hit the sun in volcanic ash"
    • "Wind Shear"
    • "Microburst"
    • "Emergency Equipment"
    • "Dangerous Airports"
    • "Takeoff"
    • Landing and many others.

    Already at the first lesson, each student receives a package of educational materials: a dictionary with basic vocabulary on all topics of the course, a manual on radio exchange phraseology. Throughout the course, this package is supplemented by teaching materials issued by the teacher - and so at the end of the course, each student has his own training set, structured to solve precisely his language problems.

    A good opportunity to practice radiotelephone communication is a language simulator, which is software that supports the main on-board instruments on the monitors of the dispatcher (teacher) and the pilot (student), the image of navigation charts, on which the silhouette of the aircraft “flies” according to the planned scenario and instructions of the controller. Observing the movement of the aircraft, instruments, the pilot can adequately assess the flight situation and respond to the controller's instructions. In addition, failures are included in each stage of the flight so that the pilot has the opportunity to practice speech reactions in emergency situations. Practice on the simulator is a great opportunity to consolidate the basics of radio communication and even a novice student to feel like a real pilot!

    “Today in the classroom - tomorrow in the cockpit” - this idea guides every teacher, starting a lesson every day, so that every minute spent by students in the classroom contributes to the growth of their professional awareness and confidence in the workplace.